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To improve the performance of the memory system, multiprocessors implement weak memory consistency
models. Weak memory models admit different views of the processes on their load and store instructions
and thus allow for computations that are not sequentially consistent. Program analyses have to take into
account the memory model of the targeted hardware. This is challenging due to the fact that numerous
memory models have been developed, and every memory model requires its own analysis.

In this article, we study a prominent approach to program analysis: testing. The testing problem takes as
input sequences of operations, one for each process in the concurrent program. The task is to check whether
these sequences can be interleaved to an execution of the entire program that respects the constraints of
a memory model under consideration. We determine the complexity of the testing problem for most of the
known memory models. Moreover, we study the impact on the complexity of parameters like the number of
concurrent processes, the length of their executions, and the number of shared variables.

What differentiates our contribution from related results is a uniform approach that avoids to consider
each memory model on its own. We build upon work of Steinke and Nutt. They showed that the existing
memory models form a hierarchy where one model is called weaker than another one if it includes the
latter’s behavior. Using the Steinke-Nutt hierarchy, we develop three general concepts that allow us to
quickly determine the complexity of a testing problem. (i) We generalize the technique of problem reductions
from complexity theory. So-called range reductions propagate hardness results between memory models, and
we apply them to establish NP lower bounds for the stronger memory models. (ii) For the weaker models, we
present polynomial-time testing algorithms that are inspired by determinization algorithms for automata.
(iii) Finally, we describe a single SAT encoding of the testing problem that works for all memory models in
the Steinke-Nutt hierarchy to prove their membership in NP. Our results are general enough to carry over
to future weak memory models. Moreover, they show that SAT solvers are adequate tools for testing.

1. INTRODUCTION
1.1. Weak Memory Models
For multiprocessors, communication over shared memory is a performance bottleneck.
To improve processor utilization, architectures implement various optimizations like a
distributed shared memory or write buffers. However, with these optimizations, differ-
ent processes may observe the writes of other processes at different points in time. This
results in different local views of the processes on the shared memory. Weak memory
models [Adve and Gharachorloo 1996; Hennessy and Patterson 2003; Lawrence 1998;
Steinke and Nutt 2004] have been developed as an interface to the programmer that
abstracts from architectural details. They specify, without reference to the processor,
the local views that are possible in a concurrent execution.
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Procedure p
1 x = 1;
2 while y=1 do
3 x = 0;
4 Sleep(time);
5 x = 1;
6 end
7 Critical Section;
8 x = 0;

Procedure q
1 y = 1;
2 while x=1 do
3 y = 0;
4 Sleep(time);
5 y = 1;
6 end
7 Critical Section;
8 y = 0;

Fig. 1. Example procedures implementing Dekker’s mutex.
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Fig. 2. Illustration of weakly consistent behavior under PSO and TSO.

In general, weak memory models define serializations of the memory operations that
are impossible on a sequentially consistent (SC) memory [Lamport 1979]. Under SC,
operations are immediately seen by all processes or, phrased differently, the sequences
of memory operations are interleaved. SC matches the developer’s intuition about pro-
gram behavior. As a result, algorithms that have been developed with SC in mind can
have undesirable effects when run on a system with a weak memory. In particular,
mutual exclusion algorithms and other programs with data races behave incorrectly if
the program order is relaxed only slightly.

To illustrate the problems caused by weak consistency, Figure 1 shows a simplified
version of Dekker’s mutual exclusion algorithm (it does not use a token variable). Both
processes claim a resource by setting their variable to 1. If the resource is claimed by
the partner, a process releases the resource and waits for some time until it claims
the resource again. If the resource is not claimed by the partner, the process enters its
critical section and releases the resource afterwards.

Intuitively, the protocol guarantees mutual exclusion. However, if the algorithm is
executed on an architecture where the processes buffer their writes, like TSO or PSO,
it may behave incorrectly (Figure 2). Both p and q issue their write operations and put
them into their buffers. No write operation was passed to the main memory yet. Since
each process can only access its own write buffer, both will still see the initial value of
the main memory for the variable of the partner process. This means both read 0 and
enter the critical section. To detect bugs like this, considerable effort has been made
to develop verification methods for concurrent programs that run under weak memory
models (see the discussion below).

1.2. The Testing Problem
A core problem behind such verification methods is the so-called testing problem un-
der weak memory models. The testing problem, as it has first been studied by Gib-
bons and Korach [Gibbons and Korach 1997], is defined as follows. Given a sequence of
read/write operations for each concurrent process, check whether there is an interleav-
ing of the operations that satisfies the constraints of the weak memory model at hand.
We use the term testing algorithms to refer to algorithms that solve the testing prob-
lem. Note that our notion of testing checks the consistency of a concurrent execution
wrt. a weak memory model. It does not exercise a program on a set of inputs.
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The testing problem has various applications in program analysis. Testing algo-
rithms are used as subroutines in over-approximate (may) program analyses. Assume
the over-approximation leads to a counterexample to a correctness statement. To check
whether the counterexample corresponds to an actual execution, we extract for each
process the sequence of operations and understand the counterexample as a test. If
the test succeeds, the counterexample is genuine. Otherwise, the failing test suggests
a refinement of the may analysis. This leads to a CEGAR-like verification loop [Clarke
et al. 2000]. As an under-approximation, testing is used during debugging. We check
reachability of an undesirable state for each process and then solve the testing prob-
lem on the collected sequences of operations. A further application are synchronization
inference algorithms [Abdulla et al. 2012; Alglave and Maranget 2011; Bouajjani et al.
2013; Liu et al. 2012; Alglave et al. 2014]. Their task is to determine the placement of
synchronization primitives within a program. A final application is the estimation of
best and worst case execution times. Here, testing algorithms can rule out infeasible
paths to improve the analysis.

LOCAL
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CC PRAM

PRAM-M

GWO

GAO

PSO

TSO GPO+GDO CAUSAL

PC-G PC-D

SC

NP

P

Fig. 3. Hierarchy of weak memory models [Steinke and Nutt 2004].

Despite its many applications, there are only a few works on the algorithmics and
complexity of the testing problem. Gibbons and Korach [Gibbons and Korach 1997]
studied the testing problem under SC as well as linearizability. They show that in both
cases the problem is NP-complete, whereas fixed-parameter variants can be solved
in polynomial time. Cantin, Lipasti, and Smith [Cantin et al. 2005] extended these
results. They state NP-completeness of the testing problem under SPARC’s memory
models (TSO, PSO, RMO) [WeGe94 1994], processor consistency PC, release consis-
tency, and a model of the PowerPC architecture. Conflict serializability was studied
in [Farzan and Madhusudan 2009], with and without synchronization. Common to all
mentioned approaches is that they are tailored towards few specific memory models.
The testing problem, however, is important for virtually all memory models — existing
ones and those of future architectures. We therefore introduce general techniques that
address the testing problem under different memory models in a uniform way.

