
Memory Model-aware Testing
a Unified Complexity Analysis

Florian Furbach, Roland Meyer, Klaus Schneider, Maximilian Senftleben
TU Kaiserslautern

{furbach,meyer,schneider,senftleben}@cs.uni-kl.de

Abstract—To improve performance, multiprocessor systems
implement weak memory consistency models — and a number of
models have been developed over the past years. Weak memory
models, however, lead to unforeseen program behavior, and there
is a current need for memory model-aware program analysis
techniques. The problem is that every memory model calls for
new verification algorithms.

We study a prominent approach to program analysis: testing.
The testing problem takes as input sequences of operations, one
for each process in the concurrent program. The task is to check
whether these sequences can be interleaved to an execution of the
entire program that respects the constraints of the memory model.
We determine the complexity of the testing problem for most
of the known memory models. Moreover, we study the impact
on the complexity of parameters like the number of concurrent
processes, the length of their executions, and the number of
shared variables.

What differentiates our approach from related results is a
unified analysis. Instead of considering one memory model after
the other, we build upon work of Steinke and Nutt. They showed
that the existing memory models form a natural hierarchy where
one model is called weaker than another one if it includes the
latter’s behavior [33].

Using the Steinke-Nutt hierarchy, we develop three general
concepts that allow us to quickly determine the complexity of
a testing problem. (i) We generalize the technique of problem
reductions from complexity theory. So-called range reductions
propagate hardness results between memory models. We apply
them to establish NP-lower bounds for the stronger memory
models. (ii) For the weaker models, we present polynomial-time
testing algorithms. Here, the common idea is determinization. (iii)
Finally, we give a single SAT encoding of the testing problem
that works for all memory models in the Steinke-Nutt hierarchy.
It shows membership in NP. Our results are general enough to
classify future weak memory models and ensure that SAT solvers
are adequate tools for their analysis.

I. INTRODUCTION

A. Weak Memory Models

For multiprocessors, communication over shared memory soon
becomes a performance bottleneck. To improve processor
utilization, architectures implement various optimizations like
a distributed shared memory or write buffers that are organized
per memory cell or per processor. With these optimizations,
different processes may observe the writes of other processes
at different points in time. This results in different local views
of the processes on the shared memory. Weak memory models
[33], [2], [23], [28] have been developed as an interface to
the programmer that abstracts from architectural details. They
specify, without reference to the processor, the local views that
are possible in a concurrent execution.

In general, weak memory models allow for serializations
of the memory operations that are impossible on a sequentially
consistent (SC) memory [27]. Under SC, operations take
effect instantaneously or, phrased differently, the sequences of
memory operations are interleaved. SC matches the developer’s
intuition about the program behavior. As a result, algorithms
that have been developed with SC in mind can have undesirable
effects when run on a weak memory. In particular, mutual
exclusion algorithms and other programs with data races
behave incorrectly if the program order is relaxed only slightly.
Therefore, considerable effort has been devoted to developing
verification methods for concurrent programs that run under
weak memory models (see below for a discussion).

B. The Testing Problem

A core problem of these verification methods is the so-
called testing problem under weak memory models. The testing
problem, as it has first been studied by Gibbons and Ko-
rach [20], is defined as follows. Given a sequence of read/write
operations for each concurrent process, check whether there is
an interleaving of these operations that satisfies the constraints
of the weak memory model under study. We use the term
testing algorithms to refer to algorithms that solves the testing
problem. Note that our notion of testing checks the consistency
of a concurrent execution wrt. a weak memory model. It does
not exercise the programs on a set of inputs.

The testing problem has various applications in program
analysis. Testing algorithms are used as subroutines in over-
approximate (may) program analyses. When a may analysis
finds a potential counterexample to a correctness statement,
checking whether the counterexample is genuine or spurious
amounts to solving a testing problem. If the counterexample
is spurious, the failing test suggests a refinement of the may
analysis, which leads to a CEGAR-like verification loop [18].
As an under-approximation, the testing problem occurs directly
when debugging concurrent programs. A further application
are synchronization inference algorithms [30], [8], [1], [12].
Their task is to determine the placement of synchronization
primitives like fences, barriers, and syncs within a program. A
final application is the estimation of best and worst case exe-
cuting times. Here, testing algorithms can rule out infeasible
paths to improve the analysis.

Despite its many applications, there are only few works
on the algorithmics and complexity of the testing problem.
Gibbons and Korach [20] studied the testing problem under
SC and linearizability. They showed that in both cases the
problem is NP-complete, whereas fixed-parameter variants can
be solved in polynomial time. Cantin, Lipasti, and Smith [17]
extended these results. They state NP-completeness of the
testing problem under SPARC’s memory models (TSO, PSO,



LOCAL

SLOW

CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

NP

P

Fig. 1: Hierarchy of weak memory models (see [33]).

RMO) [34], processor consistency PC, release consistency,
and a model of the PowerPC architecture. Common to both
approaches is that they are tailored towards few specific
memory models. The testing problem, however, is important
for virtually all memory models. Moreover, since future ar-
chitectures are likely to bring new memory models, general
techniques are desirable that address the testing problem under
different memory models in a uniform way.

To develop a uniform approach to memory model-aware
testing, it is important to classify the weak memory models
according to their weakness as done in [32], [33], [5]. A
memory model Mw is thereby called weaker than another
model Ms, denoted by Ms ⪯ Mw and indicated by a path
in Figure 1, if every execution allowed under Ms is also
valid under Mw. Memory models are usually defined by
axioms [31], in an operational way, or via local views. Steinke
and Nutt [33] have shown that most weak memory models
can be obtained as a combination of four basic models called
GAO, GWO, GDO, and GPO, all of which can be formulated
in a view-based manner. To be precise, this applies to SC,
Pipelined RAM (PRAM) [29], CAUSAL consistency [24],
cache consistency (CC) [21], two variants of processor con-
sistency (PC-G, PC-D) [21], [3], SLOW consistency [24],
and LOCAL consistency [22]. As a consequence of this
characterization via basic models, these memory models form
the hierarchy depicted in Figure 1. It shows that SC is the
strongest and LOCAL consistency is the weakest model.

C. Contributions

We present algorithms and complexity results for the testing
problem under the weak memory models in the Steinke-Nutt
hierarchy. As shown in Figure 1, the general problem is NP-
complete for all models except for LOCAL. Hence, reductions
to SAT lead to optimal testing algorithms. For LOCAL
consistency, we provide a polynomial-time testing algorithm.
We also conduct a fixed-parameter analysis that provides a fine
understanding of what makes the testing problem hard.

To derive these results, we develop a new proof technique
and two algorithmic concepts, which we consider the actual
main contributions of this paper. Since new memory models

are likely to come up, our general concepts will make it easy
to adapt testing algorithms and prove their optimality. We
elaborate on our main contributions.

