Automata-Theoretic Control
for Total Store Ordering Architectures

Florian Furbach

Kaiserslautern University, Department of Computer Science,
D 67653 Kaiserslautern,
Germany

Master’s Thesis

Table of Contents

Automata-Theoretic Control for Total Store Ordering Architectures 1
Florian Furbach
1 Introduction.........)
2 Operational Semantics of the Total Store Ordering 9
3 Consistency and Tracesot 13
4 Controllerst 17
5 Finite Automata as Controllers, 19
6 Delayed Reaction to Inconsistencies 29
T PreproCessingt 32
8 Distributed Controllers 35
9 The Cycle-Algorithm i 37
10 Time Complexity of Controllers........... 53

11 Conclusion and Outlook 54

Abstract. Diese Arbeit befasst sich mit der Moglichkeit, konsistente
Berechnungen in einem Total-Store-Ordering-System mithilfe eines Con-
trollers fiir den Schreibbuffer zu erzwingen, anstatt robuste Programme
mit Fence-Befehlen zu erstellen. Insbesondere wird untersucht, ob ein
endlicher Automat als Controller verwendet werden kann und welche
Komplexitat er dabei haben muss.

Desweiteren wird eine verteilte Architektur betrachtet, in der mehrere
Komponenten eines Controllers mittels Broadcasts kommunizieren und
die Anzahl der Nachrichten minimiert werden muss. Der Cycle-Algorithm
wird vorgestellt, ein verteilter Algorithmus, der eine minimale Anzahl
an Nachrichten sended und eine modifizierte Version, die einen deter-
ministischen endlichen Automaten mit minimaler Anzahl an Zusténden
darstellt.

This work deals with the possiblity to guarantee consistent computa-
tions in a total store ordering system with a controller for the write buffer
rather than by creating consistent programs using fence-commands. We
explore whether a finite automaton can be used as a controller and its
complexity.

We further examine a distributed architecture, where multiple elements
of a controller communicate using broadcasts and the number of messages
needs to be minimized. We introduce the Cycle-Algorithm, a distributed
algorithm that minimizes the number of communications between its
components. A modified version, that can be represented by a determin-
istic finite automaton with a minimal number of states, will be presented
as well.

Ich erkldare hiermit, die vorliegende Masterarbeit selbststéindig verfasst zu
haben. Die verwendeten Quellen und Hilfsmittel sind im Text kenntlich gemacht
und im Literaturverzeichnis vollstandig aufgefiihrt.

Kaiserslautern, den 3.12.2012

1 Introduction

In this thesis, we consider a system architecture that consists of a number of
parallel running program components where each sends a sequence of read and
write actions to a shared memory. Memory access is very slow compared to
operations of the processor and thus, in modern processor architectures, the
system does not always suspend the computation during a memory access. In-
stead, memory actions are placed into buffers and the computation is continued.
Various relaxed memory models are implemented in order to increase efficiency
[PD95,DPN93,AG96,SHW11].

In those models, some write or read actions on the memory can be delayed
from the execution by the program. From the memory point-of-view, these delays
are interpreted as reorderings of the write and read actions.

However, when designing a program, we work under the assumption of se-
quential consistency [BMO08]. That means that the actions executed by a pro-
gram component arrive at the memory in the same order they have been fired. A
relaxed memory model may introduce unwanted behaviour by allowing computa-
tions that can not be executed in a sequentially consistent system. In particular
data race freeness is no longer guaranteed [AA93].

In the following we will concentrate exclusively on the total store ordering
architecture (TSO) which is used in in the x86 processors Intel64 and IA-32
[Int07]. In order to ensure sequential consistency of a program, it is statically
analyzed and additional delays are added in the form of so called fence actions.
We research the possibility to equip the write buffer of a TSO system with a
controller that performs an online analysis of a program execution and ensures
its sequential consistency.

This thesis is organized as follows: First we describe a formal framework for
the controller in Sections 2 and 3. A definition of a basic controller that detects
inconsistencies is given in Section 4 and it is shown that a controller can be
a finite automaton if some system parameters are finitely bounded. In Section
6, we improve the controller such that it detects inconsistencies immediately
and can be used to actively avoid them. In Section 7, we explore possibilities
to enhance the efficiency of controllers by combining them with a preprocessing
step that analyzes the program before its execution. Distributed controllers con-
sisting of multiple agents that communicate via broadcasting are introduced in
Section 8. We present the Cycle-Algorithm in Section 9, an efficient algorithm
which implements a distributed controller and we examine its complexity as a
finite automaton. Finally, we give an overview of a controller’s time complexity
and we show how to minimize it in Section 10. The thesis is concluded with a
recapitulation and an outlook on future work in Section 11.

Notations

Let V be the set of variables, D a domain of possible values and P = {p1,...,pn}
a program consisting of a set of n program components. The set of all programs

is P. We differentiate the sets of write and read actions.
Write = {w} xV x D x P

Read ={r} xV xDx P

A component p of a program P consists of a finite sequence of actions on p. A
program is a set of components. We restrict ourselves to finite computations.
A computation of a program consists of a sequence of the programs actions in
the order in which they access the shared memory. We say a computation of a
program is feasible if the value of every read action coincides with the value of the
variable that is accessed by the read. Since the value of an action is of interest
only so far as it affects the feasibility of a computation, we will abbreviate a
write action either to (w,x, p) or to w, meaning a write on . Similarly for reads
(r,x,p) and r,. Note that in a definition w = (w, z, v, p;) of a write w, the w in
the tuple is not the write itself but denotes that the specified action is a write.

If we work with a relaxed memory model, the computations are rewritten
according to the model. When a program is executed, a shuffle of these sequences
is observed at the shared memory. The set of possible shuffles of two sequences
is formally defined by the recursion a.a L b.8 := a.(a W b.8) U b.(a.ac 1 B).

In a total store ordering architecture the system contains a buffer consisting
of finitely many FIFO (first in, first out) queues, where the write actions are
buffered before being sent to the memory. When a read occurs, it accesses first
the write buffer of its component. If the buffer contains no write on the same
variable, it accesses the shared memory. Constructing an order of the actions
arrival at the memory from the order of actions fired by a component (or program
order), the following rewritings are possible: a read action that follows a write
action on a different variable may arrive before it at the memory if the write
does not leave the buffer until the read has been executed. We call this a reorder
and say the read overtakes the write.

(w7x7 *7p)'(r7 y7 *7p) m're (T7 y’ *7p)'(w7x7 *7p) With z # y (reorder)

If a write action is followed by a read on the same variable and the write is the
last write on that variable in the buffer, then the read is performed directly on
the action in the buffer and it never reaches the memory. We call this an early
read.

(w, z, %, p).(r,z,%,p) ~py (W, x,*,p) (early read)

A TSO computation is obtained by performing rewrites on the components and
performing a shuffle. In the following example we demonstrate, how a TSO ar-
chitecture may introduce behaviour that is not possible in a sequential consistent
architecture. In previous works, the program is statically analyzed. In order to
avoid all inconsistent computations, fences are added.

A fence f is an action that does not affect a computation itself. It restricts
the possible computations of a program by forcing any delayed action on the
component to be executed before it is processed. In terms of rewriting, this
means no actions can be reordered or processed by the early read rule past the

fence. If a program allows for inconsistent TSO computations, we can enforce
sequential behaviour by adding fences, such that these computations are no
longer feasible. Note that a fence may force multiple memory accesses and thus
may halt the execution for quite some time. Since we will analyze computations
directly, we do not include fences in our definition of actions. In the sequential
consistency model (SC), no rewriting occurs.

Ezample 1 (Dekker) [BMM11] Dekker’s algorithm is a simple mutex to force
mutual exclusion. In a sequential environment, two parallel running components
of a program prevent entering a critical section at the same time. They each
signal their wish to enter the critical section by setting its assigned variable,
respectively x and y, to 1. Then they ensure that the other component is not
entering the critical section by executing a read of 0 on its assigned variable.
The fact that the write is performed before the read on the shared memory is
critical to ensure mutual exclusion [Dij65]. In a TSO environment, where each
component operates on a different write buffer, this property is not preserved.
We examine the following program P which is illustrated in Figure 1. Note

(a) (b) (c) (d) ()
Wz wx| M Wz wx| M Wz |Wx| M Wz Wl M M
r. x=0 . x=0 x=0 x=0 x=1
y=0 A v=0 v=0 y=1 y=1
z=0 z=0 Wy w,| 2=0 0 z=1

Fig. 1. [BMM11] An illustration of the inconsistent computation of Example 1 (mutex).
In (a) wy and w, are added to the buffer of p1 and r, is an early read. In (b), 7y is
read on the shared memory by pi. Then wy.w. are added to the buffer of p2 (c). In
(d), the buffer of ps is emptied and then r, is read on the shared memory. The buffer
of p1 is emptied in (e). The computation is 7 = 7. W, Wy .Ix.Wg.W..

that in a 2-component system, we mark actions of the second component bold.
P = {ph P2}7

P1 = Wy = (w7x717p1)'wz = (wa2717p1)'r2 = (T7Z717p1)'ry = (T7y70,p1);

p2 = Wz = (w72507p2)'wy = (wvya 17p2)'rx = (T3I707p2)

The resulting TSO computation is obtained by applying the rewriting rules to
the components. We apply a reorder and let r, overtake w, and w,. We perform
an early read on r,. This results in

o(p1) = rywew,

U(pQ) = W3 Wy .I'y,

A possible shuffle of this is the following computation:

T =Ty, Wz, Wy, I'x, Wg, W

Note that in this computation, both components enter the critical section. The
computation is not sequentially consistent and mutual exclusion fails.

However, since inconsistencies only occur when different components perform
actions on the same variables within short intervals, the ratio of inconsistent com-
putations occurring in practice is very small. This means most fence executions
lead to unnecessary delays [AA93].

In this work, we explore the notion of dynamically analyzing a computation
while it is executed. This will remove delays that are necessary when using
static program analysis. We will introduce controllers that interface with the
write buffer and process a program execution sequentially. The controller forces
a delay if the computation would be infeasible without it.

Related work

There has been a lot of research exploring the static analysis of programs under
different relaxed memory models. Other basic relaxed memory models in use
are the TSO with read-read reordering (TSOR), where a read can also overtake
another read, the partial-store ordering (PSO) where write actions can be re-
ordered or performed on a buffer or PSO with read-read reordering (PSOR). As
most modern processor architectures use complex combinations and variations
of relaxed memory models, that expand the total store ordering, research on
the relatively strong T'SO model forms a basis to build upon in order to make
statements about highly relaxed memory models [AM11].

The main problems when analyzing programs under TSO are reachability
and robustness. Reachability asks which states of the system can be reached
by executions of a given program. Robustness asks, whether all computations
of a given program are consistent with sequentially consistent computations of
the program. When using a state-based notion of consistency, the reachabil-
ity problem is already non-primitive recursive and thus robustness is as well
[ABBM10]. When using the stronger trace-based notion of consistency, reacha-
bility is PSPACE-complete [BMM11].

Ladan-Mozes et al. have taken a first step towards a dynamic online analysis
of a computation by introducing the notion of location-based memory fences
[LMLV11]. The location-based memory fence, or l-mfence, directly analyses the
computation and adapts delays accordingly. [-mfences are added to a program
to ensure robustness in the same way as traditional memory fences, but their
effect on the computations are different. When a location-based memory fence is
executed, it does not necessarily stall the computation of other processors until
the buffer is emptied. Instead it guards a location in the memory and enforces
a serialization only if another component attempts to read the guarded memory
location. The [-mfence of a component p does not require the writes stored in
the buffer of p to be executed before any other action can be executed. Instead it
monitors other components for reads on the variable it guards and halts if it finds
one. The I-mfence enforces that from every components perspective, an action
on the guarded location is only observed after any write action leaving the buffer
of p. In order to guard a specific memory location, the [-mfence has to be able to

effectively monitor other components for attempts to read this location. In order
to achieve this, the I-mfence coordinates with the cache controller. It retains the
exclusive state of the location for its component. When another component ¢
attempts to read this location, it causes the buffer of p to be emptied before the
p releases the state of the location to g.

This thesis builds on that idea and introduces a controller that performs
an online analysis of a computation and enforces sequential consistency. This
enables us to abandon fences altogether.

2 Operational Semantics of the Total Store Ordering

In the definition of computations, we have modeled the system from the per-
spective of the shared memory. In order to argue about a controller, we need to
look at a TSO-system from the perspective of the write buffers. We now look at
the actions as they enter, leave or access the buffer. We model the interactions of
the buffer with the remaining system such that a computation is analyzed from
the point of view of the write buffer. We first need to formalize the system with
the buffer as its center.

We define the input sequence of a controller attached to the buffer as the write
and read actions as they are executed by the program and the write actions
as they are leaving the buffer. The write actions of a computation enter the
buffer sequentially. Together with the read actions they form a computation in
a sequential environment and represent the user perspective. The sequence of
writes, in the order they leave the buffer, and the reads form the corresponding
TSO computation. They represent the computation from the memory point-of-
view. The controller analyzes the order in which the actions are processed in the
TSO computation and checks for inconsistencies with SC computations, i.e. if a
processed sequence of actions leads to a computation that can not be performed
on the program without write buffers.

Every write action interacts twice with the buffer and thus occurs twice in
the input of a controller. It enters the buffer and leaves it at some later time.
We extend the notions of write actions. For every write action w € Write, we
denote the corresponding input element of the controller that signals w leaving
the write buffer by w°“. A write w entering the buffer is denoted by w*. The
set of possible buffer actions is

Act := Write x {in,out} U Read

The input sequence In of a controller generated by a computation is a sequence
of actions on the buffer In € Act*. Note that in the input, we do not distinguish
between a read action that is an early read and a read on the shared memory.
This is not necessary, since the controller can keep track of the buffer-content
and knows if there is a write in the buffer on the same variable as the current
read. We call an an action w™ an incoming write and w°** an outgoing write.