To develop a uniform approach to memory-model-aware testing, it is important to
classify the weak memory models as done in [Alglave 2012; Mosberger 1993; Steinke
and Nutt 2004]. A memory modelMw is called weaker than another memory model Ms,
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denoted by Ms ⪯Mw and indicated by a path in Figure 3, if every execution allowed un-
derMs is also valid underMw. Memory models are usually defined by axioms [Loewen-
stein et al. 2006], in an operational way, or via local views. Steinke and Nutt [Steinke
and Nutt 2004] have shown that most weak memory models can be obtained as a com-
bination of four basic models called GAO, GWO, GDO, and GPO. To be precise, this
applies to SC, Pipelined RAM (PRAM) [Lipton and Sandberg 1988], CAUSAL consis-
tency [Hutto and Ahamad 1990], cache consistency (CC) [Goodman 1991], two variants
of processor consistency (PC-G, PC-D) [Goodman 1991; Ahamad et al. 1993], SLOW
consistency [Hutto and Ahamad 1990], and LOCAL consistency [Heddaya and Sinha
1992]. As a consequence of this characterization via basic models, the memory models
form the hierarchy depicted in Figure 3. The hierarchy shows that SC is the strongest
and LOCAL consistency is the weakest model.

1.3. Contributions
We present algorithms and complexity results for the testing problem under the weak
memory models in the Steinke-Nutt hierarchy. As shown in Figure 3, the general prob-
lem is NP-complete for all models except for LOCAL. Hence, reductions to SAT lead
to optimal testing algorithms. For LOCAL consistency, we provide a polynomial-time
testing algorithm. We also conduct a fixed-parameter analysis that explains what
makes the testing problem hard.

To derive these results, we develop a new proof technique and two algorithmic con-
cepts, which we consider the actual main contributions of this paper. For new memory
models that are likely to come up, our general concepts will make it easy to devise
optimal testing algorithms.

Contribution 1: Most testing problems are NP-hard. We show that the gen-
eral testing problem is NP-hard for all memory models except for LOCAL. Rather
than constructing separate reductions for each memory model, we extend the concept
of reductions. We propose range reductions that cover a range of memory models M
with MS ⪯ M ⪯ MW . The concept of range reductions demonstrates that hierarchies of
architectures are not only useful from a semantic point of view (showing the relation-
ship between models), but also from an algorithmic point of view. Once established,
they allow us to propagate hardness results between memory models. We present four
range reductions. The first covers the range from SC to SLOW and the second from
SC to GWO. Since SLOW and GWO are the weakest models above LOCAL in the
Steinke-Nutt hierarchy of Figure 3, those two reductions are sufficient to derive all
hardness results. The third range reduction from SC to CC and the fourth from SC to
PSO give additional results for fixed parameter testing problems.

Contribution 2: Some testing problems are in P. We show that the general
testing problem under LOCAL and restricted testing problems under SLOW, CC,
and PRAM can be solved in polynomial time.

It was surprising to us that LOCAL admits a polynomial-time testing algorithm,
since it is a common belief that weak memory models make the algorithmic analysis
harder. Technically, LOCAL has its own testing algorithm. The algorithms for SLOW,
CC, and PRAM again rely on a common idea: determinization. Processes are given as
sequences of operations. We first develop non-deterministic algorithms that read these
sequences in polynomial time. Then we show how to determinize the algorithms, using
ideas from the powerset construction for finite automata.

Contribution 3: The remaining testing problems are in NP. We show that the
testing problem is in NP for all models in the Steinke-Nutt hierarchy of Figure 3. In
the framework of Steinke and Nutt, the testing problem under a weak memory model
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is defined as the ability to serialize certain partial orders. We define a SAT encoding
that takes a partial order as a parameter. It computes a propositional formula that is
satisfiable if and only if the partial order admits a serialization. Contribution 1 shows
that these SAT-based testing algorithms are optimal for almost all models. While the
reduction to SAT is intuitive, we would like to emphasize that it heavily relies on
the view-based formulation of memory models [Steinke and Nutt 2004]. Phrased dif-
ferently, the real contribution is to observe that the Steinke-Nutt framework is well-
suited for SAT.

Contribution 4: Influence of parameters. In many applications, we are rarely
faced with the general testing problem. First, current architectures still have a small
number of cores, which limits the number of concurrent processes. Second, protocols
often consist of short processes which means the length of the read/write sequences
is limited. Finally, the number of synchronization variables is usually small. For these
reasons, we consider variants of the testing problem where one of the three parameters
is bounded for all inputs. The analysis of these restricted testing problems allows us
to identify the sources of hardness for testing.

Besides the practical applications of the testing problem sketched above, our study
was motivated by our curiosity on how a memory model influences the complexity of
system analysis. Initially, we speculated about the results and discussed two scenar-
ios. On the one hand, one may argue that program analysis becomes harder when
using weaker memory models because the number of states increases with the use
of intermediary buffers and caches. This effect is actually observed in the analysis of
reachability, where the complexity jumps from PSPACE for SC [Kozen 1977] to non-
primitive recursive for TSO, PSO, and an approximation of POWER [Atig et al. 2010;
Atig et al. 2012]. On the other hand, an analysis may become easier because the pro-
gram’s executions are less constrained, a view that is suggested by Alglave in [Alglave
2013]. Our main finding is that, in case of testing, we can confirm Alglave in a strictly
formal way. We show that for stronger memory models the testing problem is NP-hard
(even under restrictions), while for weaker models it tends towards P.

This paper is an extended version of [Furbach et al. 2014]. It differs from the prelimi-
nary paper in the following aspects. We have improved the SC ≤ GWO-range reduction
so as to use a fixed number of variables. We additionally list the SC ≤ PSO-range re-
duction that shows NP-hardness from SC to PSO if the number of processes is fixed.
Finally, we add the algorithm that solves the testing problem under CC. We prove its
correctness and give a sketch of completeness.

The paper is organized as follows. After a discussion of related work, we define the
formal set-up in Section 3. We present NP-hard testing problems and their reductions
in Section 4. Then we develop polynomial-time testing algorithms in Section 5. We
show that all considered testing problems are in NP in Section 6. We summarize the
results and conclude the paper in Section 7.

2. RELATED WORK
We already discussed the related work on the testing problem, but would like to add a
remark on [Cantin et al. 2005]. These authors argue as follows: since synchronization
primitives can be added to a program so as to enforce SC behavior despite a weak
execution environment, the testing problem for weak memory models must be at least
as hard as for SC (where it is NP-hard due to [Gibbons and Korach 1997]). This argu-
ment does not apply if programs come free from synchronization primitives. This is the
case in the present paper, and one purpose of testing is determining where to insert
synchronization primitives in order to enforce certain behavior.
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Our contributions are comprehensive complexity results for the testing problem.
For weak memory models, results about decidability and complexity of verification
problems are rare. Reachability has been considered by Atig et al. and shown to
be decidable but non-primitive recursive for TSO, PSO [Atig et al. 2010] and for
an approximation of POWER [Atig et al. 2012]. Robustness requires the absence
of causality cycles, and has been shown to be decidable in polynomial space for
TSO [Bouajjani et al. 2011], partitioned global address spaces [Calin et al. 2013], and
for POWER [Derevenetc and Meyer 2014]. The testing problem has a lower complex-
ity as it handles single sequences of operations rather than sets. Our multi-parameter
complexity analysis is related to [Esparza and Ganty 2011]. Esparza and Ganty study
pattern-based verification under SC. We target more complex memory models but con-
sider the weaker testing problem.

Testing can also be understood as an under-approximation of reachability, similar to
runtime verification and bounded model checking (BMC). Runtime verification tech-
niques for TSO and PSO have been developed in [Burckhardt and Musuvathi 2008;
Burnim et al. 2011]. Atig et al. extended the idea of bounded context switching to
TSO [Atig et al. 2011]. Recently, Alglave et al. developed memory-model-aware BMC
algorithms [Alglave et al. 2013]. The approach is remarkable in that it applies to var-
ious models, and indeed inspired our SAT encoding given in Section 6. It does, how-
ever, not lead to complexity results. Instead, the focus was on practical verification
algorithms for popular architectures, including Intel’s x86, and IBM Power. Vechev
et al. developed over-approximate verification techniques that prove programs cor-
rect [Atig et al. 2010].