Contribution 1: Most testing problems are NP-hard: We
show that the general testing problem is NP-hard for all
memory models except for LOCAL. Rather than constructing
separate reductions for each memory model, we extend the
concept of reductions. We propose range reductions that
cover a range of memory models M with MS ⪯ M ⪯ MW .
The concept of range reductions shows that hierarchies of
architectures are not only useful from a semantic point of view
(showing the relationship between models), but also helpful
from an algorithmic point of view. Once established, they allow
us to propagate hardness results between memory models.
We present two range reductions. The first covers the range
from SC to SLOW, and the second the range from SC to
GWO. Since SLOW and GWO are the weakest models above
LOCAL in the Steinke-Nutt hierachy of Figure 1, the two
reductions are sufficient to conclude all hardness results.

Contribution 2: Some testing problems are in P: We show
that the general testing problem under LOCAL and restricted
testing problems under SLOW, CC, and PRAM can be
solved in polynomial time. That LOCAL admits a polynomial-
time testing algorithm came as a surprise to us. A common
belief is that weak memory models make the algorithmic
analysis harder. Technically, LOCAL has its own testing
algorithm. The algorithms for SLOW, CC and PRAM again
rely on a common idea: determinization. Processes are given
as sequences of operations. We first develop non-deterministic
algorithms that read these sequences in polynomial time. Then
we show how to determinize the algorithms, using ideas from
the powerset construction for finite automata.

Contribution 3: The remaining testing problems are in NP:
We show that the testing problem is in NP for all models in
the Steinke-Nutt hierarchy of Figure 1. In the framework of
Steinke and Nutt, the testing problem under a weak memory
model is defined as the ability to serialize certain partial
orders. We define a SAT encoding that takes a partial order
as a parameter. It computes a propositional formula that is
satisfiable if and only if the partial order admits a serialization.
Contribution 1 shows that these SAT-based testing algorithms
are optimal for almost all models. While the reduction to
SAT is intuitive, we stress that it heavily relies on the view-
based formulation of memory models [33]. Phrased differently,
the real contribution here is to observe that the Steinke-Nutt
framework is good for SAT encodings.

Contribution 4: Influence of parameters: In actual applica-
tions, we are rarely faced with the general testing problem.
First, current architectures still have a small number of cores,
which limits the number of concurrent processes. Second,
protocols often consist of small processes where the length
of the read/write sequences is limited. Finally, the number of
synchronization variables is usually small. For this reason, we
consider fixed-parameter variants of the testing problem where
one of these three parameters is bounded by a constant for all
inputs. The analysis of these restricted testing problems allows
us to identify the sources of hardness for testing.

Besides the practical applications of the testing problem
sketched above, our study was motivated by our theoretical



curiosity on how a memory model influences the complexity
of system analysis. Initially, we debated on what results to
expect and discussed two scenarios. On the one hand, one
may argue that program analysis becomes harder when using
weaker memory models because the number of states increases
with the use of intermediary buffers and caches. This effect
is actually observed in the analysis of reachability, where
the complexity jumps from PSPACE for SC [25] to non-
primitive recursive for TSO, PSO, and an approximation of
POWER [9], [10]. On the other hand, an analysis may become
easier because the program’s executions are less constrained,
a view that is suggested by Alglave in [6]. Our main finding
is that, in case of testing, we can confirm Alglave in a strictly
formal way. We show that for stronger memory models the
testing problem is NP-hard (even under restrictions), while
for weaker models it tends towards P.

II. RELATED WORK

We already discussed the related work on the testing problem
[20], [17], but would like to add a remark on [17]. These
authors argue as follows: since synchronization primitives can
be added to a program so as to enforce SC behavior despite
a weak execution environment, the testing problem for weak
memory models must be at least as hard as for SC (where
it is NP-hard due to [20]). This argument is not convincing
if the purpose of testing is synchronization inference where
programs come free from synchronization primitives.

Our contributions are precise complexity results for the
testing problem. For weak memory models, precise results
about decidability and complexity of verification problems
are rare. Reachability has been considered by Atig et al. and
shown to be decidable but non-primitive recursive for TSO and
PSO [9], as well as for an approximation of POWER [10]. Ro-
bustness requires the absence of causality cycles, and has been
shown to be decidable in polynomial space for TSO [13], and
for partitioned global address spaces [16]. The testing problem
has a lower complexity since it handles single sequences of
operations rather than sets. Our multi-parameter complexity
analysis is related to [19]. Esparza and Ganty study pattern-
based verification under SC. We target more complex memory
models but consider the weaker testing problem.

Testing can also be understood as an under-approximation
of reachability, similar to runtime verification and bounded
model checking (BMC). Runtime verification techniques for
TSO and PSO have been developed in [14], [15]. Atig
et al. extended the idea of bounded context switching to
TSO [11]. Recently, Alglave et al. developed memory model-
aware BMC algorithms [7]. The approach is remarkable in
that it applies to various models, and indeed inspired our SAT
encoding given in Section VI. It does, however, not lead to
complexity results. Instead, the focus was on practical verifica-
tion algorithms for popular architectures, including Intel’s x86,
and IBM Power. Vechev et al. developed over-approximate
verification techniques that prove programs correct [26].

Finally, we discuss our choice to base this work on the
Steinke-Nutt hierarchy rather than the recent framework of
Alglave [4]. The reason is that the Steinke-Nutt hierarchy
covers more models, which led to the idea of range reductions.
Moreover, the view-based formulation was close to formal

languages so that we were able to extract polynomial-time
algorithms from it.

III. TESTS AND MEMORY MODELS

We first give the definition of tests and memory models
following [33]. Then, we turn to the testing problem subject
to this paper. For illustration purposes, we consider the mutex
algorithm in Figure 2. This is a simplified version of Dekker’s
algorithm that does not use a token variable.

1: procedure P
2: x = 1;
3: while y=1 do
4: x = 0;
5: Sleep(time);
6: x = 1;
7: Critical Section;
8: x = 0;

1: procedure Q
2: y = 1;
3: while x=1 do
4: y = 0;
5: Sleep(time);
6: y = 1;
7: Critical Section;
8: y = 0;

Fig. 2: Example procedures implementing Dekker’s mutex.

The algorithm consists of procedures P and Q that are executed
by two processes. Both processes claim the resource by setting
their corresponding variable to 1. If the resource is claimed
by the partner, then a process releases the resource and waits
some time until it claims the resource again. If the resource is
not claimed by the partner, then the process enters its critical
section and releases the resource afterwards. Intuitively, the
protocol guarantees mutual exclusion. We will study a test for
this program which shows that the guarantee depends on the
memory model.

A. Syntax of Tests

A test consists of a finite set of processes that operate on
a shared memory. Each process is given as a sequence of
read/write operations that, intuitively, correspond to the local
view of the process on the shared memory. In this view, both
the memory location and the value of a read/write operation are
fully determined. In particular does a read operations already
tell the value that is read.