We obtain an input sequence for a component p by replacing every write w
with w™.w°* and applying the modified rewriting rules

(w,z,%,p)°".(r,y, %, 0) e (1,9, %,p).(w, z, *,p)°*" with = # y (reorder)

out

(’LU, Zz, *7p)OUt'(T5 xz, *7p) mpf (wa xz, *7p) (early read)

Obviously, we can directly obtain the computation of a given input by remov-
ing all w™ and change all w°“! to w. We can also reconstruct the program that
generated an input by projecting the sequence onto the components, removing
all outgoing writes w°“ and changing all incoming writes w'® to w.

We also obtain the sequential computation that shows the actions in the
order, they where fired by the program by removing the w°“ and changing the
w'™ to w. However, when we test an input for sequential consistency, it is not
sufficient to compare the TSO computation with the sequential computation
obtained from the input, since the write-buffer can create additional shuffling
without destroying sequential consistency.

Ezxample 2 : We examine an input where the buffer retains consistency but
changes the order in which the write actions arrive to the shared memory from
the order in which they are fired by the program. It introduces additional shuf-
fling to the computation. Given the program {p; := w.;, p2 = Wy}, with
wy = (w,z,1,p1), wx = (w,x,0,p2), there are two possible feasible consis-
tent computations ¢ = w,;.wx and 7 = wx.w, resulting in x with either 0 or 1
assigned to x. The input sequence is

out out
x Wy

In = w" wit w
This results in x = 1. The program sends a computation o, that would have
resulted in z = 0, but the buffer holds w, until wy is executed, which changes
their order and generates 7.

The definition of buffer input sequences using rewritings are useful for con-
structing such sequences and to understand their similarity to computations,
which are constructed by similar rewritings. However, in order to argue about
a controller, that reads an input sequentially and performs an online analysis of
the computation, we will introduce an equivalent definition of inputs.

For A being a transition system or finite automaton, L(A) is the language
of words accepted by A. A transition system T'S = (I',yp,—) on an alphabet A
consists of a set of states I', an initial state vy and a labeled transition relation —
C I' x A x I" between the states. We restrict ourselves to deterministic transition
systems.

We model different system architectures and programs as transition systems.
Their languages consist of the input sequences for a controller, that can be
generated by a given specified program and system architecture. This allows us
to make formal statements about different models for controllers.

Let F' be some function F': A — B. Let b € B, the function that assigns b
to every input in A is denoted F'[b]. It holds Va € A : F[b](a) = b.

10

The function that differs from F' only at the input a € A by assigning some
b € B to it is denoted by F[a — b]. It holds Fla — bl(a) = bAVa # a € A :
Fla — bl(a) = F(a)

Definition 1 The transition system implementing a total store ordering archi-
tecture with a shared memory containing the variable set V. with assigned values
of D for a set of components P is defined as Sysrso = (I',v0,—), where I’
is the set of configurations, vy is a starting configuration and — is a set of
transitions.

A configuration v = (Mem, W) € I' is a pair consisting of a

— wvariable assignment Mem, which is a function Mem :V — D and a
— function W : P — Write*, assigning to each component p; the content of
its buffer b; € Write*.

The initial configuration vo = (Mem[0], Wle]) has an initial value 0 € D
assigned to every variable and the empty word to every buffer. Let v,y € I'ya €
D,i e Nyw = (w,z,v,p;),r = (r,z,a,p;). The transitions — C I' x Act x I" are
as follows:

v E—q if y=(Mem, W), W(p;) = ww, w € Write*,
v =]z —v],Wlp — wl)
v v, v oif y=Mem, W), W(p;) = w, w € Write,y = (Mem, W |[p; = w.w))
v i v=9"=(Memz — a] W), H(w,z,p;) € W(pi)
or 7 = ’Y/ = (Mem,W[pz - a.(w,x,a,pi).ﬁ]), O‘aﬂ € W’rite*v ﬂ(wazvpi) € 6

Such a system allows any feasible computation and it enforces the correct use of
the buffer. In order to mark the configurations that represent possible endings
of computations, we denote by I'r C I" the configurations where all buffers are
empty. We call them complete.

We model the programs as finite automata defining the language of all se-
quences of actions that can be fired by the program. Note that an automaton
does not enforce correct behaviour of the buffer. This is done by the T'S modeling
the system.

A finite automaton A over an alphabet X consists of a tuple A = (@, ¢,, =
,Qr) of a finite set of states @, an initial state ¢, € @, a set of transitions
— C @ x X x @ and a set of final states Qg. If no set Qr is specified, Q = Qp
holds.

We only use deterministic automata where the transition — such that

= qdNg—=q"=>q¢=¢"

For two automata A = (Q, qo, =, Qr) and A’ = (Q’, ¢}, =, Q%), we define their
interleaving A[||A" :== (Q x @', (g0, ¢)), =", QFr X Q%) with

(0.4) =" (@, d) e la—>and =d]Vd = dNg=aq]

11

It holds L(A|||A") = L(A) w L(A4").

A component p contains a sequence of write and reads. We give an automaton
that ensures that the component sends those actions in the correct order. A
program P is modeled to consist of its sequential components that are executed
in parallel. We define the program automaton Ap as the interleaving of the
automata of the components Ap := |||pepAp.

Definition 2 Given a componentp = a; ... an,, its corresponding automaton A,
is defined by A, = (Q, g0, —, {qn}) such that Q = {qo, ..., ¢n} and — as follows

Gi-1—¢q; if 1<i<mn,r=a;, r€ Read
i1 = q if 1<i<n, w=a; we Write

out
q2—q if weWrite, g€ Q

Example 1a (Dekker) The finite automaton for the program p; = wg.w,.r;.ry
of Example 1 is given in Figure 2. Note that any action w°* is allowed at any

start qo0

Fig. 2. The finite automaton for p1 = wy.w,.r..ry in Example la

time independently of the writes that entered the buffer. The correctness of the
buffer is ensured by the TS of the system.

We introduce a sequentially consistent system that has the same set of con-
figurations I" but does not use write buffers. We achieve this by ensuring that
every action w'™ entering the write buffer leaves it in the next transition w°%.
We recall the transition system of a total store ordering is Sysrso = (I, 70, —)-
We define the sequentially consistent system with the restriction that a state
with a nonempty buffer contains only outgoing transitions labelled with a write
leaving the buffer w°¥t.

Definition 3 The transition system modeling a sequentially consistent environ-
ment is Syssc = (I',y0,—') with =" C — s.th for dall (v,a,7) € — holds
(v,a,7") €= iff v = (Mem,Wle]) for some memory state Mem : V. — D or
a = w’ for some w € Write.

This system allows only sequentially consistent computations.
Ezample 1b (Dekker) Examine the program of Example 1: P = {p;,p2} with

D1 = Wy W,.T5.Ty. and Py = W, . Wy.I'y
The TSO computation is 7 = 7,.W,. Wy, rx.w,.w, Let the SC computation o be

12

the order in which the actions were fired by D.

0 = Wg.W,.T,.Ty . Wz Wy, I'yx

The SC computation gives us the incoming writes and reads and the TSO com-
putation shows when a write leaves the buffer. This produces the following con-
troller input:

wytawy T, .Ty.W;n.W;,n.W;)Ut .W;Ut. WO awout
(a) (b) (c) (dy (e)
g2 (Wz|wx| M q3 (Wz{wx| M cs Wz wx| M cs (W |wxl M cs M
v x=0 4 x=0 x=0 x=0 x=1
y=0 Ty =0 y=0 y=1 y=1
o =0 do =0 G2 |Wy|wy| 2=0 s z=0 s =1

Fig. 3. An illustration of the inconsistent computation of Example 1 and 1b (mutex).
In (a) wy and w, are added to the buffer of p; and r, is an early read (wfc”.wi".rz).
In (b), ry is read on the shared memory by pi. Then wy.w, are added to the buffer
of ps and 7, is read on the shared memory (wi®.wi) in (c). In (d), the buffer of p»

y
is emptied (rx.w2"*.w2*") and then rx is read on the shared memory. The buffer of p;

is emptied in (e) (W™ . w2**). The computation is T = 7y.W,. Wy .rx.wy.w,. The input

sequence is wi" . wl.r..ry Wit Wit wett wo U re wd " wdvh

3 Consistency and Traces

We have informally referred to consistency of computations as the notion that
computations exhibit the same behaviour. The most obvious interpretation is
that a set of computations are consistent if no computation is feasible or each
computation is feasible and ends in the same state of the system, meaning the
values of the variables in the shared memory have to coincide after the execu-
tions. This was introduced by Owens as resultSC [Owel0)]

Definition 4 Let Sysa and Sysp be the transition systems of system architec-
tures A and B. A computation o on a system Sys, is state-consistent with a
computation T on Sysp iff they are both either not feasible or they end in con-
figurations v and v such that the shared memory of v is in the same state as
.

Definition 5 A computation o of a program P with Sysa is consistent with
Sysg iff there is a computation o’ of P using Sysp that is consistent with o.
A computation o of a program P with Sysa is sequentially consistent iff it is
consistent with Syssc .

Definition 6 A Program P is robust under Sysa iff every computation of P
with Sys 4 is sequentially consistent.

13

In the static analysis of a program under T'SO, the robustness-problem needs to
be solved. This was shown to be PSPACE-complete [BMM11]. We use controllers
in order to avoid solving robustness and concentrate on sequential consistency
instead. State-consistency is the weakest definition of consistency, it allows ev-
ery computation that produces the correct variable assignments. However, it is
unsuited for controllers, as we will see in Section 4. We will use traces, a stricter
definition which does not allow some computations that end in the correct mem-
ory state. The concept of traces was introduced by Shasha and Snir [SS88]. To
formalize traces, we define the following relations on the actions of a computation
o [SS88].

Definition 7 The program order relation of a component ﬁ)p gives the or-
der in which actions of the component p have been fired by the program. This
is the order in which they were before rewriting. For a component p, it holds

a ﬂ)p b < p=a.ab.p. The po-relation is ~=:= UpeP ﬂﬁ,,

Definition 8 The store relation of a computation o and a variable x gives
the order in which the actions of o write on x. It holds w, S—t>w Wy iff o =
st

—r -

~ . . st
Qw07 and B contains no write on x. —:=J,cy

st .
If w — w’ holds, we say w’ overwrites w.

Definition 9 The source relation of a computation o defines for each write w,
which read action r, has read the value of x that was assigned by w,. For any
re € 0 holds wy =5 vy iff 0 = qw,.[.r,.y where B contains no write on x. For
any early read vy ¢ o with v, € p holds wy =5 o iff p = qw,.B.ry.y where B
contains no write on x.

If w =5 r holds, we say r reads w or r reads the value of w.

The following descriptions of the relations between the actions use the buffer
input In created by a computation o. We can see that they are equivalent to
the previous definitions using o.

For an action a, we define a’ := a, if it is a read and a’ := o™, if it is a write.
The projection of an input sequence In’ to its actions of component p is In’ |,,.

Lemma 1 For a given Input In, the relations between the actions are equiva-
lently characterised by:
a ﬂp b, iff there is a sequence B containing no w'™ or r of p such that

a v elInl, NIn=a.d .Bb .y
Wy S—t>z W, iff there is a sequence B without outgoing writes on x such that

_ out ~out
In = o.wy™ .S y

14

To characterize the source relation, we describe two cases. In the first, we
assume there is no w, € p such that

1 ~in ol 1 ~out g/
In=do Wl ry~ W6

Wy 5, T4, iff there is a sequence B containing no outgoing write on « such that
In = a.w?"t.B.r,.y (reorder)

In the second case, we assume there is a component p such that wy,r, € p holds.
Wy —5, 14, iff there is a sequence B containing no incoming write Wi of p such
that

In = a.w™.B.ry.ywl™s (early read)
Let Actions(P) be the set of actions occurring in a program P.

Definition 10 A trace T = T(0) of a computation o of a program P consists
of the actions of P and the relations between them.

po st src)

T := (Actions(P), —, —, —
The same holds for a trace T = T(In) of a buffer input In of a program P.

We can use the relation descriptions that are based on the input sequence to
construct a trace from a sequentially read input. We add an action to the trace
when it first occurs. Recall, that every write w occurs twice in the input: w™
and wou.

When a new input-symbol is processed, the trace is updated with the follow-
ing trace updates :

1. We add a program order relation for any action r or w™, the start node of
which is always the last action in the po-relation of the component.

2. We add a store relation w —% w, when a write action w leaves the buffer. The
start node of this relation is the former last write action w on the variable
that accessed the shared memory.

3. We add a source relation w —% r, when a read action r occurs. The start
node w of this source relation is either in the last write action on the variable
in the memory or the components buffer if it is an early read.

4. We add a conflict relation r - w, when a write action w leaving the buffer
is the goal of a store relation with a start node w, that is also the start node
of a source relation w % r.

The trace updates are directly derived from the definition of the relations given
an input In and thus they are correct.

