Concurrency Theory Sheet 9	
Peter Chini	Delivery until 04 02 2020 at 12.00

Exercises to the lecture

Exercise 9.1 (Lossy Channel Systems with conditionals)

We extend lossy channel systems with a transition that, given a channel c and a word $w \in \Sigma^*$ checks whether w is contained in c as a subword:

$$q \xrightarrow{\text{check } w \text{ in } c} p$$

Formally, we extend the transition relation on configurations of a lossy channel systems by the rule:

$$(q, W) \to (p, W)$$
 if $q \xrightarrow{\text{check } w \text{ in } c} p$ and $w \le W(c)$.

Given an extended lossy channel system $L = (Q, q_0, C, M, \rightarrow_L)$, construct a lossy channel system $L' = (Q', q_0, C, M', \rightarrow_{L'})$ with $Q \subseteq Q'$ and $M \subseteq M'$ such that:

$$(q_1, W) \to_L^* (q_2, W')$$
 if and only if $(q_1, W) \to_{L'}^* (q_2, W')$,

for each $q_1, q_2 \in Q$ and W, W' channel contents.

Exercise 9.2 (Ideals)

Let (C, \leq) be a well quasi ordering. An *ideal* is a subset $I \subseteq C$ which is non-empty, downward closed, and directed. Directed means that for each $x, y \in I$ there exists a $z \in I$ such that $x \leq z$ and $y \leq z$.

a) Let (A, \leq_A) and (B, \leq_B) be two works and $(A \times B, \leq)$ their product. Show that a subset $J \subseteq A \times B$ is an ideal if and only if $J = I_A \times I_B$ where I_A, I_B are ideals in A and B, respectively.

Hint: For one direction you need to show that $J = proj_A(J) \times proj_B(J)$, where $proj_A$ denotes the projection to A: $proj_A(a,b) = a$.

- b) Show that the ideals of (\mathbb{N}, \leq) are \mathbb{N} itself and all sets of the form $n \downarrow$ for $n \in \mathbb{N}$.
- c) Derive that the ideals of \mathbb{N}^d are of the form $M \downarrow$, where M is a generalized marking, a vector $M \in (\mathbb{N} \cup \{\omega\})^d$.

Delivery until 04.02.2020 at 12:00