Finally, we discuss our choice to base this work on the Steinke-Nutt hierarchy rather
than the recent framework of Alglave [Alglave 2010]. The reason is that the Steinke-
Nutt hierarchy covers more models, which led to the idea of range reductions. More-
over, the view-based formulation is close to formal languages so that we were able to
extract polynomial-time algorithms from it.

3. TESTS AND MEMORY MODELS
We first give the definition of tests and memory models following [Steinke and Nutt
2004]. Then, we turn to the testing problem. For illustration purposes, we consider the
mutex algorithm given in Figure 1. We study a test for this program which shows that
the mutex guarantee depends on the memory model.

3.1. Syntax of Tests
A test consists of a finite set of processes that operate on a shared memory. Each pro-
cess is given as a sequence of read/write operations that, intuitively, correspond to the
local view of the process on the shared memory. In this view, both the memory location
and the value of a read/write operation are fully determined. In particular does a read
operation already provide the value that is read. A test for the example in Figure 1 is

(w,x,1).(r, y,⊥) ∥ (w,y,1).(r, x,⊥).

To explain the test, we first define the operations involved. Formally, an operation
op is an element in OP ∶= (C × V × D) × (ID × N). The operation executes a write or
read command from C ∶= {w, r} on a variable from the set V, assuming a fixed value
from some data domain D that contains ⊥. Each operation carries a process identifier
from the set ID which has a distinguished element ε for the initialization process.
Moreover, an operation has an issue index, a natural number in N ∶= {0,1, . . .} that
determines the order in which operations are issued by a process. Given an operation
op = (c, x, v, p, i) ∈ OP, we use cmd(op) = c, var(op) = x, val(op) = v, proc(op) = p, and
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q

(r, x,⊥, q,1)

<PO

↦

Fig. 4. The execution and program order of test TDekker.

idx(op) = i to access the command, the variable, the value, the process identifier, and
the issue index. Given T ⊆ OP, we denote a subset of operations that share certain
properties using wildcard ∗. For example, the set of operations writing variable x,
{op ∈ T ∣ cmd(op) = w and var(op) = x}, is denoted by (w,x,∗,∗,∗)T . By slight abuse of
notation, we use w to denote a write operation and similarly r for a read operation. To
establish the initial value ⊥ for all variables, we introduce write operations (w,x,⊥, ε, i)
that belong to the initialization process ε.

Definition 3.1. A test is a finite subset of operations T ⊆ OP so that ∣(∗,∗,∗, p, i)T ∣ ≤ 1
for all p ∈ ID and i ∈ N . Moreover, if ∣(∗, x,∗,∗,∗)T ∣ > 0 then ∣(w,x,⊥, ε,∗)T ∣ = 1.

We now formally define TDekker, the test for the program in Figure 1 given above:

(w,x,1, p,0).(r, y,⊥, p,1) ∥ (w,y,1, q,0).(r, x,⊥, q,1)
∥ (w,y,⊥, ε,0).(w,x,⊥, ε,1).

The test consists of two processes with identifiers p and q, and the initial process ε.
It checks for a violation of the mutex property and therefore ignores the while loop.
More precisely, the test represents the path where both processes p and q write 1 to
their variable but read the initial value from the variable of the partner, and hence
both enter the critical section.

For notational convenience, and like in the example above, we present tests in terms
of their processes, and processes as sequences of operations. In this case, we may omit
both the process identifier and the issue index. We further assume that the initial
process ε only writes ⊥ to each used variable. If we fix an ordering on the variables,
this fully defines the initial process and we can omit it as well. With these conventions,
we arrive at the previous description of TDekker ∶ (w,x,1).(r, y,⊥) ∥ (w,y,1).(r, x,⊥).

3.2. Memory-Model-Aware Semantics of Tests
The semantics of tests is defined in terms of executions, relations on the operations
determining the write that a read receives its value from.

Definition 3.2. An execution of T ⊆ OP is a relation↦ ⊆ (w,∗,∗,∗,∗)T ×(r,∗,∗,∗,∗)T
so that for every read r ∈ T there is precisely one write w ∈ T with w ↦ r. Moreover,
w ↦ r implies var(w) = var(r) and val(w) = val(r).

Memory consistency models restrict the set of executions to so-called valid ones. In
the Steinke-Nutt framework, valid executions are defined in terms of serial views.
Roughly, a serial view of an execution is the total order in which the operations become
visible to a process. This total order has to be compatible with the execution: a read
receives its value from the most recent write to the variable, where most recent refers
to the serial view. A process may, however, not see all the operations of other processes.
To model this, the definition of serial views takes a subset of operations as a parameter.
Given an execution ↦ ⊆ T × T , we call a subset O ⊆ T source-closed if for all r ∈ O and
w ∈ T with w ↦ r, we have w ∈ O.
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Definition 3.3. Consider an execution ↦ ⊆ T × T , a source-closed set O ⊆ T , and a
strict partial order < ⊆ O ×O. A strict total order <sv ⊆ O ×O is a serial view of O in ↦
that respects < if it satisfies the following:

(i) It refines <, which means < ⊆ <sv.
(ii) For all pairs w ↦ r with w, r ∈ O we have w <sv r. Moreover, there is no w′ ∈ O so that

w <sv w′ <sv r and var(w) = var(w′).
We also write <sv is SerialView (↦,O,<).
Recall that strict partial and total orders are asymmetric and transitive. To give an
example of a memory model definition in the framework of Steinke and Nutt, we for-
malize sequential consistency (SC) [Lamport 1979]. SC ensures that every process
observes all operations in the order in which they were issued. It is the classic memory
model which is standard in textbooks and intuitively assumed by most programmers.
Using Definition 3.3, an execution is valid under SC if there is a serial view of all op-
erations that respects the program order. The program order is thereby defined as the
order of operations within the same process. Let p ∈ ID. The process order <p ⊆ T × T
orders the commands of p according to their issue index, and after all initial writes:

op1 <p op2 if [proc(op1) = proc(op2) = p and idx(op1) < idx(op2)]
or [proc(op1) = ε and proc(op2) = p] .

The program order <PO ⊆ T × T is the union of all process orders, <PO ∶= ⋃p∈ID <p.

Definition 3.4. An execution ↦ ⊆ T × T is valid under sequential consistency if

∃ <sv ∶ <sv is SerialView (↦,T ,<PO) .
The example test TDekker admits only one execution, depicted by dashed arcs in Fig-
ure 4, where the reads observe the writes of the initial process ε. In any serial view,
at least one initial write has to be overwritten before the corresponding read can be
processed. The formalism captures this as follows. Assume there was a strict total or-
der <sv that satisfies the requirements of Definitions 3.3 and 3.4. Since the serial view
respects the program order <PO , the maximal operation in <sv is one of the reads, say
(r, y,⊥, p,1). The write (w,y,1, q,0) is larger than (w,y,⊥, ε,0) in <sv because the latter
is an initial operation:

(w,y,⊥, ε,0) <sv (w,y,1, q,0) <sv (r, y,⊥, p,1).
Since (w,y,⊥, ε,0) ↦ (r, y,⊥, p,1), we obtain a contradiction to Definition 3.3(ii). The
argumentation is similar if the read on x is maximal, and indeed there is no strict total
order that forms a serial view. This behavior changes if we examine the test under a
weaker model.