An operation op is an element in OP ∶= (C × V × D) ×
(ID ×N). The operation executes a write or read command
from C ∶= {w, r} on a variable from the set V , assuming
a fixed value from some data domain D that contains ⊥.
Each operation carries a process identifier from the set ID
which has a distinguished element ε for the initialization
process. Moreover, an operation has an issue index, a natural
number in N ∶= {0,1, . . .} that determines the order in
which operations are issued by a process. Given an operation
op = (c, x, v, p, i) ∈ OP , we use cmd(op) = c, var(op) = x,
val(op) = v, proc(op) = p, and idx(op) = i to access the
command, the variable, the value, the process identifier, and
the issue index. Given a set of operations T ⊆ OP , we
denote a subset of operations that share certain properties
using wildcard ∗. For example, the set of operations writing
variable x, {op ∈ T ∣ cmd(op) = w and var(op) = x}, is
denoted by (w,x,∗,∗,∗)T . By slight abuse of notation, we
use w to denote a write operation, and similarly r for an
operation with cmd(op) = r. To establish the initial value ⊥



(w,y,⊥, ε,0)
ε

(w,x,⊥, ε,1)

(w,x,1, p,0)
p

(r, y,⊥, p,1)
(w,y,1, q,0)

q

(r, x,⊥, q,1)
<PO

↦

Fig. 3: The execution of test T = DEKKER

for every variable, we introduce write operations (w,x,⊥, ε, i)
that belong to the initialization process ε.

Definition 1. A test is a finite subset of operations T ⊆ OP so
that ∣(∗,∗,∗, p, i)T ∣ ≤ 1 for all p ∈ ID and i ∈ N . Moreover,
if ∣(∗, x,∗,∗,∗)T ∣ > 0 then ∣(w,x,⊥, ε,∗)T ∣ > 0.

The following is a test for the program given in Figure 2:

(w,x,1, p,0).(r, y,⊥, p,1) ∥ (w,y,1, q,0).(r, x,⊥, q,1)
∥ (w,y,⊥, ε,0).(w,x,⊥, ε,1).

The test consists of two processes with identifiers p and q and
the initial process ε. It checks for a violation of the mutex
property and therefore ignores the while loop. More precisely,
the test represents the path where both processes p and q write
1 to their variable but read the initial value from the variable
of their partner.

For notational convenience, and like in the example above,
we will define tests in terms of their processes, and processes
as sequences of operations. In this case, we may omit both the
process identifier and the issue index. We assume the initial
process ε only writes ⊥ to each variable that is used. If we
fix an ordering on the variables, this fully defines the initial
process we can omit it as well. With these conventions, the
above example reads

(w,x,1).(r, y,⊥) ∥ (w,y,1).(r, x,⊥).

B. Memory Model-aware Semantics of Tests

The semantics of tests is defined in terms of executions, which
are relations on the operations. Intuitively, these relations
determine the write that a read receives its value from.

Definition 2. An execution of T ⊆ OP is a relation ↦ ⊆
(w,∗,∗,∗,∗)T × (r,∗,∗,∗,∗)T so that for every read r ∈ T
there is precisely one write w ∈ T with w ↦ r. Moreover,
w ↦ r implies var(w) = var(r) and val(w) = val(r).

Memory consistency models restrict the set of executions to
so-called valid ones. In the Steinke-Nutt framework, valid
executions are defined in terms of serial views. Roughly, a
serial view of an execution is the total order in which the
operations become visible to a process. This total order has to
be compatible with the execution: a read receives its value from
the most recent write to its variable, where most recent refers
to the serial view. A process may, however, not see all the
operations of other processes. To model this, the definition of
serial views takes a subset of operations as a parameter. Given
an execution ↦ ⊆ T ×T , we call a subset O ⊆ T source-closed
if for all r ∈ O and w ∈ T with w ↦ r, we have w ∈ O.

Definition 3. Consider an execution ↦ ⊆ T × T , a source-
closed set O ⊆ T , and a strict partial order < ⊆ O × O. A

strict total order <sv ⊆ O ×O is a serial view of O in ↦ that
respects < if it satisfies the following:

(i) It refines <, which means < ⊆ <sv.

(ii) For all pairs w ↦ r with w, r ∈ O we have w <sv r.
Moreover, there is no w′ ∈ O so that w <sv w′ <sv r
and var(w) = var(w′).

We also write <sv is SerialView(↦,O,<).

Recall that strict partial and total orders are asymmetric and
transitive. To give an example of a memory model definition
in the framework of Steinke and Nutt, we formalize sequential
consistency (SC) [27]. Sequential consistency ensures that
every process observed all operations in the order they were
issued. It is the intuitive model which is assumed by most
programmers. Using Definition 3, an execution is valid under
SC if there is a serial view on all operations that respects
the program order. The program order is defined as usual: the
order of operations within the same process. Let p ∈ ID. The
process order <p ⊆ T ×T orders the commands of p according
to their issue index, and after all initial writes:

op1 <p op2 if (proc(op1) = proc(op2) = p
and idx(op1) < idx(op2))

or (proc(op1) = ε and proc(op2) = p).
The program order <PO ⊆ T × T is the union of all process
orders, <PO ∶= ⋃p∈ID <p.

Definition 4. An execution ↦ ⊆ T ×T is valid under sequential
consistency if ∃ <sv ∶ <sv is

SerialView(↦,T ,<PO).

In the test for Dekker’s protocol, there is only one execution,
depicted in Figure 3, where the reads observe the writes of
the initial process ε. Intuitively, at least one initial write is
overwritten before the corresponding read can be executed. The
formalism captures this as follows. Assume there was a strict
total order <sv that satisfies the requirements in Definition 3
and 4. Since the serial view respects the program order <PO ,
one of the reads is maximal in <sv, say (r, y,⊥, p,1). For the
same reason, (w,y,1, q,0) is larger than (w,y,⊥, ε,0) in <sv:

(w,y,⊥, ε,0) <sv (w,y,1, q,0) <sv (r, y,⊥, p,1).
Since (w,y,⊥, ε,0) ↦ (r, y,⊥, p,1), we obtain a contradiction
to Definition 3(ii). The argumentation is similar if the read on x
is maximal, and indeed there is no strict total order that satisfies
the requirements. This behavior changes if we examine the test
under a weaker model.

Hutto and Ahamad [24] developed the SLOW model to
solve the exclusion and dictionary problems with minimal
consistency maintenance. The definition is as follows. A read
returns a previously written value, and successive reads from
the same variable may not return writes issued earlier (by
the process that issued the source write) than the read one.
Furthermore, local writes must be visible immediately. In the
Steinke-Nutt framework, this requires a serial view for every
process and every variable. It contains all write operations on
this variable and all operations of this process on the variable,
and respects the program order. We have [33, Theorem 3.7]:



Definition 5. An execution ↦ ⊆ T × T is valid under SLOW
consistency if ∀p ∈ ID ∀x ∈ V ∃ <sv ∶ <sv is

SerialView(↦, (∗, x,∗, p,∗)T ∪ (w,x,∗,∗,∗)T ,<PO).