Definition 11 A computation o on a system Sysa is trace-consistent with a
computation T on Sysp iff T(c) =T(1)

15

We will use this model of trace-consistency to construct controllers and we will
refer to trace-consistency simply as consistency. This notion of consistency has
a property that is easier to check for violations than state-consistency. However,
it requires that we extend our definition of traces. We add a new conflict relation
cf. A read r, is in cf-relation with a write w, if there is a another write w,
such that r, reads the value written by w, and w, overwrites it or if w, is the
first write on x and r, reads the initial value of x.

re <L w, = Wy (g 5 1y Ay —5 W) V (Pl (5 —5 we) AP (W), 225 1,))
Alternatively, we say r, is in cf-relation to w, if w, is the first action to write
on z after r, was executed and r, did not read the value written by w, (which
may happen if r,, is an early read).

Since we only use the existence of st and src-relations and we already have
definitions for these relations using the buffer input, it is not necessary to give
a second characterization of the cf-relation using the input. These relations
together form the happens before relation.

hb st sre g
::p()USUST‘(‘U(‘f

sre cf

An extended trace is T := (Actions(P), 22, =%, 275 15) Note the extended
definition of the trace does not contain more information than the previous one.

Theorem 1 A computation o of a program P with Sys 4 is sequentially consis-
tent iff the extended trace contains no cycle.[SS88]

We now have a notion of consistency that can be checked efficiently. It is trivial,
to construct a computation o of a program P such that T'(o) is a cyclic extended
trace and all actions of the program read and write only the initial value of
the variables in the shared memory. After any computation of the program P,
the memory remains unchanged and so every computation of the program is
state-consistent. We see that the consistency model using traces is stricter than
state-consistency.

From now on, we will only work with extended traces and thus, we will
refer to them simply as traces. When not further specified, consistency refers to
sequential consistency.

Let 7 %5 w be a relation in a trace such that r and w belong to the same
component p. By definition of the conflict relation, w has not left the buffer nor

was it in the buffer when r was executed. This means w was fired by the program
*
after r and thus r ﬂp w holds. Since we are only interested in the reachability

properties of a trace, we can omit the relation r c—f> w from a trace.

From the input, we can obtain the TSO rewritings and thus the trace. See
Figure 4.

Note that 7 is not only obtained from o through TSO rewriting, but the
buffer also provides additional shuffling. This means, it is not sufficient to check
only if 7 is consistent with o. We have to check, whether 7 is consistent with
any SC computation o’ € L(p;) LW L(p2).

16

Fig. 4. The trace of 7 in Example 1. The trace contains a circle so the computation is
inconsistent

In our model, the input of a controller does not contain fence actions since
they only influence the behaviour of the buffer and thus the shape of the input.
In a trace, they are only connected with the program order relation and do not
change traces with respect to acyclicity.

4 Controllers

Using the trace-consistency, we now introduce controllers. We research a con-
troller that sequentially processes the buffer input created by a program exe-
cution and ensures consistency of the computation by delaying some actions.
Before a write enters or leaves the buffer or a read is executed, the system re-
quests to perform the action from the controller. The controller allows it, if it
does not destroy sequential consistency. In order to achieve this, the controller
has to obtain and interpret all the partial knowledge of the trace that is available
from the processed input.

First, we look at a basic controller that does not necessarily process all avail-
able information, but eventually detects every inconsistency. We define a con-
troller by the language of inputs it accepts for any given program using T'SO
architecture. A controller has to accepts all inputs of a program that have a
consistent input of the same program in a sequential environment.

Definition 12 A transition system C is a controller iff it holds
VP e PVIn € L(Ap) N L(Sysrso)

(In € L(C) & 3In’ € L(Ap) N L(Syscs) (In is consistent with In'))

In Section 6, we will show how a controller can be improved in order to find
inconsistencies immediately.

17

We see that the notion of state-consistency is not useful for our purposes.
The controller for the buffer is supposed to read the input sequentially and
detect inconsistencies during the computation, state-consistency of a feasible
computation depends solely on the state at the end of the computation. Any
feasible computation can be extended with a suffix of write actions that change
all variable assignments of the shared memory to any state. Since we do not now
the program until the input has been processed, we cannot check an input for
consistency until it has been processed. This defeats the purpose of an online
analysis of the input.

Applying our knowledge of traces [SS88| gives us alternative definitions for
a controller.

Lemma 2 A TS C is a controller iff
VP e PVIn € L(Ap) N L(Sysrso)
(In€ L(C) & 3In' € L(Ap) N L(Syscs) (T(In) = T(In')))
Lemma 3 A TS C is a controller iff
VP e PVIn € L(Ap) N L(Sysrso) (In € L(C) < T(In) is cycle-free)

Lemma 3 gives us the basic idea behind the controllers we will introduce: we
build a partial trace and check if it contains a cycle. In Section 5, we show under
which assumptions a finite automaton can be used as a controller and what its
space complexity is.

18

5 Finite Automata as Controllers

We now investigate different restrictions of a system and determine whether
we can find a controller that is a finite automaton. We consider the size of
the set of variables, their values and the maximal buffer size. We furthermore
determine which of these parameters have to be finitely bounded in order to
be able to construct a finite automaton as a controller. We will see that the
following restrictions hold: the sets of variables has to be finite and the maximal
length of the buffer content has to be finitely bounded.

We then show that such an automaton exists by giving a constructive proof
in which we build an automaton, that stores finitely bounded variations of traces
in its states.

Theorem 2 Given a limited buffer and an unlimited number of boolean vari-
ables, no finite automaton is able to test any computation for consistency.

Proof. Assume there is such a finite automaton A. There is an n € N such that
A has less than 2" states. Given variables X = {x1,...,z,}, we construct for
every subset X' = {x;,,...z;,} C X, k < n the input In:

w, = (w,z,l,p;;)ﬂ“y = (ray70’p3)’
wy = (w,y, Lp1), wy = (w,y, 1, p1),
V1<Ii<k:w; :=(w,zy,1,p),
wiy, = (w, Tiy, 1, p1), wiy, = (w0, 24,, 1, p1)

out , in , out wn , out

out
ip Wiy Wiy e Wy Wy

. pin in in
In = w" . ry.w," w," w;'w

We define r; = (r,xj,1,p2), W, = (w,2,0,p2), W, = (w,2,0,p2),w, =
(w, z,1,ps3) and consider the following continuations I'n’ of the input:

out out

/AN in
In' :=r;w wy'w;

The trace of an input In.In’ contains a cycle iff 2; € X', as shown in Figure 5.
Since there are 2™ different possible sets X/, A has at least 2™ states. This is in
contradiction to the assumption that A has less then 2™ states. a

From the proof follows immediately that the size of an automaton is at least
exponential in the number of variables.

Theorem 3 Given an unlimited buffer and a limited number of variables, no
finite automaton is able to test any computation for consistency.

Proof. Assume there is such a finite automaton A. Let V = {z1,z2,...,2m, y}.
There is an n € N such that A has less than n™ states. We construct n sequences
of reads si,...,s,. For every variable x;, we assign a read r,, to one of the
sequences. Within a sequence, the order of the reads are given by their indices:
i < j = 1y <rg;. Given sequences si,...sp, we construct the input sequence

In(sy,...8,) = wy 51w, " sp.wy L wy sy w

19

|
Wiy gy Wiy |

|
Wi, &

Fig. 5. The trace of In.In’ with z;, = z; € X’. The resulting src-relation completes
the cycle and thus leads to inconsistency

There are n'™ possibilities to assign the m reads to n positions in the buffer.

Since A has less than n™ states, there must be two sets of sequences s1,..., s,
and s}, ..., s), such that A is in the same state after processing In(si,...s,) and
In(sy,...s)).

Let ¢ < n be the smallest number that satisfies s; # s;. Assume without loss
of generality, that there is a read rz; such that vy, € s; and ry, ¢ s;. It follows
that in the trace of In(s},...s),), rz; occurs later in the po-relation. We give an
input continuation
out)i in Wout Win out (wout)n—i+1

y Wi Wy - y.Wy y

In'(ry;,1) == (w
Both inputs contain a sequence of relations

cf po st
Ty; — Wy — Wy — Wy

But only the trace T'(In(sy,...s,).In'(ry,,4)) contains the relation w, 22 Ta,

that completes the cycle. In(s1,...s,) is constructed such that any write w, on
y that precedes r;; in the po-relation already left the buffer before (wZ“t)’ has

been processed. The write w, that is reached by wy, LN wy is contained in the
sequence (wg"")"~ Since In(sy,...sy,).In'(ry,,) is sequentially consistent
while T'(In(s},...s;,).In'(r,,;,i)) contains a cycle, A has to be in different states
after processing In(sy,...s,) and In(s},...s,). This is a contradiction to the
assumption that A is in the same state. a

This proof shows that the size of a controller is at least polynomially dependent
on the size of the buffer.

Lemma 4 If a trace contains more than one conflict relation from a program
component p to a write action w, then all except the last can be omitted and the
trace remains cyclic (respectively cycle-free).

20

Proof. If a program contains two reads 1 22" ry and there is a w with w

and 79 s 4 and there is a cycle containing rq BN w, then we can replace this
*

relation with rq 2o, T C—f> w. We have found another cycle containing ro C—f> w

and not 7 c—f> w. So the relation 7 i) w does not effect whether the trace is
cyclic. a

Lemma 5 If a trace contains an early read r1 and po-relation 11 2% vy and we
exchange 11 and ro in the po-relation using the following modifications

po po
a—1r=a-—7ry
po po
TE —> T =>To —>»7T1
po po
ro —a=17T1 —a
then the trace remains cyclic (cycle-free).

We show that any cycle remains:

Proof. If the trace contains a cycle
hb *
a L% pp 2%y P2 20 g

then the modified trace contains a cycle a RN T9 2o, 1 2% ﬂ> a.
If the trace contains a cycle

o 0 hb hb * . hb 0
ap—>r1p—>r2—>b—> a, with ro — b 2o,

. . hb hb *
then the modified trace contains a cycle a 2%y D L ql
If the trace contains a cycle
hb hb * . hb
a 25 ry 2% p L2 a,w1tha—>r1§éﬂ>

. . hb 0 o hb *
then the modified trace contains a cycle a — ro 2o, r1 N N

If the trace contains a cycle
hb 0 hb * . hb o
a =2y 22 opy 22 aw1tha—>r1¢p—>

. . . o * ..
then it holds ¢ =5 7 and since 71 is an early read, a 22" ., holds. This is a
contradiction.

We show that the modification does not add any cycles. The first 3 cases are
analogue to the proof that no cycles are added. If a cycle

hb po hb hb *
a—r9 —1r1 —b— a

is created in the modified trace then the original trace must contain a cycle

po_* po hb * .. . po

a — 11 — 9 — a. This is the case because either a — 71 holds or
src po *

a — 71 does. Since ry is an early read, this implies a — 7. a

21

We call the modification of the lemma an exchange modification. This technical
lemma shows that it is sufficient for a controller to store which early reads of a
component p are processed between the the time a write w enters the buffer of
p and its direct successor enters the buffer. We do not need to know their order
or where they occur in the program order related to other reads of p in the same
interval. This can be simplified further using the following lemma.

Lemma 6 If a trace contains two early reads r1 and ro that read the same write

w (w5 ry Aw 25 ry) and occur back-to-back (ry REN r9), we modify the trace
.)) . : hb hb

by removing ro using the following modification: 1o — a = r1 — a

The trace remains cyclic (cycle-free).

*
Proof. Assume a cycle is removed. This cycle has the form a LN ro 22" 4. Since
ro is an early read and either a 2% ry or a S 1y holds, the cycle has the form

hb * po hb * . . hb * hb *
a — 11 —> r9 —> a. The modified trace contains a cycle a — r, — a.
Obviously, no cycle is added. ad

We call this modification a remowval modification.

We now know, that instead of storing every early read that occurs between
two writes of a component p, which is an unbounded quantity, it is sufficient to
store only one early read for every write in the buffer that was read by an early
read occurring between the two writes. This is bounded by the buffer length.

Theorem 4 Given a finite buffer and limited number of variables and values, a
finite automaton exists that checks for consistency.

Proof. We construct an automaton such that the states represent the possible
traces. If the trace contains a cycle, it is a non-accepting state. Since the number
of possible traces is infinite, we need to reduce the trace to a finitely bounded
version with limited size. This is called a compact trace.

The controller needs to construct a trace from a sequentially read input. We
recall the trace updates:

1. We add a program order relation for any action r or w™, the start node of
which is always the last action in the po-relation of the component.

2. We add a store relation w —% w, when a write action w leaves the buffer. The
start node of this relation is the former last write action w on the variable
that accessed the shared memory.

3. We add a source relation w — r, when a read action r occurs. The start
node w of this source relation is either in the last write action on the variable
in the memory or the components buffer if it is an early read.

4. We add a conflict relation r - w, when a write action w leaving the buffer
is the goal of a store relation with a start node w, that is also the start node
of a source relation w % r.

22

Except for the src-relations to early reads, these updates disregards store actions
until they leave the buffer. This means that inconsistencies are not detected as
early as possible. In Example 1, it only forms a cycle when the buffer is emptied.
This is sufficient for now. In Chapter 6, we will discuss how to modify a controller
in order to detect inconsistencies immediately.

For this method, it is not necessary to know the complete trace of the pro-
cessed input to check for consistency. In order to check for cycles in the trace,
we only need to know the reachability between the vertices to which new rela-
tions are added. When a new relation a — b is added, a cycle is formed iff a is
reachable from b. If this is the case, the controller enters an non-accepting state.

Note that in every update, we only need the last writes that accessed a
variable in memory and the buffer content to add st- and src-relations. For the
conflict relation, we need a read r that may be at any point in the trace. Let
i latest De the latest read that accesses the latest write w on the shared memory
on variable z. The read r satisfies w -= r with r in p;. Per definition, r; jqtest
occurs after r and since it is not an early read and w is the latest write on =,
Tilatest Teads the value of w. It holds w also satisfies w A i latest With. Using
Lemma 4, we only need to check the latest read on every variable for every
component.