Hutto and Ahamad [Hutto and Ahamad 1990] developed the SLOW model to solve
the exclusion and dictionary problems with minimal consistency maintenance. The
model requires that the processes observe all writes to the same variable in program
order. Furthermore, local writes must be visible immediately. In the Steinke-Nutt
framework, SLOW is formalized by a serial view for every process and every vari-
able. The view contains all write operations on this variable and all operations of this
process on the variable, and respects the program order. We have [Steinke and Nutt
2004, Theorem 3.7]:

Definition 3.5. An execution ↦ ⊆ T × T is valid under SLOW consistency if

∀p ∈ ID ∀x ∈ V ∃ <sv ∶
<sv is SerialView (↦, (∗, x,∗, p,∗)T ∪ (w,x,∗,∗,∗)T ,<PO) .

8



Since writes on different variables can be observed out of order, the execution in Fig-
ure 4 is valid under SLOW. We prove this by constructing the required serial views.
Only the following two are of interest since they contain a read action. We give them
as sequences:

<sv of q, x ∶ (w,x,⊥, ε,1).(r, x,⊥, q,1).(w,x,1, p,0)
<sv of p, y ∶ (w,y,⊥, ε,0).(r, y,⊥, p,1).(w,y,1, q,0).

3.3. Memory-Model-Aware Testing
We consider the testing problem TEST(M) for every memory model M shown in Fig-
ure 3. The definition is as follows.

Problem: Given a test T ⊆ OP, is there an execution ↦ ⊆ T ×T that is valid
under M?

We say a test succeeds under M if there is a valid execution, otherwise it fails under
M. In the example, TDekker fails under SC but succeeds under SLOW.

We also consider restricted variants of the testing problem that admit more efficient
algorithms: TESTP (M) assumes a fixed number of processes in input tests, TESTL(M)
fixes the length of processes (number of operations), and TESTV (M) studies the prob-
lem for a fixed number of variables.

4. MOST TESTING PROBLEMS ARE NP-HARD
We derive basic hardness results that guide our search for testing algorithms in the
next sections. Interestingly, the main finding in this section are not the hardness proofs
themselves, but a new theory of reductions. So-called range reductions allow us to
derive several hardness results with only one encoding. Besides economical considera-
tions (we obtain 38 hardness results for different models with only 4 reductions), range
reductions show that several models share a common difficulty, and hence give an idea
of what makes algorithmic analysis under weak memory models hard. As with reduc-
tions, the challenge is of course to find an encoding of an NP-hard problem that meets
the requirements of a range reduction.

4.1. Range Reductions
When we refer to a decision problem PROB, we mean a set of elements together with
a predicate ψ ∶ PROB → {0,1}. In the case of testing, TEST(M) contains all tests T and
the predicate asks for an execution of T that is valid under M. A reduction f ∶ PROB →
TEST(M) is a function that maps instances of PROB to tests so that

ψ(x) holds iff test f(x) = T succeeds under M. (1)

Our goal is to conclude such an equivalence not only for a single memory model, but
for a range of models M that are weaker than a given model MS and stronger than
another model MW . To this end, we reformulate Equivalence (1) in such a way that it
comprises all models MS ⪯ M ⪯ MW .

Definition 4.1. A function f from instances of PROB to tests is an MS ⪯ MW -range
reduction of PROB to the testing problem if the following implications hold.

(i) If test f(x) = T succeeds under MW , then predicate ψ(x) holds.
(ii) If predicate ψ(x) holds, then test f(x) = T succeeds under MS .

Figure 5 illustrates the definition. If function f is polynomial-time computable and
PROB is NP-hard, we derive NP-hardness of the testing problem.
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Fig. 5. Illustration of an MS ⪯ MW -range reduction of PROB to the testing problem. The left-hand side
shows the implications in Def. 4.1 as solid directed edges. The dashed edges represent the weaker-than
relation among memory models. The Venn diagram on the right-hand side illustrates the validity of tests
obtained from a range reduction. Positve instances of PROB are mapped to tests that succeed under MS .
Negative instances of PROB are mapped to tests that fail under MW .

LEMMA 4.2. Let PROB be NP-hard and let f be a polynomial-time computable
MS ⪯ MW -range reduction of PROB to the testing problem. Then TEST(M) is NP-hard
for all memory models MS ⪯ M ⪯ MW .

PROOF. We show Equivalence (1) for any M with MS ⪯ M ⪯ MW . Assume ψ(x)
holds. With Definition 4.1(ii), test f(x) = T succeeds under MS . Since MS ⪯ M, the test
remains successful under M. For the reverse direction, assume T succeeds under M.
Then the test remains successful under MW . With Definition 4.1(i), ψ(x) holds. Since
f is polynomial-time computable, NP-hardness follows.

In the remainder of the section, we show that almost all testing problems are NP-
hard. Using Lemma 4.2, we achieve this with only two range reductions. We give re-
ductions of SAT to the testing problem that range from SC to SLOW and from SC
to GWO. This covers the full Steinke-Nutt hierarchy except for LOCAL. In Section 5,
we show that TEST(LOCAL) is indeed in P. We give two more reductions that prove
hardness results for fixed parameter tests.

When developing range reductions, the challenge is to guarantee the implication in
Definition 4.1(i): ψ(x) follows from a successful test under the weak memory model.
The difficulty with weak executions is to ensure a consistent view of operations over
multiple processes. To derive the implication, the following approach turned out useful.
We first construct a reduction to the strong memory model. For the range reductions
presented here, this strong model is SC. Then, we modify the reduction so that it re-
mains valid under the weak model. To achieve this, we study the relaxations of the
weak memory model (relative to the strong model) and design a test that is insensitive
to these relaxations.

4.2. Fixed Variable Testing is NP-hard from SC to SLOW
We present an SC ⪯ SLOW-range reduction of SAT to the testing problem. Consider a
SAT instance of the form ϕ = ⋀i∈I cl i with cl i = ⋁j∈J lit i,j . We translate it to a test f(ϕ) =
T that satisfies the following. If ϕ is satisfiable, then T succeeds under SC. Moreover,
if the test succeeds under SLOW, then the formula is satisfiable. The challenge is to
satisfy this second requirement: conclude satisfiability of the SAT instance despite the
weak executions under SLOW. The trick is to observe that SLOW preserves the order
of operations on the same variable, and then introduce only one variable ξ used by
the processes in the reduction. The data domain D of ξ is defined as follows. For each
variable x in the SAT instance ϕ there is a corresponding value x ∈ D, and for each
clause cl of the SAT instance there is a value cl ∈ D. The test consists of a process t,
and for each variable x in the propositional formula ϕ, there are two further processes
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px and nx:

T ∶= ∏
x∈ϕ

(px ∥ nx) ∥ t.

To explain the construction, we first extract the clauses cl ∈ ϕ that contain a proposi-
tional variable x positively or negatively:

POS(x) ∶= {cl ∈ ϕ ∣ x ∈ cl}
NEG(x) ∶= {cl ∈ ϕ ∣ ¬x ∈ cl}.