Since writes on different variables can be observed out of
order, the execution in Figure 3 is valid under SLOW. We
prove this by constructing the required serial views. Only the
following two are of interest since they contain a read action.
We give them as sequences:

<sv of q, x ∶ (w,x,⊥, ε,1).(r, x,⊥, q,1).(w,x,1, p,0)
<sv of p, y ∶ (w,y,⊥, ε,0).(r, y,⊥, p,1).(w,y,1, q,0).

C. Memory Model-aware Testing

We consider the testing problem TEST(M) for each of the
memory models M shown in Figure 1. The formal definition
of TEST(M) is as follows.

Problem: Given a test T ⊆ OP , is there an execution
↦ ⊆ T × T that is valid under M?

We say a test is successful under M if there is a valid execution,
otherwise it fails under M. In the example, test DEKKER fails
under SC but succeeds under SLOW.

We also consider restricted variants of the testing problem
that admit more efficient algorithms: the TESTP (M) problem
assumes a fixed number of processes in input tests, TESTL(M)
fixes the length of processes, and TESTV (M) studies the
problem with a fixed number of variables.

IV. MOST TESTING PROBLEMS ARE NP-HARD

We derive basic hardness results that guide our search for
testing algorithms in the next sections. Interestingly, the main
finding in this section are not the hardness proofs, but a new
theory of reductions. So-called range reductions allow us to
derive several hardness results with only one encoding. Besides
economical considerations (we obtain 38 hardness results for
different models with only 4 reductions), range reductions
show that several models share a common difficulty, and hence
give an idea of what makes algorithmic analysis under weak
memory models hard. As with reductions, the challenge is of
course to find an encoding of an NP-hard problem that meets
the requirements of a range reduction.

A. Range Reductions

When we refer to a decision problem PROB, we mean a set of
elements together with a predicate ψ ∶ PROB → {0,1}. In the
case of testing, TEST(M) contains all tests T and the predicate
asks for an execution of T that is valid under M. A reduction
f ∶ PROB → TEST(M) is a function that maps instances of
PROB to tests so that

ψ(x) holds iff test f(x) = T succeeds under M. (1)

Our goal is to conclude such an equivalence not only for a
single memory model, but for a range of models M that are
weaker than a given model MS and stronger than another
model MW . To this end, we reformulate Equivalence (1) in
such a way that it comprises all models MS ⪯ M ⪯ MW .

MS

M

MW

M′PROB M′′

Definition 6(ii)

Definition 6(i)

Fig. 4: Illustration of MS ⪯ MW -range reductions of PROB to
the testing problem. Directed edges correspond to implications.

Definition 6. A function f from instances of PROB to tests is
an MS ⪯ MW -range reduction of PROB to the testing problem
if the following implications hold.

(i) If test f(x) = T succeeds under MW , then predicate
ψ(x) holds.

(ii) If predicate ψ(x) holds, then test f(x) = T succeeds
under MS .

If function f is polynomial-time computable and PROB is
NP-hard, we derive NP-hardness of the testing problem.

Lemma 1. Let PROB be NP-hard and let f be a polynomial-
time computable MS ⪯ MW -range reduction of PROB to the
testing problem. Then TEST(M) is NP-hard for all memory
models MS ⪯ M ⪯ MW .

Proof: We argue that f ∶ PROB → TEST(M) is a
reduction of PROB to TEST(M), which means Equivalence (1)
holds. Since f is assumed to be polynomial-time computable,
NP-hardness follows. For the implication from left to right,
note that ψ(x) implies f(x) = T succeeds under MS by
Definition 6.(ii). Since MS ⪯ M, we conclude that T remains
successful under M. For the reverse direction, assume T
succeeds under M. Then the test remains successful under the
weaker model MW . With Definition 6.(i), we can therefore
conclude ψ(x) holds.

In the remainder of the section, we show that almost all
testing problems are NP-hard. Using Lemma 1, we achieve this
with only two range reductions. We give reductions of SAT to
the testing problem that range from SC to SLOW and from SC
to GWO. This covers the full Steinke-Nutt hierarchy except
for LOCAL. In Section V, we will show that TEST(LOCAL)
is indeed in P.

When developing range reductions, the challenge is to
guarantee the implication in Definition 6(i): the hard problem
follows from a successful test under the weak memory model.
To derive this implication, the following approach turned out
useful. We first construct a reduction to the strong memory
model. For the range reductions presented here, this strong
model is SC. Then we modify the reduction so that it remains
valid under the weak model. The difficulty with weak execu-
tions is to ensure a consistent view of operations over multiple
processes. To achieve this, we study the relaxations of the weak
memory model (wrt. the strong model) and design a test that
is insensitive to these relaxations.



B. Fixed Variable Testing is NP-hard from SC to SLOW

We give an SC ⪯ SLOW-range reduction of SAT to the testing
problem. Consider a SAT instance of the form ϕ = ⋀i∈I cl i
with cl i = ⋁j∈Ji

litj . We translate it to a test f(ϕ) = T
that satisfies the following. If formula ϕ is satisfiable, then
T succeeds under SC. Moreover, if the test succeeds under
SLOW, then the formula is satisfiable. The challenge is to
satisfy this second requirement: conclude satisfiability of the
SAT instance despite the weak executions of SLOW. The trick
is to observe that SLOW preserves the order of operations on
the same variable, and then only use one variable ξ in the
reduction. The data domain D of ξ is defined as follows. For
each variable x in the SAT instance ϕ there is a corresponding
value x ∈ D, and for each clause cl of the SAT instance there
is a value cl ∈ D. The test is

T ∶= ∏
x∈ϕ

(px ∥ nx) ∥ t.

To explain the construction, we first extract the clauses cl ∈ ϕ
that contain a propositional variable x positively or negatively:

POS(x) ∶= {cl ∈ ϕ ∣ x ∈ cl}
NEG(x) ∶= {cl ∈ ϕ ∣ ¬x ∈ cl}.

Test T defines two processes for each variable x in ϕ. The first
process px writes to ξ, one by one, the clauses cl that contain
x positively. Afterwards, the process writes x to ξ to indicate
that the variable has been handled. The second process nx is
similar, but writes the clauses that contain x negatively:

px ∶= [●cl∈POS(x)(w, ξ, cl)].(w, ξ, x)
nx ∶= [●cl∈NEG(x)(w, ξ, cl)].(w, ξ, x).

We use ●cl∈POS(x) to denote an iterated concatenation of the
following operations, assuming a total ordering on the clauses.

The processes px and nx are augmented by a test process t.
For the definition of t, we again use the iterated concatenation
and assume the same total order of clauses as above:

t ∶= [●x∈ϕ(r, ξ, x)].[●cl∈ϕ(r, ξ, cl)].

The test process reads, one by one, each propositional variable
x from ξ. Since the test only has one variable, this read of x
from ξ deletes all previous writes of cl to ξ. The intuition is
the following. If the matching write was from px, then the read
of x from ξ discards the assignment of x to true. To satisfy the
following reads (r, ξ, cl), we therefore have to use the writes
(w, ξ, cl) from the second process nx. This corresponds to x
being false and thus satisfying cl .