If an outgoing cf-relation is added to an early read, then the write action w
with w =55 7 has left the buffer and was overwritten by another write @ such

that w - . This means at the time a cf-relation can be added, the early read
is already a read on a write action that has accessed the shared memory.

For each component, the last action sent by the program is the only action
from which an outgoing po-relation of this component can be added. So we know
the only actions that a newly added relation can start from are the following:

The last writes accessing the memory on each variable

The last reads accessing one of the last writes for each variable and each
component

— The writes in the buffers

— The last action fired by the program

These are called the relevant actions. They are illustrated in Figure 6.

When a buffer element w, is accessed by an early read r,, we first store
the read implicitly by adding a source relation from w, to the last element in
the buffer at the execution time of r,. When w leaves the buffer, we store r
explicitly as the last read on z of the component. Then we add it to the po-
relation directly before the buffer element following the one we marked earlier
with the src-relation.

The compact trace is stored in a state of the finite automaton as a directed
graph and the vertices are the relevant actions to which outgoing relations can
still be added as illustrated in Figure 6. The reachability property consists of
the happens before relation of a trace as well as its transitive closure. We store
the relations as arcs labelled with the names of the relations (sre, st,po;,cf)

23

where po; is the po-relation between actions of component p;. We also add the
transitive closure of this modified happens before relation. When we use the term

Program Order: ~ (p01) (PO2) oo

Reads: P1 p2 Pm

Writes: @ @ ... @

Buffer: b1 D2 Dm

Wi, W21, Wm,1

3

Fig. 6. The compact trace is stored as a graph. Let P = {p1,...pm} and V =
{z1,...2n}, i < n, 7 < m. For every component p; there is a a vertex z; for the
last read on x; executed by p; and a vertex w for every buffer element of p;. For every
variable z;, there is a vertex x; for the last write performed globally on z;. For every
component p;, there is an a vertex po; containing the last action in the components
po-relation. Let [(4) the size of the buffer content of component p; and (wi 1, ... w;i(;))
its buffer content.

moving an action or replacing another vertex, it means we remove all incoming

and outgoing relations from the target vertex and replace them with those of

the moving action. Then we remove the previous vertex of the moved action.
The compact trace is updated using the following compact trace rules:

Rule 1 a = (w,z,i,p;)™: Add a to the buffer, then add a po;-relation from the
element of p; which has no outgoing po;-relation to a and update the tran-

24

m

sitive closure.

Rule 2 a = (w,z,4,p;)°*: Add store relation from the last write to z in the

memory o' = (w,x, j,pr) to a in the buffer.

If ¢’ has an outgoing source relation a’ - 7, then add r s a.

Update the transitive closure.

If the compact trace is cycle-free, remove a from the buffer and replace o
with it (including its relations). If a’ is the last element reached by poy in
the trace, then we move a’ in the vertex poy. If there is already an action
occupying the vertex (i.e. if it is connected to some vertex), then we replace
it.

If there is a relation a —% w with w a buffer element (indicating an early
read on a), then remove the relation. Create a new read r,. If w is not the
last bufferelement, there is a write w’ directly after w in the buffer. Replace
the relation b 2% w’ with b =% 7, 2% w'.

If w is the last buffer element, add a po;-relation from the element with
incoming but no outgoing po;-relations to 7,. Then add a =5 r, to the
compact trace.

Replace the node of last read p on x with r, and update the transitive closure.

Rule 3 a = (r,z,i,p;): If there is no write to « in the buffer of p;, add a po;-
relation from the element of p; which has no outgoing po;-relation to a.
Then add the source relation from the last write to = in the memory to a
and update transitive closure. Remove the last read of x from component p;
and replace it with a.

If there is a write w, such that w, is the last write on x in the buffer of p,
then add a source relation from w, to the last buffer element.

It makes no difference, whether we keep the (unconnected) vertices of empty
places in the buffer in the compact trace or not. The compact trace of the initial
state consists of the graph with an empty set of edges.

It remains to be proven, whether the cyclic property of the compact trace
created by an input In is the same as the cyclic property of the non-compact
trace of In. We show that the reachability property of the compact trace T”
constructed from In is the same as the reachability of the relevant actions of
a non-compact trace T' that was modified from T'(In) using the exchange and
removal modifications given in Lemma 5 and 6. We say the compact trace T”
is equivalent to T if this holds. Since the trace of an empty computation is
obviously equivalent to the initial compact trace containing no relations, it is
sufficient to prove, that the application of the compact trace rules is equivalent
to the application of the trace updates in combination with the exchange and
removal modifications.

By definition of the transitive closure, the following holds for the relations of
the compact trace:

hb ¥, hb* hb * hb*

(a2 b= c=a"> c)A(a5 b=Pbc Act:a—*b—"c)

25

It follows that once the transitive closure has been updated, we can delete actions
without affecting reachability of the remaining actions.

We show, that every relation added by a compact-rule is equivalent to some
modifications and applications of trace updates.

— Compact rule 1 obviously adds relations consistent with the first trace update
which is the only one that applies to a write entering the buffer.

— Compact rule 2 adds cf-relations and st-relations the same as traces updates
3 and 4. If ¢’ is no longer necessary to add new relations, we can safely remove
the old write a’ without destroying any paths in the trace containing a’ since
we store the transitive closure instead of just the hb-relation. However, if
there is an incoming poj-relation on a’ but no outgoing one, then this will
be added when the next input on p; is processed and we cannot remove a’.
Since a’ is the last action in the po-relation of pg, this does not hold for the
previous action of vertex por and we can now safely remove and replace it.
If there is a src-relation to another buffer element, then there was a early read
rs.th. a =5 7 holds and the src-relation is added consistent with the third
trace rule. The po-relations added for r are equivalent to the po-relations
added by the first trace rule and then modified by repeatedly applying the
exchange modification to r.

— If the processed read a is not an early read, then compact rule 3 is analogue
to the first and third rule. When a is an early read, then the src-relation to
the last buffer element w is added and rule 2 correctly processes the read
later.

We now show that for every relation added by a trace update, changes are made
to the compact trace that are equivalent to the relation added by the trace
update and some modifications.

— The first trace update construct the po-relation of the trace. In compact
rules 1 and 3 a po-relation on the relevant cases is constructed that leaves

out any early reads. Let r1,--- ,r, be early reads and a and b are not early
reads. The relation a £>p 1 %p Ty ... ﬂp Tn ﬂﬁ, b in the trace is only

partly implemented . Compact rules 1 and 3 create the relation a £>p b.
Afterwards, some reads are inserted in a different place of the po-relation by
compact rule 2. We have already shown, that a compact rule 2 adds early
reads consistently with the application of trace rule 1 and modifications.
If there is an early read r that is not added by compact rule 2, then another
early read 7 on the same write was already added. This is consistent with
applying the exchange modification to read 7, until 7 ﬂp r holds and then
the removal modification on r.

— Trace update 2 is equivalent to the st-relation added in rule 2.

— Trace update 3 is equivalent to compact rule 3 if the read is not an early
read.
If it is an early read, either the src-relation is added in compact rule 2
equivalent to the application of some exchange modifications or the read is
not added, which means the removal modification can be applied.

26

— Trace update 4 is equivalent to compact rule 2 if the read r is not an early
read and it is a latest read.
We have shown that if is not a latest read, it is sufficient to add the conflict
relation from the latest read. This is done in compact rule 2
If r is an early read on a write w and r is added to the compact trace, then
r is added to the last reads of the component at the execution time of w°%!.

For every write w with r Iy 4 holds that @°ut was executed after wot,

since w —% @ holds. If follows that the relation r - 1@ is added by compact
rule 2.

For a given input, the compact rules affect the cyclic property of the compact
trace the same way the trace updates affect the trace. From the correctness of
the compact rules follows, that the given finite automaton is a controller. a

The following example gives us an application of the 3 different updates that
occur on the compact trace.

Ezample 2 (Compact Trace Updates) These are the updates occurring in Fig-
ure 7:!

Update 1: In component po, input w® is processed by adding w to the buffer
and adding the po-relation from the last executed input on ps, in this case
this is the last buffer element wy ;(2).

Update 2: In pq, wggt is processed by removing the first buffer element w,,
from the buffer, adding the st-relation from the last write (write-vertex xs)
and then replacing it.

Update 3: In p,, a read action r,, is added by replacing the last read action of
pn on x1 and adding a po-relation from the last vertex reached by program

order relation. In this case it is wy, i(m)-

Note that in updates 2 and 3 the last actions reachable by the components pro-
gram order are the last buffer elements. This means the vertices po, and pos are
not necessary in this case.

There are no early reads in this example.

Ezample 2a (A Compact Trace Using a po-verter) We examine the compact
trace after processing the following input.

out

in out in
Wy Wx Ty

W, ,W,

The last write on = came from p; and replaces the previous w, on the vertex
which is moved to po;. When ry, is fired, we add a po;-relation from the vertex
po;1 to the read vertex = of p;.

These theorems show that a finite controller C exists if and only if the set of
variables and the maximal length of a buffer are finitely bounded.

! The colours refer to the respective parts of the figure.

27

Program Order: ~ (p01) (PO2) ereeeeeeeeieieiees

Reads: P1 P2 Pm

replaces

Writes:

Buffer:

W2,15

po2

add | w'™

Fig. 7. Illustration of Example 2: The 3 updates of of the compact trace when an action
is executed. Update 1 (w'") is illustrated on component p2, Update 2 (w3s*) occurs in
p1 and Update 3 (1) in py.

28

Theorem 5 A controller C' that is a finite automaton exists under a system
Sysrso iff for Sysrso holds

F,jeN: |V|<iAVI<n:|h|<j

Proof. We examine the size of the finite controller we constructed in order to
obtain an upper bound for the size of a finite controller with a minimal set of
states. Let B be the maximal length of a buffer.

The set of vertices consists of | P| nodes for the last actions in the po-relation,
|P| - |V| for last reads, |V| for the last writes and maximal B - |P| for the buffer
content. Between this vertices are directed edges without loops (start vertex and
end vertex of a edge are different). There are

|P|+|V]-[P|+[V[+ B-|P|
many vertices and
(Pl +VI-|P[+VI+B-|P|)- (IP+ V|- |P|+ |V|+B-|P|-1)

many possible edges with with 3 + | P| different labels. Additionally, each place
in the buffer is assigned a write or it is empty, which gives us (|V]+ 1)B"P| many
configurations of the write buffer. The number of states |Q| of the constructed
automaton consists of the number of possible relations between the vertices and
the buffer content. It has the following upper bound.

Q| < (3+ ‘p‘)(\P|+|V|-\P|+|V|+B'\PI)'(\PHVl'IP\+|V\+B'|P*1) (V] + 1)3-\P|
a

Since the term of the proof in the previous theorem grows exponentially in every
parameter. it is not a very useful as an upper bound. We will find a better
estimation in Section 9.

The proofs of the previous Theorems 3 and 2 show that the size of a minimal
finite controller is at least exponential in the number of variables and linear in
the length of the buffer.

6 Delayed Reaction to Inconsistencies

A controller does not necessarily find inconsistencies at the time they occur. The
controller that is introduced in the proof of Theorem 4 processes write actions
when they leave the buffer, whereas an improved controller might analyse the
properties of possible traces that will occur depending on the order in which the
buffer is emptied. In Example 1, we see that both components have entered the
critical sections. Thus the computation is inconsistent. This is the case although
their actions have not left the buffer yet and the trace constructed from the
partial input does not yet contain a cycle.

29

We say a transition system reaches an error state if it cannot process an
input symbol. A transition system processing input a in state ¢ reaches an error
state iff there is no transition ¢ — ¢’.

A controller A is called a fastest controller if there is no controller A’ that
enters an error state after reading an input In while A has not reached an
error state after processing In. A fastest controller detects inconsistency at the
earliest possible moment. This property is necessary for a controller that causes
the system to actively avoid inconsistent computations by analysing the input
elements before they are executed.

Lemma 7 Given controllers A and A’, A’ is a fastest controller iff the following
holds:

After processing an input in, A’ enters an error state iff A either enters an
error state or a state s from which every continuation In’ such that In’ forms
a complete computation (i.e. ends in an empty buffer) enters an error state.

Proof. Let A’ be a fastest controller. Assume A’ enters an error state after pro-
cessing In, but A enters a state s that leads to an accepting state after process-
ing a rest input In’. Then In.In’ is a consistent input and A’ is in an accepting
state after processing it. Since A’ enters an error state after processing In and
an automaton cannot leave an error state, A’ does not accept In.In’. This is a
contradiction to In.In’ being consistent.

Assume A’ does not enter an error state after reading In, but A does. Since
A is a controller, In is an inconsistent input and A’ does not yet detect the
inconsistency. This is a contradiction to A’ being a fastest controller.

Assume A’ does not enter an error state after reading In and A enters a
state that enters an error state after processing any In’ that forms a complete
computation. Since A’ is a fastest controller, In is a consistent input. There is
a continuation In’ that completes the computation and leads to an accepting
state of A’. Since In.In’ is a complete computation and A’ accepts it, it is
consistent and A also accepts it. This is a contradiction to the fact that there is
no continuation of In leading A to an accepting state.

Let A’ be a controller, but not a fastest. There is an inconsistent input In,
such that A’ accepts In. Since A is a correct controller, it either reaches an error
state after processing In or a state that cannot reach an accepting state after
processing a rest input In’ that forms a complete computation. a

Let B be the maximal length of a write buffer and n the number of compo-
nents. We use a simple automaton Count that identifies states with empty buffers
by counting the processed writes leaving the buffer w°“! and subtracting the in-
coming writes w'™. We define Count = (Q = {qo,---,98n},90,—, Qr = {q0}),
where the following holds.

in _ out
Vi< B-n(g = qiv1 A iv1 — @) AVGEQ 1 q——q

If the buffer is unbounded, a similar transition system exists with an infinite
number of states.