Test T defines two processes for each variable x in ϕ. The first process px writes to ξ,
one by one, the clauses cl that contain x positively. Afterwards, the process writes x
to ξ to indicate that the variable has been handled. The second process nx is similar,
but writes the clauses that contain x negatively. The intuition is as follows. If process
px is executed, variable x is set to true, and consequently all clauses that contain x
positively will be satisfied. Likewise, if process nx is executed, then variable x is made
false, and all clauses that have negative occurrences of x hold:

px ∶= [●cl∈POS(x)(w, ξ, cl)].(w, ξ, x)
nx ∶= [●cl∈NEG(x)(w, ξ, cl)].(w, ξ, x).

We use ●cl∈POS(x) to denote an iterated concatenation of the following operations, as-
suming a total ordering on the clauses.

The processes px and nx are augmented by a test process t. For its definition, we
again use the iterated concatenation and assume the same order of clauses as above:

t ∶= [●x∈ϕ(r, ξ, x)].[●cl∈ϕ(r, ξ, cl)].
Process t first reads all values x from ξ, to make sure that for each variable x in the
SAT instance either px or nx has terminated. Assume that only one of the processes
has terminated when process t proceeds with reading clause values from its variable ξ.
Say nx has terminated. The remaining process px effectively assigns true to variable x.
When process t continues to read all clauses in its second part, it thereby checks that
these clauses are satisfied by the corresponding assignment.

THEOREM 4.3. The above function f is an SC ⪯ SLOW-range reduction of SAT to
the testing problem that is polynomial-time computable. Hence, TEST(M) is NP-hard
for all memory models SC ⪯ M ⪯ SLOW. As the reduction only uses one variable, even
TESTV (M) is NP-hard for all memory models SC ⪯ M ⪯ SLOW.

PROOF. We claim that test T is indeed successful under SC if ϕ is satisfiable. To
see this, note that a satisfying assignment for ϕ acts as a mapping from clauses to
variables. Each clause cl has a variable x that satisfies this clause when set to true or
false. Assume x has to be false to satisfy cl . We execute px completely and read (r, ξ, x).
The full process nx remains, and we write cl to ξ where needed to satisfy (r, ξ, cl).

To see that a SLOW execution of T gives a satisfying assignment for ϕ, note that the
test only has one variable. Therefore, process t observes all writes in program order.
This means, whenever it processes an (r, ξ, x) it has either processed px or nx before.
With this, the execution defines a mapping from clauses to variables. If (r, ξ, cl) in t
receives its value from px, then x can be set to true to satisfy cl . Since a valid execution
means we satisfy all clauses, we obtain a satisfying assignment for ϕ.

The theorem shows that testing is NP-hard if the operations of one process to the
same variable cannot be reordered — which is the case in most memory models. The
reduction relies, however, on an unbounded number of processes. As we will show,
TEST(SLOW) becomes polynomial if we fix this parameter.
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4.3. Fixed Length and Fixed Variable Testing is NP-hard from SC to GWO
Global write order (GWO) is one of the four basic memory models defined by Steinke
and Nutt (cf. Section 1 and [Steinke and Nutt 2004]). It requires the following consis-
tency: if a process observes an order between two writes (because it reads from the first
write and later performs the second), then all processes agree on this order. Formally,
we introduce the write-read-write order (WO):

w1 <WO w2 if ∃r ∈ T ∶ w1 ↦ r ∧ r <PO w2.

Definition 4.4. An execution ↦ ⊆ T × T is valid under GWO consistency if

∀p ∈ ID ∃ <sv ∶ <sv is SerialView (↦, (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T ,<p ∪ <WO) .

We construct an SC ⪯ GWO-range reduction of SAT to the testing problem. The idea
is to add reads that enforce a global order <WO among critical write operations. Let
ϕ = ⋀1≤k≤K clk with clk = ⋁1≤j≤Jk

litk,j , and literals litk,j be either positive or negative
instances of variables xi with 0 ≤ i < N . We construct a test f(ϕ) = T that satisfies
the following. If ϕ is satisfiable then T succeeds under SC, and if the test succeeds
under GWO, then the formula is satisfiable. There is a variable x for the assignment,
a variable c for checking clauses, and auxiliary variables h and y. The values of the
variables x and y can be pairs. This allows us to only use a fixed number of variables.
For each literal litk,j , let v(k, j) determine its variable. Moreover, we set b(k, j) ∶= 1 for
a positive literal and b(k, j) ∶= 0 for a negative literal. The encoding is

T ∶= ∏
1≤i≤N

(ni ∥ pi ∥ qi ∥ ri) ∥ ∏
1≤k≤K
1≤j≤Jk

lk,j ∥ h ∥ ∏
1≤k≤K

tk.

Test T defines four processes per variable xi in ϕ. The first two processes ni and pi
write to x, respectively the value (i,0) or (i,1), read that value again, and then write
(i,1) to y. The third process qi reads value (i,1) from y and writes value (i,2) to x:

ni ∶= (w,x,(i
0
)).(r, x,(i

0
)).(w,y,(i

1
))

pi ∶= (w,x,(i
1
)).(r, x,(i

1
)).(w,y,(i

1
))

qi ∶= (r, y,(i
1
)).(w,x,(i

2
)).

The idea is that at least one of the writes of (i,1) or (i,0) to x by pi or ni is overwritten
with value (i,2) by process qi. Say it is (i,0). Under the write-read-write order, all
processes which read (i,2) from x can only read the remaining write of (i,1) by pi
afterwards. This corresponds to the value 1 being assigned to x.

There is a process lk,j for each literal litk,j . It checks whether the literal is satisfied
by the assignment. The process waits for the corresponding variable to be overwritten
with 2 and afterwards reads the satisfying value. To be precise, if it is a negative literal
of variable xi then it reads (i,0) from x, otherwise it reads (i,1) from x. After the reads,
the process writes the literal’s clause k to variable c:

lk,j ∶= (r, x,(v(k, j)
2

)).(r, x,(v(k, j)
b(k, j))).(w, c, k).

For each clause clk there is a test process tk. It ensures that all clauses up to the
current one were satisfied by at least one literal. The test process reads the value k − 1
from variable h of the previous test process, tries to read the clause id k from variable
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c, and then writes value k to auxiliary variable h:

tk ∶= (r, h, k − 1).(r, c, k).(w,h, k).
Process h ∶= (w,h,0) just writes the first value to the auxiliary variable h. Process ri
ensures that after all test processes ti have finished the remaining literal processes lk,j
may finish too. It first checks whether the last auxiliary value K was written to h, and
then writes (i,0) and (i,1) to x:

ri ∶= (r, h,K).(w,x,(i
0
)).(w,x,(i

1
)).

We claim that test T is successful under SC if ϕ is satisfiable. Consider a satisfying
assignment Φ for ϕ. Starting with i = 1, we execute pi if Φ(xi) = 0 and ni if Φ(xi) = 1.
Then, we execute qi followed by the first read of all literal processes lk,j with this
variable: v(k, j) = xi. Afterwards, we execute ni or pi, whichever remains. Finally, all
literal processes lk,j that correspond to satisfied literals may read the correct value and
then halt before their write operation. We repeat this for all variables and proceed with
executing process h. Now for each clause clk the last operation of the literal processes
that correspond to satisfied literals of this clause may execute, followed by processes
tk. This is repeated for all clauses. To see that this will work, note that we assume Φ to
be satisfying. This means for each clause clk there is a literal process that wrote k to c.
To conclude, we only have to guarantee that the remaining literal processes terminate.
For each variable xi we execute ri up to its first write, followed by all remaining literal
processes which correspond to negative literals of xi. Then ri executes its last write
such that the remaining literal processes which correspond to positive literals of xi
can execute.