Theorem 1. The above function f is an SC ⪯ SLOW-range
reduction of SAT to the testing problem that is polynomial-
time computable. Hence, TEST(M) is NP-hard for all memory
models SC ⪯ M ⪯ SLOW. As the reduction only uses one
variable, even TESTV (M) is NP-hard for all memory models
SC ⪯ M ⪯ SLOW.

Proof: We claim that the test T is indeed successful
under SC if ϕ is satisfiable. To see this, note that a satisfying
assignment to ϕ acts as a mapping from clauses to variables.
Each clause cl has a variable x that satisfies this clause when
set to true or false. Assume x has to be false to satisfy cl . We

execute px completely and read (r, ξ, x). The full process nx
remains, and we write cl to ξ where needed to satisfy (r, ξ, cl).

To see that a SLOW execution of T gives a satisfying
assignment to ϕ, note that the test only has one variable.
Therefore, there are no reorderings of operations. With this,
the execution defines a mapping from clauses to variables. If
(r, ξ, cl) in t receives its value from px, then x can be set to
true to satisfy cl . Since a valid execution means we satisfy all
clauses, we obtain a satisfying assignment for ϕ.

The theorem shows that testing is NP-hard if operations to
the same variable cannot be reordered — which is the case
in most memory models. The range reduction relies, how-
ever, on an arbitrary number of processes. As we will show,
TEST(SLOW) becomes polynomial if we fix this parameter.

C. Fixed Length Testing is NP-hard from SC to GWO

Global write order (GWO) is one of the four basic memory
models defined by Steinke and Nutt (cf. Section I and [33]).
It requires the following consistency: if a process observes an
order between two writes (due to a read), then all processes
agree on the order. To render this formally, we introduce the
write-read-write order (WO), where w1 <WO w2 if

∃r ∈ T ∶ w1 ↦ r <PO w2

Definition 7. An execution ↦ ⊆ T × T is valid under GWO
consistency if ∀p ∈ ID ∃ <p ∶ <p is

SerialView(↦, (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T ,<p ∪ <WO)

We give an SC ⪯ GWO-range reduction of SAT to the testing
problem. Let ϕ = ⋀1≤k≤K clk with clk = ⋁1≤j≤Jk

litk,j , and
let N be the number of variables in ϕ. We construct a test
f(ϕ) = T that satisfies the following. If ϕ is satisfiable
then T succeeds under SC, and if the test succeeds under
GWO, then the formula is satisfiable. For each variable xi
in the SAT instance ϕ there are two corresponding variables
xi, yi ∈ V , and for each clause clk there is a variable ck ∈ V .
There are auxiliary variables h0 . . . hK . The data domain D
is {0,1,2}. For each literal litk,j , let v(k, j) determine its
variable. Moreover, we set b(k, j) ∶= 1 for a positive literal
and b(k, j) ∶= 0 for a negative literal. The encoding is

T ∶= ∏
1≤i≤N

(ni ∥ pi ∥ qi ∥ ri) ∥ ∏
1≤k≤K
1≤j≤Jk

lk,j ∥ h ∥ ∏
1≤k≤K

tk.

Test T defines four processes per variable xi in ϕ. The first
two processes ni and pi write to xi, respectively the value 0
or 1, read that value again, and then write 1 to yi. The third
process qi reads value 1 from yi and writes value 2 to xi:

ni ∶= (w,xi,0).(r, xi,0).(w,yi,1)
pi ∶= (w,xi,1).(r, xi,1).(w,yi,1)
qi ∶= (r, yi,1).(w,xi,2).

The idea is that at least one of the writes to xi by pi or ni is
overwritten with value 2 by process qi. Since the write-read-
write order is preserved under GWO, all processes which read
2 from xi before reading another value from it observe the
same last write.



There is a process lk,j for each literal litk,j . It checks
whether the literal is satisfied by the guessed assignment. The
process waits for the corresponding variable to be overwritten
by 2 and afterwards reads the satisfying value. To be precise,
if it is a negative literal of variable x then it reads 0 from x,
otherwise it reads 1 from x. After the reads, the process writes
1 to variable ck that corresponds to the literal’s clause:

lk,j ∶= (r, v(k, j),2).(r, v(k, j), b(k, j)).(w, ck,1).

For each clause clk there is a test process tk. It ensures
that all clauses up to the current one were satisfied by at least
one literal. The test process reads the auxiliary variable hk−1
of the previous test process, tries to read the clause variable
ck, and then writes its own auxiliary variable hk:

tk ∶= (r, hk−1,1).(r, ck,1).(w,hk,1).
Process h ∶= (w,h0,1) just writes the first of the auxiliary
variables. Process ri ensures that after all test processes ti
have finished the remaining literal processes lk,j may finish,
too. It first checks whether the last auxiliary variable hK is set
to 1, and then writes 0 and 1 to xi:

ri ∶= (r, hK ,1).(w,xi,0).(w,xi,1).

We claim that test T is successful under SC if ϕ is
satisfiable. Consider a satisfying assignment Φ of ϕ. Starting
with the first variable xi, we execute pi if Φ(xi) = 0 and ni
if Φ(xi) = 1. Then we execute qi followed by the first read
of all literal processes lk,j with this variable: v(k, j) = xi.
Afterwards, we execute ni or pi, whichever remains. Finally,
all literal processes lk,j that correspond to satisfied literals
may read the correct value and finish. We repeat this for
all variables and complete by executing process h. Now the
processes tk can execute one after the other. To see this, note
that we assume Φ to be satisfying. This means for each clause
clk there is a literal process that wrote ck. To conclude, we
only have to guarantee that the remaining literal processes
terminate. Starting with the first variable xi, we execute ri
up to its first write, followed by all remaining literal processes
which correspond to negative literals of xi. Then ri executes
its last write such that the remaining literal processes which
correspond to positive literals of xi can execute.

We claim that a GWO execution of T induces a satisfying
assignment Φ of ϕ. Recall that the write-read-write order in
GWO ensures the following: if one process issued a write after
reading another write, then these two writes are ordered for all
processes. In an execution, each process tk reads value 1 from
the clause variable ck. This clause variable is written by some
process lk,j corresponding to a satisfied literal. These literal
processes determine the assignment: Φ(v(k, j)) ∶= b(k, j). To
see that Φ is well-defined, consider two literal processes with
the same variable xi that are both read by test processes. Both
literal processes receive their value from the same pi or ni, as
the other process ni or pi executes before (w,xi,2).

Note that the length of processes is at most three in T .
Therefore, the reduction shows NP-hardness of the corre-
sponding restricted version of the testing problem.

Theorem 2. Function f is an SC ⪯ GWO-range reduction
of SAT to the testing problem that is polynomial-time com-
putable. Hence, TEST(M) is NP-hard for all memory models

SC ⪯ M ⪯ GWO. As the reduction requires a process length
of at most three, even TESTL(M) is NP-hard for all memory
models SC ⪯ M ⪯ GWO.