30

For two automata A = (Q,q0, =, Qr), A" = (Q', ¢, —', Q) we define the
parallel composition that accepts the intersection of the languages of A and
A AA = (Q x Q4 (g0,q0), =", QF x Q) With (¢,¢") =" (1, q1) & [g —
@1 Nq¢ —' qi]. It holds L(A||A") = L(A) N L(4’).

We now use Count to enhance a controller in such a way that the states
reachable by complete computations are identified and every such state is only
reachable by complete computation. There is no state that is reachable by a
complete computation and an incomplete computation. We intersect the con-
troller and Count and get a new controller where the complete states are the
states marked by Count with gy as states where the buffer is empty.

Lemma 8 Given a controller A, a state (s,q) of A||Count is reached via com-
plete computations iff ¢ = qo holds.

Proof. According to the definition, a computation is complete, if the buffer is
empty. This is the case iff Count is in state gy. So a state disables outgoing
actions iff the paths leading to it represent complete computations. a

A state of a controller that satisfies the condition in Lemma 8 is called a complete
state. We use Lemma 7 and 8 to construct Algorithm 6.1 that creates a fastest
controller from a controller by analysing if a state can reach accepting complete
states.

Algorithm 6.1 Create Fastest Controller
Require: Controller A
Construct A||Count
Identify complete states of A||Count
Create reachability matrix of A||Count
Turn every state that does not reach an accepting complete state into an error state
return Resulting fastest Controller A’

(&) * ©

Fig. 8. Algorithm 6.1 modifies A||Count. State A reaches accepting complete state
C = (g,q0) via input In. State B does not reach an accepting complete state.lt is
removed from the accepting states.

31

The algorithm is computable according to Lemma 8. Since the algorithm only
adds error states, any input that is not accepted by A is not accepted by A’. If
an input In is accepted by A, then the run of A forms a path to an accepting
state. Since In ends in a state with empty buffer by definition, in is accepted
by Count and so it is also accepted by the parallel composition of A and Count
Every state on that path reaches an accepting complete state and is not changed
by the algorithm. The same path also forms an accepting run of A" and the input
is accepted by A’.

Let the state ¢ be such that it does not reach an accepting complete state.
Every continuation In’ that completes the input enters an error state from ¢. See
Figure 8 The last step of the algorithm removes every such state. This means
there is now an input continuation for every state that leads to an accepting
complete state. Thus the input controller A and the output controller A" satisfy
the condition of Lemma 7.

7 Preprocessing

In order to reduce the complexity of a controller, we explore the notion of trans-
ferring some tasks to a preprocessing step. We perform a static analysis on a
program and use it to provide a controller with additional information about
the program that is being processed. This might increase efficiency and reduce
delays. Since by definition, a controller has to work correctly for every program,
the information provided in addition to the input sequence is optional. The con-
troller retains full functionality without it. It might also be useful to examine
controllers that require some information about the program in order to function
properly. We give a relaxed definition of controllers, that does not require the
controller to detect every inconsistency.

Incomplete Controller

We introduce a variation of controllers, that allows some inconsistent computa-
tions.

Definition 13 Let C' be a controller. We call C' an incomplete controller iff
L(C/) N L(SySTso) C L(C) n L(SySTso) C L(SySTso)

One possible way to construct an incomplete controller is to construct a
controller that examines only some of the components. We allow those actions
of the input that belong to a real subset of the concurrent programs.

Definition 14 Let In|;,I C {1...n} be the projection of the input In on ac-
tions belonging to p;,i € I. Let C be a controller, C[I] is a reduced controller

if
In e L(C[I]) n L(SySTso) =2 ITL‘[S L(C) N L(SySTso)

32

Reduced controllers are of importance when studying distributed controllers
(Section 8), since they they can be used a a basis for the construction of agents.

Another intuitive incomplete controller is one that only examines the actions
of some variables:

Definition 15 Let In|x, X C V be the projection of the input In on the actions
on variables in X. Let C' be a controller, C[X] is a variable controller iff

In € L(C[X]) N L(Systso) < In|x € L(C) N L(Systso)

Combining Preprocessing and Controllers

We can ensure sequential consistency of the computations of a program by com-
bining a static analysis with an incomplete controller.

We enhance a reduced controller such that it performs as a controller for
a given program P € P, by providing it with the set of component that is
needed to function correctly on P. In the preprocessing, we determine which
set of components, represented by their indices I(P), is not necessary to test a
computation for inconsistencies. The set I(P) is a set of indices such that every
computation obtained by reducing an inconsistent computation of P to actions
of the components p; with ¢ € P(I) is also inconsistent. Trivially, this is the set
of all component indices. We require I(P) to be minimal, although any proper
subset of the components which are non-empty would increase efficiency. We use
a dynamic version of a reduced controller that is provided with a parameter I
and reduces the input to the corresponding components. We provide a reduced
controller with the set I(P) before execution of P and ensure the consistency of
the computation of P:

VP € PVIn € L(Ap) N L(SysTso)

(In € L(C[I(P)]) & 3In' € L(Ap) N L(Syscs) (In is consistent with In'))

This combination of preprocessing and a reduced controller has the following
advantage. Since a component p;, such that ¢ € I(P) is not being processed by
the reduced controller, there is no delay on that component.

Preprocessing can also be used to identify the set of variables X (P) that
occur in multiple components of program P. We provide a dynamic variable
controller with the set X (P) before the execution of P and ensure consistency
of its execution:

VP e PVIn € L(Ap) N L(Sysrso)
(In € L(C[X(P)]) & 3In’ € L(Ap) N L(Syscs) (In is consistent with In'))

Since an action on a variable x ¢ X is not processed, the controller only has to
test if x € X holds. Depending on the size of X and its internal representation,
this is a short delay. Depending on the controller, we can expect the processing
of actions on variables in X to be faster than on a similar controller that is not
limited to a subset of variables. The size of the set of provided variables X can

33

be reduced further by limiting it to the smallest set of variables X’ that satisfies
the following condition: Every input sequence In of P is inconsistent iff In | x is
inconsistent. This is obviously some subset of the variables occurring in multiple
components.

The preprocessing does not have to be limited to providing information, it
can also modify the program. We can greatly improve the efficiency of a variable
controller by setting a constant limit £ € N to the size of the parameter X.
If a program has more than k variables that occur in multiple components, we
need additional restrictions on the possible computations. We add fences to the
program such that every remaining inconsistent computation is identified by
C[X]. We choose a set X, such that the number of introduced fences is minimal.
This ensures that every computation of the modified program with the variable
controller is consistent.

If a program contains more than k& variables occurring in multiple compo-
nents, this method decreases the delay caused by the controller. Since the number
of actions that are processed is reduced, the processing time for such actions and
the time required to test if an action needs to be processed is also decreased.
However we have now added additional delays caused by the fences. This is
a trade-off between the gained efficiency of the controller and the additional
delays caused by fences. This method is advantageous for a program, where a
small number of variables occur very often in multiple components and the other
variables occur either in only one component or very rarely.

These methods of parametrized controllers can be improved by allowing for
the parameters to change during the computation. It is certainly possible to
combine these methods.

Note, that the location based memory fences[LMLV11] discussed in Section 1
could be interpreted as an incomplete controller combined with a preprocessing
that uses [-mfences to mark positions of the program and passes that information
to the controller during the computation.

34

8 Distributed Controllers

Until now, we understood a controller as a single automaton that has instant
access to actions performed on any buffer. However, in practice not all buffers
are instantly accessible. In a multiple processor system, the controller has to
compare buffers that are not part of the same hardware component. This means
the controller is distributed and consists of multiple transition systems with
access to different components that have to communicate with each other. Such
transition systems are called agents. It takes longer to send a message than to
process an action. The agents of the controller each have access to a different
subset of components p;. They communicate by sending messages containing an
action with additional information to all components. If an agent needs to send
a message, it sets a flag, such that there are no delays if no message is send.

A message m = (a,inf) consists of an action a € Act and some additional
information inf € Data. The set of possible messages is M = Act x Data.

We modify the transition system modelling the system Sysrso = (I, Y0, —)
such that it allows messages to be sent by the agents at any point:

Sysdis = (Fa Y0, _)/)

—' === U{(y,m,7) |y € I'me M}

The transition system modelling the program Ap = (@, qo, —) is modified
the same way:

AP,dis = (Q7QO3_> U{(qamaq) ‘ q € Q7m S M})

A distributed controller consists of a set of transition systems, we call agents,
that each have access to a subset of the components. They communicate using
messages in such a way that they function together as a controller.

Definition 16 Let I C {1,...,n} a set of component indices. The TS C; =
(I',v0, =) with -=C I' x (Act UM) x I' is an agent iff

vy Na=(...,p;) EActNi g I =~y=1+

Let C be a controller, Cyis := Cp,|| ... ||Cr,, such that [;U... U, ={1,...,n}A
Vi <m:I; # 0 is a distributed controller iff all CIJ ,J < m are agents and

In € L(C)N L(Systso) N L(Ap) &
dIn' € Inw M* : In' € L(Cyis) N L(Sysais) N L(Ap,ais)

Trivially, a distributed controller containing only one agent is just a con-
troller. So we only examine distributed controllers with multiple components.

When constructing a distributed controller, we aim to minimize the num-
ber of messages sent when analysing a computation. We are interested in the
proportion of sent messages to processed input elements.

35

In the best case, a distributed controller sends no message. In the next section,
we will introduce the Cycle-Algorithm, that sends no messages if it processes an
input without reads.

For a given controller, let mj, be the number of messages sent when process-
ing the input In. In order to evaluate a distributed controller on the number of
messages it creates, we find a worst case input sequence In, such that the ratio
of sent messages to input length TI%IL
min

] for all controllers and input sequences and compare it
to the approximation of the worst case input for our controller.

is maximal. We approximate some upper
bound for the term

Theorem 6 For every distributed controller C, there is a consistent input se-
quence In such that
min 1

[In| = 3

Proof. Let C be a distributed controller with components p; and p2 belonging
to agents A and B. We examine a smallest input that produces a cycle in its
trace. _

In = w" ry, wi’, rx
As we see in Figure 9, this input produces a cycle. It is easy to see that no input

of length 3 can produce a cycle in its trace.

Fig. 9. The cyclic trace of In := wi™, 1y, wi,n, Ix.

Now, we count how many messages a controller has to send in order to detect
this cycle. The po-relations are detected by the components agent without the
use of messages. The cf-relations however have to occurs between actions of

different agents. To find the relation ry BN w,, at some point one agent must
be made aware that the components have processed an incoming write w®® and
a read 7, both on the same variable x. If agent A finds the relation, then agent
B must have sent a message that it has processed a read on z. If agent B finds
it, then A has sent a message informing B about w, The same holds for the

other cf-relation r, <, Wwy. So there must be at least 2 messages sent for this
input. We modify the input, so that it remains consistent and ends in an empty
buffer.

out out
z Wy

. in in
In:=w," ry, wg', rzw

36

Fig. 10. The trace of the complete input In = wi*,r,, Wiy“7 rz, wo', W;th produces no

cycle.

We know, that the remaining cf-relation requires one message. There is no

cf-relation r, BZN w, (and thus no cycle). Obtaining this information requires

a comparison of the variables z and x at one of the agents. One of the actions

needs to be broadcasted. This leaves us with two necessary messages for an input
1

of lengths six. The ratio is 3. ad

9 The Cycle-Algorithm

We now construct an algorithm for distributed controllers. We assume that every
agent operates on only one component. When constructing a distributed algo-
rithm, it is often sufficient to make this assumption. We can generalize from this
scenario by merging the agents for an index-set I; into one agent C7,. This might
lead to unnecessary messages being sent in order to convey information between
components that have been merged to the same agent. In order to minimize the
number of messages, we need to recognize the internal messages that do not
influence the behavior of other agents and substitute them with an e-transition
in the agent. We will see, that every message the algorithm sends must arrive in
every component in order to ensure correct behaviour of the Cycle-Algorithm.
This means the generalization to multiple components per agent is trivial for
the Cycle-Algorithm.

When looking at the structure of the compact traces stored in the states, we
see that an element in the buffer w is connected by the po-relation to the action
that occured before it and the one after it. Those are either the buffer elements
before and after w or the last read action that overtook some part of the buffer
before w* and the first read after. All other connections to and from w are a
result of the transitivity rule. We use this knowledge to reduce the size of the
state by applying the following Lemma. We use the concept of the automaton
from Theorem 4 and refine it. Let r be an early read on a write w; in a buffer
of the form

(wl, ey, Wiy Wit 1y .- ,U}n)
We say the early read overtakes the part (w;11,...,w;) of the buffer.
We have shown in Lemma 5 and 6 and Theorem 4, that an early read r can

be ignored, until the write action w that the read was performed on (w =%)

37

leaves the buffer. At this point, we can safely treat r like a read that accesses
the value of w in the shared memory. The only difference is, the read may not be
the last element in the po-relation anymore. We need to place r behind a write
w’, such that w’ was the last element in the buffer, when r occured in the input.
The situation is depicted in part (b) of Figure 11.

