Concurrency theory Exercise sheet 10

TU Braunschweig Winter term 2018/19

Elisabeth Neumann, Roland Meyer

Due: January 30

Out: January 24

Submit your solutions until Wednesday, January 30, 12:00am.

Exercise 1

Consider two traces $\tau = \alpha.a.b.\gamma$ and $\tau' = \alpha'.a.\beta.b.\gamma'$ where thread $(c) \neq$ thread(a) and thread $(c) \neq$ thread(b) for all c in β . Prove the following:

If
$$a \to_{\rm hb} b$$
 in $\operatorname{Tr}_{\rm TSO}(\tau)$ then $a \to_{\rm hb}^+ b$ in $\operatorname{Tr}_{\rm TSO}(\tau')$

Exercise 2

Consider the following program implementing an instance of the **non-blocking write** protocol by H. Kopetz and J. Reisinger:

ℓ_1 :	$h \leftarrow mem[g]; \text{ goto } \ell_2$	ℓ_9 :	$h \leftarrow mem[g]; \text{ goto } \ell_{10}$
ℓ_2 :	$mem[g] \leftarrow h+1; \text{ goto } \ell_3$	ℓ_{10} :	$mem[g] \leftarrow h+1; \text{ goto } \ell_{11}$
ℓ_3 :	$mem[x] \leftarrow 42; \text{ goto } \ell_4$	ℓ_{11} :	$mem[x] \leftarrow 43; \text{ goto } \ell_{12}$
ℓ_4 :	$mem[g] \leftarrow h+2; \text{ goto } \ell_5$	ℓ_{12} :	$mem[g] \leftarrow h+2;$
ℓ_5 :	$r \leftarrow mem[g]; \text{ goto } \ell_6$		
ℓ_6 :	$v \leftarrow mem[x]; \text{ goto } \ell_7$		
ℓ_7 :	$s \leftarrow mem[g]; \text{ goto } \ell_8$		
ℓ_8 :	assert $r \neq s \lor r$ is odd; goto ℓ_5		
ℓ_8 :	assert $r = s \wedge r$ is even;		

Note that there are two instructions labeled by ℓ_8 . Assume that when executing go o ℓ_8 , the execution non-deterministically jumps to any of them.

Prove that the program is not robust under TSO. Initially assume mem[g] = 0 and $g \neq x$.

Exercise 3

Consider a computation $\tau = \tau_1 . act_1 . \tau_2 \in C_{SC}(P)$ where for all act_2 in τ_2 we have $act_1 \rightarrow_{hb}^* act_2$. Show that the computation $\tau . act$ satisfies $act_1 \rightarrow_{hb}^* act$ if and only if

- 1. there is an action act_2 in $act_1.\tau_2$ with $thread(act_2) = thread(act)$, or
- 2. *act* is a load whose address is stored in $act_1.\tau_2$, or
- 3. *act* is a store (with issue) whose address is loaded or stored in $act_1.\tau_2$.