V. SOME TESTING PROBLEMS ARE IN P

We show that for very weak memory models the general testing
problem or restricted variants can be solved in polynomial
time. To check whether a given test T succeeds under a
memory model, the task is to find an execution ↦ ⊆ T ×T that
satisfies certain serial views. Interestingly, the algorithms we
propose do not construct the execution but directly construct
the serial views. The intuition is as follows. According to
Definition 3(ii), a serial view <sv has to respect a given
execution ↦. This means for every read r occurring in <sv
the serial view implicitly gives the write w with w ↦ r: it
is the last write before the read that has the same variable.
This suggests that serial views induce a unique execution, and
therefore we only have to compute the serial views. We now
develop concepts that make this argument work.

A. Read Partitioning and Constructive Serial Views

The catch in the above argumentation is that serial views
are defined for subsets of operations O ⊆ T . This means a
serial view only induces a partial execution on this subset. To
define the perception of the shared memory for all reads in
T , a memory model typically asks for several serial views,
say <1sv for requirement SerialView(↦,O1,<1) up to <ksv
for SerialView(↦,Ok,<k). The problem is that the partial
executions for O1 to Ok may be incompatible. Serial view <1sv
may give w1 ↦ r while <2sv yields w2 ↦ r with w1 ≠ w2.

Partial executions can, however, be composed to a full
execution of test T if they do not conflict in the assignment
of writes to reads. To ensure this, we call a memory model
read-partitioning if for every read r ∈ T there is precisely one
subset of operations Oj ⊆ T so that r ∈ Oj . SC, SLOW, and
the LOCAL model defined below are all read-partitioning.

Serial views are defined relative to an execution. To
construct a serial view without knowing the execution, we
modify Definition 3. Consider O ⊆ T and a strict partial order
< ⊆ O ×O. A constructive serial view of O which respects <
is a strict total order <csv ⊆ O ×O that is defined like a serial
view but replaces Definition 3(ii) by

(ii’) For all reads r ∈ O there is a write w ∈ O with
var(w) = var(r), val(w) = val(r), and w <csv r.
Moreover, there is no w′ ∈ O so that w <csv w′ <csv r
and var(w) = var(w′).

A constructive serial view avoids referencing the execution.
Instead it requires that every read r has a preceding write
w <csv r with appropriate variable and value. This allows us
to reconstruct an execution. In the following lemma, we still
assume that memory model M is defined by the serial views
SerialView(↦,O1,<1) to SerialView(↦,Ok,<k).

Lemma 2. Let M be read-partitioning and consider a test T .
Then T succeeds under M if and only if there are constructive
serial views <icsv for 1 ≤ i ≤ k.

For the direction from right to left, note that read partitioning
ensures every read r is assigned a unique write predecessor



w ↦ r by its constructive serial view. The union of these
assignments is the execution of the full test. Moreover, the
constructive serial views are serial views of this execution. The
direction from left to right actually holds for every memory
model.

B. TEST(LOCAL) is in P

LOCAL consistency was defined as the weakest constraint that
every shared memory system should satisfy [22]. It requires
that every process observes all visible operations (all writes and
its own reads). Moreover, each process sees its own operations
in process order but may see the writes of other processes in
an arbitrary order. The Steinke-Nutt formulation is as follows
[33, Theorem 3.8]:

Definition 8. An execution ↦ ⊆ T ×T is valid under LOCAL
consistency if ∀p∈T ∃ <sv ∶ <sv is

SerialView(↦, (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T ,<p).

The definition introduces a serial view for each process p.
The corresponding subset O ⊆ T contains all operations of p
as well as all writes in the test. The serial view only has to
respect the process order of p. This means the operations of p
in O can be understood as a sequence õpp = op1 . . .opn. The
writes of the other processes are given as an unordered set.

Algorithm 1 Compute Constructive Serial View for LOCAL
Consistency

Input: Process p with õpp = op1 . . .opn and set of writes W
of all processes q ≠ p.

Output: Constructive serial view s, initially empty, s ∶= ε.
1: last[x] ∶= � for all x ∈ V
2: for i = 1→ n do
3: if opi = (w,x, v) then
4: last[x] ∶= v; s ∶= s.opi
5: else if opi = (r, x, v) and last[x] = v then
6: s ∶= s.opi
7: else if opi = (r, x, v) and last[x] ≠ v then
8: if ∃w ∈W ∶ var(w) = x and val(w) = v then
9: W ∶=W ∖ {w};

10: last[x] ∶= v;
11: s ∶= s.w.opi
12: else
13: return not LOCAL consistent
14: return s with remaining writes of W inserted at the end

Algorithm 1 copies õpp to the constructive serial view
s, inserting writes from other processes where necessary to
satisfy reads. To check whether a write is needed to satisfy a
read, we hold the last value that has been written to a variable
x in last[x]. The algorithm ensures that every read has a
matching preceding write (Lines 5 and 8). Since writes are
inserted only when necessary, the algorithm never fails to find
a constructive serial view if there is one.

Theorem 3. Algorithm 1 terminates in polynomial time and
returns a constructive serial view iff O and <p admit one.
Hence, TEST(LOCAL) is in P.

C. TESTP (SLOW) is in P

Although general testing is NP-hard for SLOW, we will now
show that the problem becomes polynomial when we fix the
number of processes. To prove this, we give a testing algorithm
that is only exponential in the number of processes.

By Definition 5, we have to find constructive serial views
for each process p ∈ ID and every variable x ∈ V . The
corresponding subset of operations O ⊆ T contains all writes
to x in the test, and moreover all reads from x in process p. The
serial view has to respect the program order. This means the
operations in O are given as sequences õpq = opq,1 . . .opq,nq

for every process q. The task is to find an interleaving of these
sequences so that every read opp,i = r obtains the desired
value. Wlog., we can assume that no two reads (r, x, v) follow
each other in õpp, and that no write (w,x, v) of p gives the
value to a subsequent read (r, x, v).

We devise a non-deterministic algorithm that reads the
sequences of operations for all processes. The algorithm alter-
nates between operations from process p and operations from
other processes. It first consumes a sequence of operations
from p up to the next read (r, x, v). By the above assumptions,
the last value that p writes to x is different from v. Therefore,
the algorithm non-deterministically chooses a process q ≠ p
that contains a write (w,x, v), and consumes the remaining
sequence õpq up to and including the first such write. Now
(r, x, v) is enabled and the algorithm again consumes the
operations of p up to the next read. When õpp has been
processed, the algorithm accepts the remaining operations.

Lemma 3. Given sequences õpq for all processes q in test
T as input, the algorithm has an accepting run iff there is a
constructive serial view <csv of (∗, x,∗, p,∗)T ∪(w,x,∗,∗,∗)T
that respects the program order.