Since an early read r such that w == 7 holds only needs to be observed from
the time w leaves the buffer, we will rever to to this as its execution time. We
define an ordering < on the actions based on their execution times: The execution
time of a write action refers to the time it leaves the buffer. The execution time
of a regular read is the time it occurs. The execution time of an early read r
that is performed on some write w in the buffer is directly after w°“t. It holds
w°% < r. If there is an action a such that w°* < a < r holds, than a is an early
read on w that occurs before r in the input sequence.

Lemma 9 If a trace contains a cycle C, then C contains a cf-relation r w
such that r is in a component p different from the one w belongs to and the buffer
of p is nonempty at the execution time of r. Furthermore, v and all read actions
directly following r in the program order are the earliest actions in the cycle.

Proof. Let C be a cycle in a trace and a be the earliest action in ¢. The cycle
must contain a relation a’ such that ' — a and a < a/. We examine the possible
kinds of relations between a’ and a.

Case 1(w = a' — 4. r = a): By definition of the src-relation, r reads the value
of w and thus w°* < r

Case 2(w —s w'): Since w enters the memory before w' w < w’

. st .
Case 3(r —.; w): There is a w’ such that w’ == wVw' 25 r = w £ r since

w’ is the last write action on the variable before r and w’ < w.

Case 4(a’ —po a): If a and o’ are both write or read actions then o’ < a. If o
is a write and a a read then a’ < a. If @’ is a write and a is a read, then a
can overtake a’ iff a’ is in the buffer at the execution time of a.

= the earliest action is a read r.

Only the po- and the cf-relation can start from a read. Assuming it is a
po-relation r 22 w reaching a write action w, then a’, which was shown in Case
4 to be a write, has already left the buffer at the execution time of w and is
not reachable any longer. This contradicts a cycle. Any number of read actions
reached by program order may follow, but a write action can not be reached
with program order without violating the cycle property. So eventually a write
action has to be reached with a cf-relation. O

The idea behind the Cycle-Algorithm is, that in order to find a cycle in a trace,
we begin by looking at a read action r overtaking some buffer content and treat
every such read action r as the beginning of a potential cycle. The previous

lemma shows that this is sufficient. We track the actions reachable from 7 by

r I w —* and broadcast the relevant information. We stop this process iff

38

po” po*

overtakes

Fig.11. The read r, starts a cycle. The figure illustrates the buffer content at its
execution time. In part (a), 5, is not early, w, is the last action executed in the cycle
and was also the last element in the buffer at the execution of r. The loop is found,
when an action on y is executed while there is still a write wy in the buffer that was
overtaken by r,. In (b), the read is early and at the time of its execution, additional
writes have entered the buffer and the read only overtakes a part of the buffer.

39

either r is reachable from one of these actions, indicating a cycle in the trace or
all the actions that were overtaken by r have left the components buffer.

We will refer to a potential cycle in the trace simply as a cycle and we
will call a closed cycle signalling sequential inconsistency a loop. It is possible
that a minimal cycle contains more than one conflict relation. In this case, one
read 7, which starts a target cycle, reaches an action w, such that w, reaches
another cycle-starting v’ with the po-relation. In this case we use ”incorporation
of cycles”. We send a message, stating that all elements of the cycle started by
r’ are reachable from r and thus they are added to the target cycle.

We detail the algorithm as a set of read methods with different parameters
that are called by the input elements and messages that are read by the agent.
If a read r, is processed in component p;, the method read(r,) given by Algo-
rithm 9.1 is called. For w®"“!, read(w"!) is called (see Algorithm 9.2). However
there is no such method executed when an incoming write w® is processed. The
write is merely added to the internal representation of the buffer content. An
agent sends a message using the send command. A message contains a variable,
the type of the message and a set of cycle identifiers. If an agent sends a mes-
sage, then all agents, including the sender, read the message and execute the
corresponding method. Each component stores each potential cycle as two sets
of variables: one for the variables on which write actions have been executed
w(c) and one for read actions r(c). This is sufficient in order to check if some
action is reached with a store, conflict or read relation. A read r, on x is reached
by the cycle with the src-relation, if € w(c) holds. A write w, is reached by
the st-relation if « € w(c) holds and it is reached by the c¢f-relation if z € r(c)
holds. We say an action is added to a cycle c if its variable is added to w(c) or
r(c).

Additionally, we mark for every component the state of a cycle as inactive,
active or activated by some buffer element.

If ¢ € ActiveCycles, then the cycle ¢ is active. This means that an exe-
cuted action of this component was reached by the read r that started the cycle
and thus every further action executed on this component is reached with the
program order relation and added to the cycle.

If ¢ € ActivatesCycles(w) holds, ¢ it is activated by a buffer element w and
the buffer elements preceding the activating element are not added to the cycle,
only the ones succeeding it and any further read action. This situation occurs,
when a read action overtaking a buffer content, that ends in w, is reached with
the source relation.

If ¢ is inactive, then no action of the component has been added to the cycle
yet. This is illustrated in Figure 11.

If an early read on a buffer element w occurs, this is marked by a link from
w to the last element w of the buffer. This is similarly to the behaviour of the
controller given in Theorem 4. The links are stored in a set Suspended(w), so
when r occurs Suspended(w) := Suspended(w) U {r} is performed. After w has
left the buffer, the algorithm processes the read r similar to Algorithm 9.1. The
differences are as follows: we know that the read is performed on w, so we do

40

not check if x € buf fer holds. The closing element is not the last element in the
buffer, but the write @, so every use of tail(buf fer) is replaced by w. The read
is not added to all cycles activated in the component, but only to those whose
activations occur until and including w.

Since we have already shown in Theorem 4, that we can treat an early read
as if it would occur later and only succeeds a part of the buffer in the program
order, we know that this is correct. Any further analysis of this behaviour does
not lead to new insights. In order to keep the algorithm manageable and to keep
the proofs from becoming too convoluted, we will not include the handling of
early reads in our presentation of the Cycle-Algorithm.

c:w(e) ={=,...}; r(c) ={y,. . .}]

active

p1 p3
po” po* po*
closes activates
i po” i po* 1 po*
W W
i po* :po” *po*
i

Fig. 12. The algorithms representation of a cycle c. The cycle was started by a read in
component pe after w;". The buffer segment (wa,1,...w2,;) is the end of c. It is active
in p; and activated in p2. The cycle contains writes on x and reads on y.

Algorithm 9.1 When a read action r, overtakes some buffer content, the other
components are alerted to the fact that a new potential cycle gets started. The
last overtaken buffer element is marked as the one that closes the cycle since it
will be the last action performed that precedes r, in the program order. This
means 1, can no longer be reached by the potential cycle once the closing element
leaves the buffer and the potential cycle can be discarded.

If there is no write w or read action r on the same variable in an active cycle,
T, is added. It is sufficient to add only one read r, per variable z since any w’
reachable with r, —.; w’ would still be detected as reachable from a later read
r). on x when r, is omitted. Every element reachable from r, is also reachable
from a write w on with the store relation.

If there is a potential cycle that contains a write action on the same variable
T as 1y, then r, can be reached with the source relation from this cycle and all

41

Algorithm 9.1 read(ry)

1: if w, ¢ buf ferAbuffer.length# 0 then

2 if ClosesCycle(tail(buffer))= NULL then
3 send message(id := newld, ry)

4 ClosesCycle(tail(buf fer)) := id

5: else
6
7
8

if x ¢ r(ClosesCycle(tail(buf fer))) then
send message(rs, ClosesCycle(tail(buf fer)))

end if
9: end if
10: end if

11: if C := {c € ActiveCyclesU ActivatesCycles(buf fer) | x ¢ r(c)Uw(c)} # (then
12: send message(C, 73)

13: end if

14: for all ¢ € Cycles do

15: if z € w(c) then

16: if buf fer.length # 0 then

17: ActivatesCycles(tail(buf fer)) := ActivatesCycles(tail(buf fer)) U {c}
18: else

19: ActiveCycles := ActiveCycles U {c}

20: end if

21: end if

22: end for

actions following r, in the program order are also reachable from this cycle and
so we mark the last element in the buffer as the one activating the cycle.

If there is an element in the buffer that activates a cycle or if the cycle is
active, then this cycle reaches an action that precedes r, in the po-relation and
r, is added.

Algorithm 9.2 When a write action w, on a variable z leaves the buffer, a
message is send if w,, closes a cycle. If there is a cycle ¢ containing a write action
on x then w, is reachable from ¢ with a store relation and ¢ is activated. If w,
is reached by a cycle ¢ (¢ is active) and no write action on z was added to the
cycle (z ¢ w(c)), then a message is send to inform other components that ¢ now
contains a write on x.

If there is an active cycle that was created by a read action r of this com-
ponent then there is a element that closes the cycle in the buffer. This means
w, precedes r in the program order relation and the potential cycle ¢’ created
by r is reachable from every potential cycle that is active in the moment. We
incorporate the cycle ¢’ started by r in all active cycle.

Algorithm 9.8 Incorporation occurs if there is some buffer element w that was
overtaken by a read r starting a cycle ¢/, such that w is reachable by some other
cycle c. Since r is reachable from w with the po-relation, any action in ¢’ is
reachable from the starting element of ¢ and thus ¢’ is added to c.

42

Algorithm 9.2 read(w2"?)

1: for all ¢ € Cycles\ ActiveCycles do

2: if z € w(c) Ur(c) then

3 ActiveCycles := ActiveCycles U {c}

4 end if

5: end for

6: for all w € buf fer U{w,} : ClosesCycle(w) # NULL do

7 for all ¢ € ActiveCycles : ¢ .incorporates(ClosesCycle(w)) = false do
8 send inc(ClosesCycle(w), ActiveCycles)

9: ' incorporates(ClosesCycle(w)) := true
10: end for
11: end for

12: if ActiveCycles # () then

13: send message(ActiveCycles N {c € Cycles : x ¢ w(c)}, wa)
14: end if

15: if ClosesCyle(ws) # NULL then

16: send CloseCycle(ClosesCycle(ws))

17: end if

18: if ActivatesCycles(wy) # () then

19: ActiveCycles := ActiveCycles U { ActivatesCycles(wz)}
20: end if

Algorithm 9.3 read(inc(sources,targets))

1: for all c € targets do

2: if Jw € buf fer : ¢ = ClosesCycle(w) then

3: if ActiveCycles N sources # OV
Jw’ € buf fer[w' < w A ActivatesCycles(w') N sources # O]V
Jw, € buf ferjw, < w Az € r(sources) Uw(sources)] then

4: return “Loop found”

5: end if

6: end if

7: for all ¢ € sources do

8: w(c) := w(c) Uw(c)

9: r(c) :==r(c) Ur(c)

10: end for

11: if ActiveCycles N sources # () then

12: ActiveCycles := ActiveCycles U targets
13: end if

14: for all w; € buffer do

15: if ¢ € ActivatesCycles(w,) then

16: ActivatesCycles(ws) 1= ActivatesCycles(w.) U sources
17: end if

18: end for

19: end for

43

Let a cycle ¢ be such that it is incorporated in a cycle ¢’. Whenever c¢ is

active or activated, then ¢’ has to be as well. The variables of ¢ are added to
¢'. If an incorporated cycle reaches the closing element of a target cycle, then a
cycle closes and we return “Loop found”.

Algorithm 9.4 read(message(cycles,r,))

9:
10:
11:
12:
13:
14:
15:
16:
17:

for all c € cycles do

r(c) :=r(c) U{z}

1
2
3: end for

4: if cycles C Cycles then
5:
6.
7
8

if Jw), € buf fer earliest action in buffer using z then
if Jw, € buffer : wy, < wy A ClosesCycle(w;,) € cycles then
return “Loop found“
end if
end if
else
Cycles := Cycles U cycles
end if
if Jw!, € buffer earliest action in buffer using x then
if Jw), € buffer : wy, < w, A ClosesCycle(w;) # NULL then
send inc(ClosesCycle(wy,), cycles)
end if
end if

Algorithm 9.4 A read action r, may either start a new cycle or be added to an
existing cycle. If there is a write action on the same variable w!, in the buffer

that reaches a read r starting another cycle ¢ with the po-relation (w/, 2% r),
then ¢’ is incorporated into the cycles r, was added to.

Algorithm 9.5 read(ClosesCycles(cls))

1
2
3:
4
5

ActiveCycles := ActiveCycles\cls
Cycles := Cycles\cls
for all w € buf fer do
ActivatesCycles(w) := ActivatesCycles(w)\cls

: end for

Algorithm 9.5 If a cycle is closed, it becomes irrelevant and is deleted everywhere.

Algorithm 9.6 If a write action is broadcasted, it gets added to the respective
cycles by every component. It is tested, whether it reaches a buffer element w

44

Algorithm 9.6 read(message(cycles, w,,))

1: for all c € cycles do

2: w(e) =w(c)U{z}

3: end for

4: if 3w}, € buf fer earliest action in buffer using = then

5: if Jw), € buffer : wy > w such that ClosesCycle(w),) € cycles then
6: return “Loop found

7: end if

8: end if

9: if Jwl, € buf fer earliest action in buffer using x then

10: if 3wy, € buffer : wy, > w), such that ClosesCycle(w;) # NULL then

11: send inc(ClosesCycle(wy,)), cycles)
12: end if
13: end if

such that w precedes a closing element of one of the cycles that w, belongs to. If
this is the case, it completes a cycle. If there is a write w/, on the same variable
in a buffer that precedes a closing element of another cycle ¢/, then the read
that started ¢ is reachable in the po-relation (w!, po* r) Every such cycle ¢ is
incorporated into the cycles r, was added to.

Lemma 10 Let c be a cycle started by 7. Let a be the next executed action of a
component p;. For any variable x, let v, be the next read and w, the next write
executed on x.

If c is active in component p;, then vy, —* a holds.