We claim that a GWO execution of T induces a satisfying assignment Φ for ϕ. Recall
that the write-read-write order in GWO ensures the following: if one process issued a
write after reading another write, then these two writes are ordered for all processes.
In an execution, process tk reads value k from the clause variable c. This clause vari-
able is written by some process lk,j corresponding to a satisfied literal. These literal
processes determine the assignment: Φ(v(k, j)) ∶= b(k, j). To see that Φ is well-defined,
consider two literal processes with the same variable xi that are both read by test pro-
cesses. Both literal processes receive their value from the same pi or ni, as the other
process ni or pi occurs before (w,x, (i,2)).

Note that the length of processes is at most three in T and that the number of vari-
ables is only four. Therefore, the reduction shows NP-hardness of the corresponding
restricted versions of the testing problem.

THEOREM 4.5. Function f is an SC ⪯ GWO-range reduction of SAT to the testing
problem that is polynomial-time computable. Hence, TEST(M) is NP-hard for all mem-
ory models SC ⪯ M ⪯ GWO. As the reduction requires a process length of at most three,
even TESTL(M) is NP-hard for all memory models SC ⪯ M ⪯ GWO. As the reduc-
tion requires only four variables, even TESTV (M) is NP-hard for all memory models
SC ⪯ M ⪯ GWO.

4.4. Fixed Length and Fixed Variable Testing is NP-hard from SC to CC
We now introduce the cache consistency model as defined by [Steinke and Nutt 2004].
Here only the operations on the same variable occur in program order:

Definition 4.6. An execution ↦ ⊆ T × T is valid under CC consistency if

∀x ∈ V ∃ <sv ∶ <sv is SerialView (↦, (∗, x,∗,∗,∗)T ,<PO) .
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We describe an SC ⪯ CC-range reduction of SAT to the testing problem that fixes both,
the length of processes and the number of variables. Consider a SAT instance of the
form ϕ = ⋀1≤i≤I cl i with cl i = ⋁1≤j≤Ji

lit i,j . We translate it to a test f(ϕ) = T that satisfies
the following. If formula ϕ is satisfiable, then T succeeds under SC. Moreover, if the
test succeeds under CC, then the formula is satisfiable. Again, our reduction only uses
one variable ξ. The data domain D of ξ is defined as follows. For each variable x in the
SAT instance ϕ there are two values (x,0), (x,1) ∈ D, and for each clause cl i of the
SAT instance there is a value cli ∈ D. Furthermore, there are auxiliary values h0 . . . hI
in the data domain. For a positive literal lit i,j = x, let n(i, j) ∶= (x,0) and p(i, j) ∶= (x,1).
For a negative literal lit i,j= ¬x, define n(i, j) and p(i, j) vice versa. The test is:

T ∶= ∏
x∈ϕ

(px ∥ nx) ∥ ∏
1≤i≤I
1≤j≤Ji

ki,j ∥ h ∥ ∏
1≤i≤I

ti ∥ ∏
x∈ϕ

rx.

Program T defines three processes for each variable x in ϕ. The first two processes
px and nx write to ξ respectively the corresponding value (x,0) or (x,1). They model
an assignment of ϕ such that if (x,1) is observed after (x,0) then x is set to true and
the other way around:

px ∶= (w, ξ,(x
1
)) nx ∶= (w, ξ,(x

0
)).

There is a process ki,j in T for each literal lit i,j which tests whether the literal is
satisfied by the guessed assignment. If the literal is a positive instance of x then it tries
to read (x,0) and (x,1) afterwards, if the literal is a negative instance then it tries to
read first (x,1) and then (x,0). After both reads, it writes the value cli signalling that
the literal’s clause is satisfied:

ki,j ∶= (r, ξ, n(i, j)).(r, ξ, p(i, j)).(w, ξ, cli).
The auxiliary process h just writes the first of the auxiliary values:

h ∶= (w, ξ, h0).
For each clause cl i there is a test process which ensures that all clauses up to the
current one were satisfied by at least one literal. Therefore it reads the auxiliary value
corresponding to the previous test process, tries to read the clause value cli and then
writes its auxiliary value:

ti ∶= (r, ξ, hi−1).(r, ξ, cli).(w, ξ, hi).
The processes rx check for each variable x in ϕ, whether the last test process tI was
successful by reading hI and then write (x,0), (x,1) and again (x,0). This allows all
processes corresponding to unsatisfied literals to finish by reading their expected order
of values:

rx ∶= (r, ξ, hI).(w, ξ,(
x
0
)).(w, ξ,(x

1
)).(w, ξ,(x

0
)).

THEOREM 4.7. The above function f is an SC ⪯ CC-range reduction of SAT to
testing that is polynomial-time computable. Hence, TEST(M) is NP-hard for all mem-
ory models SC ⪯ M ⪯ CC. As the reduction only uses one variable and is fixed in the
length of processes, even TESTV (M) and TESTL(M) are NP-hard for all memory mod-
els SC ⪯ M ⪯ CC.
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We claim that the test program T indeed succeeds under SC if ϕ is satisfiable. Given
a satisfying assignment Φ, assume variable x is true in this assignment. Process nx is
executed first, followed by the first reads of all processes ki,j that correspond to a posi-
tive literal of variable x. Afterwards px is executed, again followed by the second reads
of the former ki,j . This is done successively for each variable. Then process h executes.
For each clause cl i, a test process ti reads the prior auxiliary value hi. Then the pro-
cesses ki,j that already executed their two reads execute their write of cli. This way ti
can read the value and continue writing its auxiliary value and thus enabling the next
test process. As Φ is a satisfying assignment, there must exist at least one process for
each clause cl i that can write the value cli. This means each test process ti can read
its cli. To finish the program, we must allow the processes corresponding to unsatis-
fied literals to complete. All processes rx execute their first read. For each variable x,
we execute the write of (x,0) from process rx. The write enables the first reads of the
remaining processes that correspond to positive literals of x. Then rx writes (x,1). The
write enables the first reads of the remaining processes that correspond to negative
literals of x. Moreover, the write allows the second reads of the positive literals of x
to execute. Finally, rx writes (x,0) again. Now the remaining processes corresponding
to negative literals of x can execute their second read. Finally, all literal processes ki,j
that have not yet executed their write can do so.

To see that a CC execution of T gives a satisfying assignment to ϕ, note that the
program only has one variable and thus consistency under CC and SC coincide. All
operations are ordered in a total order, especially the order of px and nx is determined
for each variable x. In an execution, for each cl i of ϕ the test process ti reads cli from
one of the writes of a literal process ki,j . As explained before, this corresponds to the
literal being satisfied by the modeled assignment. Assuming lit i,j is a positive literal
of x then the assignment of x is true, if it is a negative literal of x then the assignment
of x is false. This assignment is by construction a satisfying assignment of ϕ.

The theorem shows that testing is still NP-hard if operations to the same variable
cannot be reordered and the length of processes is fixed. The range reduction relies,
however, still on an unbounded number of processes. We will show that the problem is
polynomial for a fixed number of processes.

4.5. Fixed Process Testing is NP-hard from SC to PSO
PSO consistency is best explained by describing a possible computer architecture as
defined in [Atig et al. 2010]. Each process has a set of FIFO buffers, one for each
variable. These buffers hold the writes to that variable that have been executed by
the process but have not yet been commited to memory. If a process reads from a
variable, it first snoops the buffer for that variable. In case the buffer is not empty, the
read receives the value from the most recent buffered write. Otherwise, if the buffer
is empty, the read obtains the value from memory. When a write leaves a buffer and
is committed to memory, it becomes visible to all processes. We say that the write has
been processed. Since reads obtain their values immediately (either from a buffer or
from memory), we say they are processed immediately.