Proof: A constructive serial view is given by the order
in which the algorithm consumes the operations of the input.
It remains to prove completeness. Given some constructive
serial view suitable for SLOW, we modify it to a sequence of
operations resulting from an accepting run of the algorithm.
The key idea is as follows. Whenever a read receives its value
from (w,x, v, q, j), we select the earliest write (w,x, v, q, i)
with i < j in q that gives value v.

To solve the testing problem in polynomial time, it remains
to determinize the non-deterministic algorithm. To this end, we
introduce, for every process q, a pointer referencing the first
operation in õpq that has not yet been processed. There are
∣ID∣ many pointers with at most ∣O∣ positions for each pointer.
Hence, there are at most ∣O∣∣ID∣ many pointer configurations.

To determinize the algorithm, we store sets of pointer
configurations. Like in the powerset construction for finite
automata, the current set contains all pointer configurations
that the non-deterministic algorithm could have reached after
processing the input so far. With the set of possible pointer
configurations, the algorithm no longer has to guess the process
q ≠ p whose write (w,x, v) serves a read (r, x, v) of p. Instead,
we compute all successor pointer configurations. To determine
the successor set takes time ∣O∣2∣ID∣. Indeed, we check for
every pointer configuration in the current set whether it can
reach another pointer configuration by moving the pointer



of a single process. Since we have at most ∣O∣ many reads
in process p, the overall running time of the algorithm is
∣O∣2∣ID∣+1. With ∣ID∣ fixed, the algorithm is polynomial.

Theorem 4. The algorithm is deterministic and solves
TESTP (SLOW) in polynomial time.

VI. TESTING IS IN NP

We show that the testing problem is in NP for all memory
models in the Steinke-Nutt hierarchy. To this end, we propose
a polynomial-time reduction of the testing problem to Boolean
satisfiability. The main contribution in this section is not so
much the SAT encoding (which is quite intuitive), but rather
the observation that the results in [33] work well with SAT.
The Steinke-Nutt formulation of memory models is well-suited
for SAT encodings for two reasons. First, the formulation is
uniform: all memory models are defined via serial-views, and
memory models only differ in the serial views they require.
Our SAT encoding inherits this uniformity: we handle all
models with one reduction. More precisely, we propose two
parameterized formulas that are instantiated and composed as
required by a memory model. Second, the definition of whether
a test succeeds is simple. It essentially requires to serialize
partial orders, which is easily expressed in SAT. Finding a
direct reduction of the testing problem to SAT, without using
the results of Steinke and Nutt, appears much harder.

A. Building Blocks of a Uniform Reduction

We define two propositional formulas in conjunctive normal
form (CNF): EXE(T ) and SV(T ,O,<). The former takes as
input a test T and encodes the existence of an execution. To
this end, we introduce variables exw,r for every pair of write
and read operations w, r ∈ T that use the same variable and
access the same value, var(w) = var(r) and val(w) = val(r).
Formula EXE(T ) is the following Conjunction (2). It encodes
the fact that every read has a write that gives its value (left)
and no read has two sources (right):

⋀
r∈T

⋁
w∈T

var(w)=var(r)
val(w)=val(r)

exw,r ∧ ⋀
r,w1,w2∈T ,w1≠w2

var(w1)=var(w2)=var(r)
val(w1)=val(w2)=val(r)

¬exw1,r ∨ ¬exw2,r. (2)

Lemma 4. EXE(T ) is in CNF and cubic in the size of T .
Moreover, EXE(T ) is satisfiable if and only if there is an
execution ↦ ⊆ T × T .

Satisfiability of the second formula SV(T ,O,<) reflects the
existence of a serial view of the operations O in an execution.
The formula takes as input a test T , a subset of operations
O ⊆ T , and a strict partial order < ⊆ O × O. Serial views
are defined relative to an execution. To access the execution
determined by EXE(T ), formula SV(T ,O,<) makes use of
the variables exw,r defined above.

Formally, a serial view is a strict total order <sv ⊆ O ×O.
We encode this relation with variables svop1,op2

, one for each
pair of operations op1,op2 ∈ O. Intuitively, variable svop1,op2

is set to true iff op1 <sv op2 holds. The following exclusive-or
ensures the serial view is total and asymmetric. The implication
is transitivity:

⋀
op1,op2,op3∈O

op1≠op3
op1≠op2≠op3

(svop1,op2
⊕ svop2,op1

)

∧ (svop1,op2
∧ svop2,op3

→ svop1,op3
). (3)

The first requirement in Definition 3 is that <sv refines < to a
total order:

⋀
op1,op2∈O
op1<op2

svop1,op2
. (4)

The next formula requires that for every pair w ↦ r we have
w <sv r (left) so that no write to the variable is placed in
between the two (right):

⋀
w,r∈O

var(w)=var(r)
val(w)=val(r)

(¬exw,r ∨ svw,r)

∧ ⋀
w′∈O

var(w′)=var(r)

(¬exw,r ∨ ¬svw,w′ ∨ ¬svw′,r). (5)

Formula SV(T ,O,<) is the conjunction of the Formulas (3)
to (5). To state the relationship between SerialView(↦,O,<)
in Definition 3 and SV(T ,O,<), we restrict the satisfying
assignments to the propositional variables. An assignment
respects ↦ ⊆ T ×T if op1 ↦ op2 holds if and only if exop1,op2

is set to true.

Lemma 5. SV(T ,O,<) is in CNF and cubic in its input.
There is a strict total order <sv that is SerialView(↦,O,<)
iff SV(T ,O,<) has a satisfying assignment that respects ↦.

B. A Uniform Reduction of Testing to SAT

We now show how to instantiate the above formulas to solve
the testing problem for the memory models in the Steinke-Nutt
hierarchy. We proceed by means of an example: we show how
to reduce TEST(SLOW) to SAT. SLOW consistency serves
as a representative example. The other models in the hierarchy
only differ in the serial views they require.

Finding an execution amounts to finding an assignment that
satisfies EXE(T ). To ensure the required serial views exist, we
instantiate formula SV(●, ●, ●) with appropriate parameters:

EXE(T ) ∧ ⋀
p∈ID
x∈V

SV(T , (∗, x,∗, p,∗)T ∪ (w,x,∗,∗,∗)T ,<PO).

Test T has an execution under SLOW iff this formula is satis-
fiable. Note that the restriction on the admissible assignments
in Lemma 5 is no longer needed: EXE(T ) ensures that the
assignment to the execution variables matches an execution.

Theorem 5. TEST(SLOW) is in NP.

In this way, show that the testing problem is in NP for all
memory models defined via serial views. These are all models
in Figure 1 except TSO and PSO. Their testing problems have
been shown to belong to NP in [17].