If x € w(c), then ry —* wy and vy —* 5, holds.

If x € r(c), then ry —* w, holds.

If a is a read and an element w in the buffer satisfies ¢ € ActivatesCycles(w),
then ry —* a holds.

Proof. Proof by induction over the construction process of a cycle.

Induction Basis: When c is created in Algorithm 9.1 line 3, it contains only

. . . cf
ry and is active in no component. = r, —— w,

Induction Step: The algorithm adds new variables to cycles and activates
them and adds them to ActivatesCycles in a number of ways:

Case 1: ¢ becomes active in component p; in Algorithm 9.1 line 19:
According to line 15 holds

/1 STC

t * 0
rcw(c) =, ry =" w, 2 w! TS, P

Case 2: ¢ becomes active in component p; in Algorithm 9.2 line 19:
The cycle was added to ActivatesCycles either in Algorithm 9.1 line 17
or Algorithm 9.3 line 16.

45

Case 2a: Algorithm 9.1 line 17: Analog to Case 1. For the next action
a on p; holds r; P9 4 since the buffer content at the execution time of
r, has been processed.

/1 STC

t * po
r€w(e) = 3w, ir, =*wl, = w! TS, a

Case 2b: Algorithm 9.3 line 16: Since this requires ActivatesCycle(w,)
to be not empty, there must be a cycle ¢; such that ¢; that was added
to ActivatesCycle(w,) by Algorithm 9.1 line 17 and then followed by a
finite sequence of incorporations

inc(sourcesy, targetsy) . . . inc(sourcesy, targetsy,)
ending in ¢y := ¢ such that the following holds:
c1 € sources; N\ ¢y € targetsy

AYi < k —13¢; € cycles(c; € targets; N sources;11)

The induction hypothesis holds for ¢;. Let ¢; be started by r; = r1 = a.
If a cycle ¢; is incorporated in a cycle ¢;41 in Algorithm 9.2 line 8, then
ci+1 s active in the component that started cycle ¢;. Furthermore, it
reaches the write w which is leaving the buffer and preceding r; in the
program order. This holds since the closing element of ¢; is still in the
buffer (= r;y1 —* r;). If r; =* a holds, r;1; —* a holds as well.

If the cycle was incorporated in Algorithm 9.4 or Algorithm 9.6, there
is a write w, on a variable x € w(c¢;+1) Ur(c;4+1) that reaches r; in the
program order since the closing element of ¢; does not precede w’ in the
buffer. Let w!, be the next write on x. Since € w(c¢;4+1) Ur(ci4+1) holds,
the induction hypothesis applies for ¢; 11 and if r; —* a holds, then it
follows .

* ; st po * *
Titl — W, —> Wy —> T3 — a

Applying this argument on the sequence gives us r, = ry —* a.

Case 3: c becomes active in component p; in Algorithm 9.2 line 3:
We know that € w(c) U r(c) holds and according to the induction
hypothesis r, —* w, holds, where w, is the write processed in Algo-
rithm 9.2. Since a is the next action on the component following w,, it
holds that w, 2% @ and thus ry =% a.

Case 4: c becomes active in component p; in Algorithm 9.3 line 12:
Let ¢ be an active cycle in sources starting with r,. For ¢ holds the in-
duction hypothesis 7, —* a. According to the conditions for inc() to be
called (see Case 2b), for any ¢ starting at ' in targets holds ' —* r,
and thus ' —* a

Case 5: A variable is added to w(c) in Algorithm 9.3 line 8: Let z €
w(c’) be an element added to w(c). If ¢’ starts at v/, then ' —* w, A

' L2 r, holds (since ind. hypothesis. holds for ¢’). According to the
conditions for inc() to be called (see Case 2b), r LN resp.

hb
r — ' —* r, holds,

46

Case 6: A variable is added to r(c) in Algorithm 9.3 line 9: Let z €
r(c’) be an element added to r(c). If ¢ starts at 7/, then " —* w, holds
(since the induction hypothesis holds for ¢). According to the conditions

for inc() to be called, r LN holds,
Case 7: A variable is added to 7(c) in Algorithm 9.4 line 2: The mes-
sage containing a read r, is send by a component p; in Algorithm 9.1
line 3 (~induction basis), line 7 or 12. If it is line 7, r, is in the same
component as the read r, that started the cycle and thus r, 2% 7,
holds. If it was send in line 12, then ¢ was active in p; when r, was
executed or an earlier read belonging to ¢ reaches r, with the po-relation
=1y = Ty
If w, is the first write on x following r,, then ry, —* 7, C—f> w, holds.

. . . . C
If an earlier write w/, is the first write on z after ry, then r, —* r, i>

st *
w!, =% w, holds.

Case 8: A variable z is added to w(c) in Algorithm 9.6 line 2: The cy-

cle ¢ is active in the component sending the message containing a write
w!, on z in Algorithm 9.2 line 13 at the execution time of w!, = r, —* w,

. t
Let w, be the next write and r, the next read on z = r, —* w), =
src

Wy ATy =" Wy — Ty
O

We show that the Cycle-Algorithm correctly processes a sequence of action that
is executed in the order of their relations. Such a sequence does not require
incorporation of cycles.

. c hb hb hb
Lemma 11 Let ag = wy be a write on y and s =1y —f>a0 —a — ... —

an a sequence starting at a read r, on y that overtakes some buffer content
ending in wy (the closing element) such that ry < ag < a1 < ... < @y < Wy.
If after processing s, the Cycle-Algorithm has not returned “Loop found”, the
following statement is valid. Every cycle ¢ such that y € r(c) Uw(c) after the
execution of ry has the following properties: after processing any action a;,i < n
on a variable x, if a; is a write, x € w(c) holds and ¢ is active in its component.
If it is a read, x € r(c) Uw(c) and either c is active in its component or there is
an element w € buf fer such that ¢ € ActivatesCycles(w). There is at least one
such cycle c.

Proof. By induction over n.

Induction basis (n = 0): Since r, overtakes some buffer content, it either starts
a new cycle ¢ containing y in r(¢) (Algorithm 9.1, line 3) with the last ele-
ment in the buffer w, its closing element or adds it to a cycle that has w,
as its closing element (Algorithm 9.1, line 7)

Induction step (n —1 b, n): We distinguish between the possible properties

. hb
of the next relation a,,_1 — a,.

47

Case 1 (ry; =ap_1 C—f> w,; = a,): When Component p reads w,,, the induc-
tion hypothesis holds for ¢ and = € r(c) Uw(c). Algorithm 9.2 activates
¢ in p (line 19) and adds z to w(c) if necessary (line 13).

Case 2 (w; = ap—1 N w), = an): According to the induction hypothesis,
w(c) contains z at the execution time of w! and thus Algorithm 9.2
activates ¢ (line 19).

Case 3 (w; = a1 RN ayn): According to the induction hypothesis, ¢ is
active in p after processing a,_1 in this component. If remains active
after processing a,, and a,, is added to c if necessary (Algorithm 9.2, line
19 or Algorithm 9.1, depending on whether a,, is a write or read action).

Case 4 (ry; = ap_1 RN an =1;): Either ¢ is active in p after processing
ap—1 in this component (Algorithm 9.1 line 17) or Jw € buf fer(c €
ActivatesCycles(w)). If it is active, it remains active after processing a,,
and a, is added to ¢ if necessary by Algorithm 9.1. If there is a write
w € buf fer such that ¢ € ActivatesCycles(w) after processing a,_1,
then either w has left the buffer and activated ¢ (Algorithm 9.2) before
the execution time of a,,, in which case the lemma holds for n, or a,, is
executed before the element has left the buffer. This means w is still in
the buffer and if z € w(c) Ur(c) does not yet hold, the condition in line
11 is fulfilled and r, is added to c¢. Thus, the claim holds for n.

Case 5 (ry; = ap_1 RN an =w;) If ¢ is active after processing r,, it re-
mains active. If not, there is a w € buf fer : ¢ € ActivatesCycles(w).
Since w, is after 7, in the program order, the buffer content at the exe-
cution time of r, must leave the buffer before w, can be executed. That
means w leaves the buffer and ¢ becomes active in Algorithm 9.2 line
19. Either way, c¢ is active add the execution time of w, and thus w, is
added to ¢ by Algorithm 9.2 line 19 if necessary.

Case 6 (w; = an_1 A a;): According to the induction hypothesis,
x € w(c) holds after a,,_; is executed and thus either the cycle ¢ becomes
in the component executing r, or ¢ is added to ActivatesCycles(w) for
some buffer element w.

O

We now examine sequences, where the execution times of the actions are not
monotonically increasing. This may cause the algorithm to incorporate cycles.

c hb hb hb
Lemma 12 Let s = 1, —f> wy = ay — a3 — ... — ap be a sequence

starting at a read 7, that overtakes a buffer content with w, its latest element
(closing element) such that Vi < n : 1y < a; < w,. If after processing s, the
algorithm has not returned “Loop found”, then there is a cycle ¢ such that after
processing all actions a;,i < n on a variable x, the following holds: If a; is a
write, then x is contained in w(c) and c is active in its component. If it is a
read, x € r(c) Uw(c) holds and either c is active in its component or there is an
element w € buf fer such that ¢ € ActivatesCycles(w).

. . hb . . .
Proof. Induction over number of relations a;_1 — a; with decreasing execution
times a;_1 > a;.

48

Induction basis (k = 0): Holds according to Lemma 11.

Induction step(k RNy +1): Let a;—q b, a; be the last step in the sequence
such that a;—1 > a;. Then there is a variable x such that a;,_1 =: w, 2o,
ry := a; and w, is the last write that r, overtakes. According to the induction
hypothesis, there is a ¢ such that ¢ fulfils the condition for a; —* a;_1. Let ¢/
be the cycle fulfilling the condition for a; —* a,, where a; < ... < a, holds.
If c.incorporates(c’) = FALSE holds at the time w,, is processed, then ¢’ is
incorporated into c. This holds because w, is the closing argument of ¢’.

If c.incorporates(c’) = TRUE then the cycle ¢’ has been incorporated ear-
lier. According to Lemma 11 the cycle ¢’ fulfils the condition for the already
executed prefix.
At the time of incorporation, ¢ fulfils the condition for some prefix a; —*
aj; © < j < n, where a; is the last action in the sequence a; —* a,
before the incorporation. Since incorporation copies all ActiveCycles and
ActivatesCycle entries of the source and adds all its variables to the target
cycle, we know that after incorporation, c fulfils the condition for the prefix
a; —* a;. Since a; < ... < ay holds after the execution of the remaining
suffix of the sequence, we know that according to Lemma 11, ¢ fulfils the
condition for the whole sequence.

O

Theorem 7 The algorithm is sound.

Proof. The algorithm returns “Loop found” in Algorithm 9.3 or 9.4 or 9.6.
Assume Algorithm 9.3 returns “Loop found” in component p;, then there is
an active cycle ¢’ started by r; that is incorporated in a cycle ¢ started by 7,
with a closing element w. We see in Algorithm 9.2 calling inc(), that r, —* 7
holds and the condition in line 3 is fulfilled. There are two possible cases: If w
is in the buffer and either ¢’ is active in p; or a buffer element a that precedes

*
w activates ¢’, then either rj —* w or r; —=* a 22" w holds (Lemma 10). By

definition of the closing element, w, LNy ry holds. We have found a cycle:

po *

po *
ry =", =" (o == Jw — 7y

If © € w(c) Ur(c) and there is a write w, on z in the buffer not later than
the closing element of ¢, then depending on whether z € w(c) or z € r(c), we
conclude:

/ * * st * po *
rew(d)=ry, = r, =" a— w, — 1,

or

.
zer(d)=r, =" 7“; LN (w?, N YWy oyt Ty

Assume Algorithm 9.4 returns “Loop found”. Let w. be next write action
after 7, on x and ¢ € ClosesCycles(w;)) N cycles such that it was started by a
read r,. Because c € cycles, c contains r, and according to the previous lemma

49

ry —* wl holds. Write w! follows w/, in the buffer and thus in the program
order and w! is the closing element of ¢
* *
=, = w2 w2 W By,
Assume Alg 9.6 returns “Loop found”. Analogue to the previous case regarding
Algorithm 9.4, we get

* *
« 1 st ; po /1 po
:>Ty—> U)m—> w$—> U}w—>7"y

Theorem 8 The algorithm is complete.

Proof. Any cycle ¢ starts at a read r overtaking a buffer content ending in a
write w. Let ag := r,a, := w and ¢ be the minimal value such that ¢ has the
following form.

hb * po * po
c=ayp — a1 — QG —> Qp —> T

We assume that, after processing a; —* a;_1, the algorithm has not returned
“Loop found”. If a; is a read on z, then a;_1 —» a; and a,_; is a write. According
to Lemma 12, there is a cycle ¢ such that w(c) contains x when ag —* a;—1 is
executed.

If a; is a write on z, then either a;_4 sty a; or a;_q C—f> a;.

If a;_1 sty a;, then a;_1 is a write and = was added to w(c).

If a;_1 ~, a;, then a;_; is a read and thus either z € w(c) or = € r(c).
Assume z € w(c).

In these cases, x was added to w(c) either by Algorithm 9.3 or 6. Assume
was added by Algorithm 6. When the prefix of the sequence is executed, a; is
still in the buffer and either a; or a later element closes the cycle, either way the
conditions for returning “Loop found” in Algorithm 6 are fulfilled. If x was added
by Algorithm 9.3, then a; is in the buffer not later then the closing element and
the third condition for ”Loop found“ in Algorithm 9.3 is fulfilled.