PSO is formally defined by SPARC [Weaver and Germond 1994] using axioms. The
definition describes how operations are observed from the viewpoint of the shared
memory. This should be contrasted with the view-based approach focussing on the
observations made by the processes. Unfortunately, no view-based definition for PSO
has been introduced at this time. Therefore, the following reduction relies on the oper-
ational model sketched above [Atig et al. 2010].

We give an SC ⪯ PSO-range reduction of 3SAT to testing. Consider a 3SAT instance
on variable set X of the form ϕ = ⋀i∈I cl i with cl i = ai ∨ bi ∨ ci. We translate it to a test
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f(ϕ) = T that satisfies the following. If formula ϕ is satisfiable then T is valid under
SC. Moreover, if the test is valid under PSO, then the formula is satisfiable.

Each variable x in the 3SAT instance ϕ is also a variable x ∈ V. For each literal a
of the 3SAT instance, let var(a) be the variable occurring in a and let b(a) be 0 if a is
negated and 1 otherwise. For every clause i in the formula and every process p that we
define in the test, we introduce a synchronization variable zi,p. Moreover, every clause
literal li ∈ {ai, bi, ci} has two synchronization variables yl,0 and yl,1.

We construct the test T ∶= Tp ∥ Tq as follows:

Tp ∶= pa ∥ p′a ∥ pb ∥ p′b ∥ pc ∥ p′c
Tq ∶= qa ∥ q′a ∥ qb ∥ q′b ∥ qc ∥ q′c .

The test first guesses some assignment Φ for the variables in ϕ. This is implemented
by the processes pa and p′a, where pa writes the value 1 into every variable and p′a
writes 0. The processes pb and p′b read these values and thus ensure that the writes left
the PSO buffers and reached the memory. The resulting value of a variable x is given
by the write which entered the shared memory last, either from pa or p′a.

The test then processes each clause cl i = ai ∨ bi ∨ ci. We introduce Sync sequences
to ensure that all processes of Tp handle the same clause. For each clause literal li ∈
{ai, bi, ci}, the processes pl and p′l then perform a read on its variable. Such a read can
only be processed if the corresponding literal is satisfied. Afterwards, the variable of
the next literal in the clause is inverted and changed back by two Flip sequences. This
enables the read of the next literal: if it is not already satisfied by Φ, it can be processed
after its value is changed by a Flip:

pa ∶= [●x∈V(w,x,0)]. [●i∈ISynci(pa). (r, var(ai), b(ai)). Flip(bi,0)]
p′a ∶= [●x∈V(w,x,1)]. [●i∈ISynci(p′a). (r, var(ai), b(ai)). Flip(bi,1)]
pb ∶= [●x∈V(r, x,0)]. [●i∈ISynci(pb). (r, var(bi), b(bi)). Flip(ci,0)]
p′b ∶= [●x∈V(r, x,1)]. [●i∈ISynci(p′b). (r, var(bi), b(bi)). Flip(ci,1)]
pc ∶= [●i∈ISynci(pc). (r, var(ci), b(ci)). Flip(ai,0)]
p′c ∶= [●i∈ISynci(p′c). (r, var(ci), b(ci)). Flip(ai,1)] .

Test Tq contains a counterpart for each process in Tp. The processes in Tq use SyncF
sequences to synchronize the Flip operations in Tp.

∀l ∈ {a, b, c} ∶ ql = [●i∈ISyncF(li,0)]
q′l = [●i∈ISyncF(li,1)]

The Synci(∗) sequences are constructed such that they can only be processed when all
processes in Tp have reached their Synci(∗) sequence. A Sync signals that it has been
reached by setting its variable zi,∗ to 1. Then, it attempts to read 1 from the variables
of all other Sync elements. It follows, that once a Sync sequence is processed, the writes
of all other Sync elements have also been processed. Since reads are processed imme-
diately, all reads before the Sync processes must also have been processed. For a given
clause cl i and process p, we define

Synci(p) ∶= (w, zi,p,1).[●p′∈TP (r, zi,p′ ,1)].
Note that the Sync sequences do not ensure that all buffers are empty. For a literal
l and a value v ∈ {0,1}, we define the sequence Flip(l, v) which inverts the value of
var(l), provided the current value is v:

Flip(l, v) ∶= (r, var(l), v).(w,yl,v,1).(w, var(l),1 − v).(r, yl,v,0).
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The purpose of the SyncF sequence is to make sure that the inverting write has left
the buffer before Flip(l, v) is finished. Note that SyncF has to be executed in parallel
with the corresponding Flip. More precisely SyncF is started after Flip but is processed
before it. This is the case since SyncF needs to observe a write setting its synchroniza-
tion variable yl,v to 1, and Flip waits for a matching write of SyncF setting the value
back:

SyncF(l, v) ∶= (r, yl,v,1).(r, var(l),1 − v).(w.yl,v,0).

THEOREM 4.8. The above function f is an SC ⪯ PSO-range reduction of 3SAT to
testing with a fixed number of processes that is polynomial-time computable. Hence,
TESTP (M) is NP-hard for all memory models SC ⪯ M ⪯ PSO.

PROOF. We show the following. For any satisfying assignment Φ there is an SC
consistent execution of T resulting in Φ. Let Prei be the the test containing the prefixes
of T ending with Synci in Tp and with SyncF(li−1,∗) in Tq. We use an induction over
these prefixes.

Induction Basis (i = 1). Let ϕ be a formula with a satisfying assignment Φ. There is
an interleaving of [●x∈V(w,x,0)], [●x∈V(w,x,1)], and [●x∈V(r, x,0)] and [●x∈V(r, x,1)]
ending with this assignment in the shared memory. When these sequences have
been processed, we execute the Sync elements. Obviously, this prefix Pre1(F ) can
be processed if the first 0 clauses are satisfied.

Induction Step (i→ i + 1). Assume Φ satisfies the first i clauses. By the induction hy-
pothesis, there is is an execution of Prei ending in Φ. Since Φ satisfies at least one
of the literals in clause cl i, the reads belonging to this literal are enabled. Wlog., let
(r, var(ai), b(ai)) be such a read. After it is processed, the variable of bi is inverted
by either Flip(bi,0) or Flip(bi,1). So if bi is not satisfied by Φ, the processes pb and
p′b can now execute their reads (r, var(bi), b(bi)). Now the next variable is inverted
and the reads of c can execute. The second Flip inverts the variable again so any
execution of Prei+1 ends in the original assignment Φ that was given after Prei.

It remains to show that a PSO execution yields a satisfying assignment Φ of the
formula. The execution synchronizes the processes at the Sync elements. Moreover, the
variable assignment remains the same every time the Sync elements are processed.
Let Φ be that assignment. After the first process has finished its Synci sequence, it
performs a read of a literal in clause cl i. This means every clause contains a satisfied
literal and thus Φ satisfies the formula.

We have shown that T is an SC ⪯ PSO-range reduction of 3SAT to testing with a
fixed number of processes.