VII. CONCLUSIONS

We determined the complexity of the testing problem for most
known weak memory models. Figure 5 shows a summary of
our results that cover all models in the Steinke-Nutt hierarchy
of Figure 1. To derive these results, we developed three general
concepts. (1) With range reductions, we proposed a general
proof technique for lower bounds that hold for a range of
memory models. This way, we learned about the importance



Mem. Model Complexity Class of TEST(M)
TEST(M) TESTP (M) TESTL(M) TESTV (M)

SC NPC (2) NPC (7) NPC (6) NPC (2)
TSO NPC (2) NPC (7) NPC (6) NPC (2)
PSO NPC (2) NPC7 NPC (6) NPC (2)
PC-G NPC (2) NPC (6) NPC (2)
PC-D NPC (2) NPC (6) NPC (2)
GAO NPC (2) NPC (6) NPC (2)

GPO+GDO NPC (2) NPC (6) NPC (2)
Causal NPC (2) NPC (3) NPC (2)

PRAM-M NPC (2) NPC (2)
GWO NPC (3) NPC3

CC NPC (2) P5 NPC6 NPC (2)
PRAM NPC (2) P4 NPC (2)
SLOW NPC (2) P (5) P (4) NPC2

LOCAL P1 P (1) P (1) P (1)

Fig. 5: Time complexity of the testing problem under the
memory models in the Steinke-Nutt hierarchy of Figure 1. We
use TESTP (M), TESTL(M), and TESTV (M) for the restricted
problems where the number of processes, their length, and the
number of variables are fixed, respectively. NPC means NP-
complete: the problem is NP-hard and in NP.

to construct tests that are insensitive to the relaxations of
a memory model. (2) For very weak models, we developed
polynomial testing algorithms, using determinization tricks
from automata theory. (3) Finally, we presented a uniform
reduction of the testing problem to SAT. It works for all
memory models defined via serial views and proves an NP
upper bound. Combined with the NP-lower bounds, these
SAT-based testing algorithms are optimal for most memory
models. We note that the three general concepts allowed us to
fill the table in Figure 5 with only seven proofs (four of which
are presented in this paper).

Finding range reductions is challenging. However, they
provide insights into the synchronization capabilities of a
memory model and guide the search for testing algorithms.
Therefore, as future work we plan to fill the missing entries
in Figure 5.

REFERENCES

[1] Abdulla, P., Atig, M., Chen, Y., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: TACAS. LNCS, vol.
7214, pp. 204–219. Springer (2012)

[2] Adve, S., Gharachorloo, K.: Shared memory consistency models: A
tutorial. IEEE Computer 29(12), 66–76 (1996)

[3] Ahamad, M., Bazzi, R., John, R., Kohli, P., Neiger, G.: The power of
processor consistency. In: SPAA. pp. 251–260. ACM (1993)

[4] Alglave, J.: A Shared Memory Poetics. Ph.D. thesis, University Paris 7
(2010)

[5] Alglave, J.: A formal hierarchy of weak memory models. FMSD 41(2),
178–210 (2012)

[6] Alglave, J.: Weakness is a virtue (2013), (EC)2 Workshop
[7] Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient

bounded model checking of concurrent software. In: CAV. LNCS, vol.
8044, pp. 141–157. Springer (2013)

[8] Alglave, J., Maranget, L.: Stability in weak memory models. In: CAV.
LNCS, vol. 6806, pp. 50–66. Springer (2011)

[9] Atig, M., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verifi-
cation problem for weak memory models. In: POPL. pp. 7–18. ACM
(2010)

[10] Atig, M., Bouajjani, A., Burckhardt, S., Musuvathi, M.: What’s de-
cidable about weak memory models. In: ESOP. LNCS, vol. 7211, pp.
26–46. Springer (2012)

[11] Atig, M., Bouajjani, A., Parlato, G.: Getting rid of store buffers in TSO
analysis. In: CAV. LNCS, vol. 6806, pp. 99–115. Springer (2011)

[12] Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing
robustness against TSO. In: ESOP. LNCS, vol. 7792, pp. 533–553.
Springer (2013)

[13] Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against
total store ordering. In: ICALP. LNCS, vol. 6756, pp. 428–440. Springer
(2011)

[14] Burckhardt, S., Musuvathi, M.: Effective program verification for
relaxed memory models. In: CAV. LNCS, vol. 5123, pp. 107–120.
Springer (2008)

[15] Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of
sequential consistency for relaxed memory models. In: TACAS. LNCS,
vol. 6605, pp. 11–25. Springer (2011)

[16] Calin, G., Derevenetc, E., Majumdar, R., Meyer, R.: A theory of
partitioned global address spaces. In: FSTTCS. LIPIcs, vol. 24, pp.
127–139. Schloss Dagstuhl (2013)

[17] Cantin, J., Lipasti, M., Smith, J.: The complexity of verifying memory
coherence and consistency. IEEE Transactions on Parallel and Dis-
tributed Systems 16(7), 663–671 (2005)

[18] Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-
guided abstraction refinement. In: CAV. LNCS, vol. 1855, pp. 154–169.
Springer (2000)

[19] Esparza, J., Ganty, P.: Complexity of pattern based verification for
multithreaded programs. In: POPL. pp. 499–510. ACM (2011)

[20] Gibbons, P., Korach, E.: Testing shared memories. SIAM Journal on
Computing 26(4), 1208–1244 (1997)

[21] Goodman, J.: Cache consistency and sequential consistency. Technical
Report 1006, University of Wisconsin-Madison (1991)

[22] Heddaya, A., Sinha, H.: Coherence, non-coherence and local consis-
tency in distributed shared memory for parallel computing. Technical
Report BU-CS-92-004, Boston University (1992)

[23] Hennessy, J., Patterson, D.: Computer Architecture: A quantitative
Approach. Morgan Kaufmann, 3 edn. (2003)

[24] Hutto, P., Ahamad, M.: Slow memory: Weakening consistency to
enchance concurrency in distributed shared memories. In: ICDCS. pp.
302–309. IEEE (1990)

[25] Kozen, D.: Lower bounds for natural proof systems. In: FOCS. pp.
254–266. IEEE (1977)

[26] Kuperstein, M., Vechev, M., Yahav, E.: Partial coherence abstractions
for relaxed memory models. In: PLDI. pp. 187–198. ACM (2011)

[27] Lamport, L.: How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers
28(9), 690–691 (1979)

[28] Lawrence, R.: A survey of cache coherence mechanisms in shared
memory multiprocessors (1998)

[29] Lipton, R., Sandberg, J.: PRAM: A scalable shared memory. Technical
Report CS-TR-180-88, Princeton University (1988)

[30] Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., Yahav, E.: Dynamic
synthesis for relaxed memory models. In: PLDI. pp. 429–440. ACM
(2012)

[31] Loewenstein, P., Chaudhry, S., Cypher, R., Manovit, C.: Multiprocessor
memory model verification (2006), Automated Formal Methods Work-
shop (AFM)

[32] Mosberger, D.: Memory consistency models. ACM SIGOPS: Operating
Systems Review 27(1), 18–26 (1993)

[33] Steinke, R., Nutt, G.: A unified theory of shared memory consistency.
JACM 51(5), 800–849 (2004)

[34] The SPARC Architecture Manual-Version 9. Prentice-Hall (1994)