Assume now z € r(c). In this case z was either added in Algorithm 9.3
(analog to = € w(c) was added in Algorithm 9.3) or Algorithm 9.4. If it was
added in Algorithm 9.4 then a; is the earliest element using x in the buffer and
a; or a later write is the closing element of ¢ and thus the condition for ”Loop
found“ in Algorithm 9.4 is fulfilled. a

Now that we have proven soundness and completeness, we know the algorithm
is correct.

Theorem 9 The algorithm returns ”Loop found” iff the computation has a cy-
cle.

It remains to prove, that the algorithm is a fastest controller. We require the
some technical lemmas for this task.

50

Definition 17 Let ¢ and ' be cycles. The cycle ¢ precedes ¢’ iff there are buffer
elements w and w' of the same component such that it holds

ClosesCycle(w) = ¢V ClosesCycle(w') = ¢ Vw < v’

Lemma 13 Let ¢, c’ be cycles such that ¢ precedes c'. Any cycle incorporated by
c is also incorporated by c'.

Proof. At the creation of ¢, the corresponding read action is added to ¢’. This
means ¢ is not active or contained in an ActivatesCycles list and all variables
in w(c) and r(c) are also in ¢. It is easy to see that at every future time, ¢
contains all variables of ¢ and if ¢ is active in a component so is ¢’. If ¢ is in a list
ActivatesCycles(w), then ¢ is either active in the component or it is in some
ActivatesCycles(w') such that w’ is in the same component and w’ < w. Hence
whenever c satisfies a condition for incorporation, ¢’ satisfies it as well. a

Lemma 14 In any state of the algorithm, for every cycle ¢ holds that it is not
active in its own component and the buffer content up to its closing element does
not activate ¢ or contains a variable in w(c) Ur(c).

Proof. Assume there is a reachable state that does not satisfy that condition.

If there is a variable of the buffer content in w(c) U r(c) that was not added
by incorporation, then the condition for ”Loop found” in either algorithm 4 or
6 would have been satisfied.

If ¢ is active in the component or activated before its closing element and
this did not happen through incorporation, then at some earlier point there was
an element of the buffer content up to the closing element in w(c) U r(c). If one
of those conditions were satisfied by incorporation of some ¢/, then Algorithm 3
would have returned “Loop found” at the time of incorporation. ad

Theorem 10 The Cycle-Algorithm is a fastest controller.

Proof. Idea: We prove that the controller does not return ” Loop found” too early
by showing that every input the controller processes without returning ”Loop
found* can be continued to a final state with empty buffers without a cycle.

Assume the Cycle-Algorithm is not a fastest controller, then there is an input
In such that In cannot be continued to a final state and the algorithm does
not return ”Loop found“ when processing In. Let C be the configuration after
processing In, containing a set of cycles and the buffer content. We perform an
induction over the number of cycles k := |cycles:

Induction basis: (k = 0) If kK = 0 holds, then the buffers can be emptied by a
sequence of writes leaving the buffer without the algorithm finding a loop,
since this requires a cycle and they can only be created by a read action.

Induction Step: (k > 0) Assume every cycle incorporates another cycle. Since

incorporations are transitive and the number of cycles is finite, there must
be a cyclic sequence of incorporations. So at some point there was a function

51

call inc(sources, targets) such that sources N targets # (). The algorithm
would have returned ”Loop found“ at this time. This is a contradiction.
There is at least one cycle ¢’ such that ¢’ is not incorporated by another
cycle. According to the previous lemma, there is also a cycle ¢ such that
¢ is not incorporated by another cycle and ¢ is not preceded by another
cycle. Let w1, ...w, be the buffer content up to the closing element wy of
c. Since c is not preceded by another cycle, its closing element is the first
closing element in the buffer. Since it is not incorporated by another cycle,
the following holds: There is no cycle active in its component and there is
no buffer element w preceding the closing element such that w activates a
cycle or has a variable occurring in another cycle.

Using Lemma 14, this means we can continue the input with w{*!, ... w{"
without entering an error state. This does not create new cycles and it deletes
¢ so the induction hypothesis holds for the new state.

After In has been processed, we analyse the potential cycles in the algorithm
and determine a continuation of the input such that the trace contains no loop.
This is a contradiction to the assumption, that In cannot lead to a complete
state of a controller. |

The Finite Cycle-Algorithm

The Cycle-Algorithm can easily be implemented as a single finite automaton
without message broadcasting. Every component stores its own information
about cycle activation. When a variable is added to a cycle, the information
is immediately broadcasted, which means that the relevant information is stored
consistently in all components. Note that for a cycle ¢, whenever a variable oc-
curs in w(c), it does not matter if it also occurs in r(¢), since the algorithm never
tests for r(c), only for w(c) Ur(c). It is therefore sufficient to store one set of
variables by using one bit to indicate whether a variable is in w(c) or r(c). The
algorithm might produce multiple activating elements of the same cycle in the
same component. It is sufficient to store only the earliest one for each compo-
nent, since any succeeding activations obviously do not influence the behaviour.
For the suspended reads of a cycle, we store the positions in the components
buffer.

Theorem 11 Given n program components, a finite buffer size B and a finite
set of variables |V |, it is possible to implement the algorithm as a finite automa-
ton with the following number of states.

V"B .n.B-3VI.(B42)nt. 28

Proof. The buffers can store B - n many writes. For each write we only need to
store its variable. This amounts to |V|*? possible buffer configurations.

Every position in the buffer can be the closing element of one cycle. There
are B - n possible cycles. For each cycle ¢, a variable can have three states: it
can either be in w(c) or r(c) or not in the cycle. In every component except

52

its starting component, a cycle can be either active or inactive or activated by
a buffer element. There are (B + 2)"~! possible activations for a cycle and 27
many possibilities to mark a set of buffer elements as suspended reads. a

Note that the term of Theorem 11 is not a least upper bound for the size of the
Cycle-Algorithm. It contains configurations not reachable by the algorithm and
also contains configurations that exhibit the same behaviour as each other.

This upper bound is exponential in every parameter, however the number
of components in a system n is usually rather small. In Section 7, we have
shown how to use preprocessing to reduce the number of variables the controller
processes and other methods to reduce the complexity of a controller.

Furthermore, if an implementation of a controller can be constructed that has
access to the buffer, it does not need to store the buffer configuration internally
and its complexity is reduced by a factor of |V|*B.

10 Time Complexity of Controllers

Our motivation for introducing controllers was to increase the efficiency of pro-
gram executions by removing the delays created by fences. In order to prevent
inconsistent computations, the controller has to interact with the system in such
a way that an action is send to the controller before it is executed. The controller
then either allows the action to be executed or it delays it, if it would cause an
inconsistency. We say the system requests an action. It has to be a fastest con-
troller in order to be able to perform that task. The processing of the input
actions by the controller adds a delay to every action in the input sequence. In
contrast, the fence actions only add delays to some some input elements. In order
to increase efficiency by using controllers instead of fences, a controller needs to
be optimized with respect processing time.

Note that a controller has to perform two tasks in order to process an input
action: it has to decide if the action leads to an inconsistent computation and it
has to perform an update on its internal state.

When the system requests to execute an action, the controller checks if it
would cause the computation to become inconsistent. In this case, the controller
denies the execution and it does not need to update its state. If the controller
allows the execution, the system can already start to execute the action while
the controller computes its state update.

To examine the Cycle-Algorithm(see Section 9), we recall, that a loop can
only be found if the variable of the input element (which has to be a read or
outgoing write) occurs in the ends of certain cycles. So the Cycle-Algorithm
needs only to check some buffers for a given variable when a read or an outgoing
write is requested. The state update however is more complex.

If the controller has not finished its state update by the time the next action
is requested to be performed, an additional delay is caused. However, in some
situations, it is possible to decide, whether an action is allowed before the state
update is completed. A simple example is the Cycle-Algorithm. An action w™

53

causes no test for loops in the algorithm and thus it is always allowed by the
controller independent of its state.

Another method to enable an earlier start of the processing is the following.
We identify those parts of the internal storage of the controller that are not
affected by the state update before beginning the update process. When a new
action is requested by the system, the controller can start those operations that
only use the marked part of the internal storage of the controller.

When an action is requested of a distributed controller, the controller might
need to send messages. In order to avoid such a delay, the distributed controller
has to be constructed such that the agents send messages with information that
might be requested in advance. In the Cycle-Algorithm, the starting component
of a cycle ¢ sends out messages containing the variables in the end of the cycle.
Another agent can successively test if an action creates a loop in ¢ without
sending the action to the starting component of c¢. These messages do not need
to delay a computation, they could be performed in the background since they
do not effect the functionality of the controller.

Further techniques that can increase efficiency were introduced in Section 7.

11 Conclusion and Outlook

In this thesis, we have given a formal representation of the interactions of the
write buffer in a total store ordering system. Based on the definition of TSO
computations using rewrites, we have developed a technique to construct a trace
of a computation by sequentially reading the buffer input. A controller was
defined that observes the memory actions as they access the buffer and the
shared memory so that consistency is ensured.

In the following some results of this thesis are summarized. It is not possible
to construct such a controller for a TSO system as a finite automaton if the
number of variables or the maximal buffer size is unbounded. However, there
exists a finite automaton that is a controller for a TSO model where the number
of variables and the maximal size of the write buffer is bounded. Such a controller
can construct a compact version of a trace and check the reachability of the
actions in order to detect cycles. The size of a finite controller with a minimal
number of states is exponential in the number of variables and at least polynomial
in the size of the buffer.

Any controller that observes inconsistencies too late can be transformed into
a fastest controller that detects every inconsistency at the first input action it
occurs.

We defined the Cycle-Algorithm as an efficient distributed controller that
stores potential cycles starting at some read that overtakes some buffer content.

Any implementation of a controller needs to be very time and space efficient
in order to justify its usage. We have given an overview of multiple ways to
increase the efficiency of a controller. A promising approach is to perform a
static analysis on the program and use it to modify the program or provide
additional information to the controller.

o4

It would be optimal to test these algorithms in a real hardware environment,
but of course this is beyond the scope of this thesis. A software simulation
might be used to perform benchmark tests on common mutex algorithms. This
might provide a notion of the performance advantage of an implementation of a
controller against the use of fences.

Future research should examine how the concept of a controller for the buffers
of the shared memory could be utilized for other relaxed memory models such
as TSOR or PSO.

95

action, 6, 9
agent, 35

compact trace, 22
complete state, 31
component, 6
computation, 6
conflict relation, 16
consistency, 13, 15, 16
cycle, 40
Cycle-Algorithm ;| 37

Dekker’s algorithm, 7
distributed controller, 35

early read, 6
error state, 30
exchange modification, 22

fastest controller, 30
fence, 6
finite automaton, 11

happens before relation, 16

incomplete controller, 32
incorporation, 40
input sequence, 9

Index

loop, 40
message, 35

parallel composition, 31
program, 6
program order relation, 14

reduced controller, 32
relaxed memory model, 5
relevant action, 23
removal modification, 22
reorder, 6

robustness, 13

shuffle, 6
source relation, 14
store relation, 14

take over, 6

trace, 15

trace update, 15

transition system, 10

TSO - total store ordering, 5

variable controller, 33

References

[AA93]

S. V. Adve and J. K. Aggarwal. A unified formalization of four shared-
memory models. IEEE Trans. Parallel Distrib. Syst., 4(6):613-624, June
1993.

[ABBM10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

[AG96]

[AM11]

[BMOS]

[BMM11]

[Dij65)

[DPN93]

[Int07]
[LMLV11]

[Owel0)]

[PD95]

[SHW11]

[SS8s]

Madanlal Musuvathi. On the verification problem for weak memory models.
SIGPLAN Not., 45(1):7-18, January 2010.

Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66—76, December 1996.

Jade Alglave and Luc Maranget. Stability in weak memory models. In
Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV, volume 6806 of
Lecture Notes in Computer Science, pages 50—-66. Springer, 2011.
Sebastian Burckhardt and Madanlal Musuvathi. Effective program verifi-
cation for relaxed memory models. In Proceedings of the 20th international
conference on Computer Aided Verification, CAV ’08, pages 107-120, Berlin,
Heidelberg, 2008. Springer-Verlag.

Ahmed Bouajjani, Roland Meyer, and Eike Mohlmann. Deciding robust-
ness against total store ordering. In Proceedings of the 38th international
conference on Automata, languages and programming - Volume Part II,
ICALP’11, pages 428-440, Berlin, Heidelberg, 2011. Springer-Verlag.
Edsger Wybe Dijkstra. Cooperating sequential processes, technical report
ewd-123. Technical report, 1965.

David L Dill, Seungjoon Park, and Andreas G. Nowatzyk. Formal specifica-
tion of abstract memory models. In Proceedings of the 1993 symposium on
Research on integrated systems, pages 38-52, Cambridge, MA, USA, 1993.
MIT Press.

Intel. Intel 64 architecture memory ordering white paper, 2007.

Edya Ladan-Mozes, I-Ting Angelina Lee, and Dmitry Vyukov. Location-
based memory fences. In Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures, SPAA ’11, pages 75-84, New York,
NY, USA, 2011. ACM.

Scott Owens. Reasoning about the implementation of concurrency abstrac-
tions on x86-tso. In Proceedings of the 24th European conference on Object-
oriented programming, ECOOP’10, pages 478-503, Berlin, Heidelberg, 2010.
Springer-Verlag.

Seungjoon Park and David L. Dill. An executable specification, analyzer
and verifier for rmo (relaxed memory order). In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures, SPAA
95, pages 34-41, New York, NY, USA, 1995. ACM.

Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers, 1st
edition, 2011.

Dennis Shasha and Marc Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst., 10(2):282—
312, April 1988.

o7