5. SOME TESTING PROBLEMS ARE IN P
We show that for very weak memory models (restricted) testing problems can be solved
in polynomial time. To check whether a given test T succeeds under a memory model,
the task is to find an execution ↦ ⊆ T × T that satisfies certain serial views. Interest-
ingly, the algorithms we propose do not construct the execution but directly construct
the serial views. The intuition is as follows. According to Definition 3.3(ii), a serial view
<sv has to respect a given execution ↦. This means for every read r occurring in <sv the
serial view implicitly gives the write w with w ↦ r: it is the last write before the read
that has the same variable. This suggests that serial views induce a unique execution,
and so we only have to compute the serial views. We now develop concepts that make
this argument work.
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5.1. Read Partitioning and Constructive Serial Views
The catch in the argumentation is that serial views are defined for subsets of opera-
tions O ⊆ T . This means a serial view only induces a partial execution on this subset.
To define the perception of the shared memory for all reads in T , a memory model typ-
ically asks for several serial views, say <1sv for requirement SerialView (↦,O1,<1) to <ksv
for SerialView (↦,Ok,<k). The problem is that the partial executions for O1 to Ok may
be incompatible. Serial view <1sv may give w1 ↦ r while <2sv yields w2 ↦ r with w1 ≠ w2.

Partial executions can, however, be composed to a full execution of test T if they
do not conflict in the assignment of writes to reads. To ensure this, we call a memory
model read-partitioning if for every read r ∈ T there is precisely one subset of opera-
tions Oj ⊆ T so that r ∈ Oj . SC, SLOW, and the LOCAL model defined below are all
read-partitioning.

Serial views are defined relative to an execution. To construct a serial view without
knowing the execution, we modify Definition 3.3. Consider O ⊆ T and a strict partial
order < ⊆ O × O. A constructive serial view of O which respects < is a strict total order
<csv ⊆ O ×O that is defined like a serial view but replaces Definition 3.3(ii) by

(ii’) For all reads r ∈ O there is a write w ∈ O with var(w) = var(r), val(w) = val(r), and
w <csv r. Moreover, there is no w′ ∈ O so that w <csv w′ <csv r and var(w) = var(w′).

A constructive serial view avoids referencing the execution. Instead it requires that
every read r has a preceding write w <csv r with appropriate variable and value.
This allows us to reconstruct an execution. In the following lemma, we still as-
sume that memory model M is defined by the serial views SerialView (↦,O1,<1) to
SerialView (↦,Ok,<k).

LEMMA 5.1. Let M be read-partitioning and consider a test T . Then T succeeds
under M if and only if there are constructive serial views <icsv for 1 ≤ i ≤ k.

For the direction from right to left, note that read partitioning ensures every read r is
assigned a unique write predecessor w ↦ r by its constructive serial view. The union
of these assignments is the execution of the full test. Moreover, the constructive serial
views are serial views of this execution. The direction from left to right actually holds
for every memory model.

5.2. TEST(LOCAL) is in P
LOCAL consistency was defined as the weakest constraint that every shared mem-
ory system should satisfy [Heddaya and Sinha 1992]. It requires that every process
observes all visible operations (all writes and its own reads). Moreover, each process
sees its own operations in process order but may see the writes of other processes in
an arbitrary order. The Steinke-Nutt formulation is as follows [Steinke and Nutt 2004,
Theorem 3.8]:

Definition 5.2. An execution ↦ ⊆ T × T is valid under LOCAL consistency if

∀p ∈ ID ∃ <sv ∶ <sv is SerialView (↦, (∗,∗,∗, p,∗)T ∪ (w,∗,∗,∗,∗)T ,<p) .
The definition introduces a serial view for each process p. The corresponding subset
O ⊆ T contains all operations of p as well as all writes in the test. The serial view
only has to respect the process order of p. This means the operations of p in O can be
understood as a sequence õpp = op1 . . .opn. The writes of the other processes are given
as an unordered set.

Algorithm 1 copies õpp to the constructive serial view s, inserting writes from other
processes where necessary to satisfy reads. To check whether a write is needed to sat-
isfy a read, we hold the last value that has been written to a variable x in last[x]. The

18



ALGORITHM 1: Compute Constructive Serial View for LOCAL
Input: Process p with õpp = op1 . . .opn and set of writes W of all processes q ≠ p
Result: Constructive serial view s, initially empty, s ∶= ε.

1 last[x] ∶= � for all x ∈ V;
2 for i = 1→ n do
3 if opi = (w,x, v) then
4 last[x] ∶= v; s ∶= s.opi;
5 else if opi = (r, x, v) and last[x] = v then
6 s ∶= s.opi;
7 else if opi = (r, x, v) and last[x] ≠ v then
8 if ∃w ∈W ∶ var(w) = x and val(w) = v then
9 W ∶=W ∖ {w};

10 last[x] ∶= v;
11 s ∶= s.w.opi;
12 else
13 return not LOCAL consistent
14 end
15 end
16 end
17 return s with remaining writes of W inserted at the end;

algorithm ensures that every read has a matching preceding write (Lines 5 and 8).
Since writes are inserted only when necessary, the algorithm never fails to find a con-
structive serial view if there is one.

THEOREM 5.3. Algorithm 1 terminates in polynomial time and returns a construc-
tive serial view iff O and <p admit one. Hence, TEST(LOCAL) is in P.

5.3. TESTP (CC) is in P
Although general testing is NP-hard for CC, we will now show that the problem be-
comes polynomial when we fix the number of processes. To prove this, we give a testing
algorithm that is exponential only in the number of processes.

By Definition 4.6, we need to find a constructive serial view <csv for every x ∈ V. The
corresponding subset of operations Ox ∶= (∗, x,∗,∗,∗)T contains all operations on x in
the test. The serial view has to respect the program order. This means the operations
in Ox are given as sequences õpp = opp,1 . . .opp,np

for every process p. The task is to find
an interleaving of these sequences so that every read obtains the desired value. Wlog.,
we can assume that no read is preceded (in process order) by a write with the same
value. Such a read can always follow the write in the serial view and is thus trivial.

We give a non-deterministic algorithm A that solves the problem. In each processing
step, A reads segments of operations from two processes and outputs an interleaving
(cf. Figure 6). More precisely,A chooses non-deterministically a process p and consumes
it up to the next read r = (r, x, v). By our assumption, the last value that p writes
to x is different from v. The algorithm non-deterministically chooses a process q ≠ p
that contains a write w = (w,x, v) which is not preceded by an unconsumed read. It
consumes the sequence of writes up to and including the first such write. Now r is
enabled and the algorithm consumes it.

If an input sequence starts with a read whose value is that of the last processed
write, the read is consumed immediately. To achieve this, the algorithm remembers
the last written value in its state. This way, writes are not processed unless necessary.
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x = v′
p ∶ w1

↑

. . .wn.r.o . . .

q ∶ w̃1
↑

. . . w̃m.w.õ . . .

⋮

x = v
p ∶ w1 . . .wn.r.o

↑
. . .

q ∶ w̃1 . . . w̃m.w.õ
↑
. . .

⋮

Transition (3)

Fig. 6. The algorithm executes the third transition. It chooses the read r on process p and the write w with
the same value v on process q. It processes the sequence w1 . . .wn.r on p and w̃1 . . . w̃m.w on q. It returns
w1 . . .wn.w̃1 . . . w̃m.w.r and updates the value of x to v.

The algorithm repeats the following:

(1) If the remaining input of a process starts with a read (r, x, v) such that v is the
current value of x, then A reads (r, x, v) and also returns it.

(2) If the input sequences contain no more reads, A returns an arbitrary interleaving
of the remaining operations. Then the algorithm terminates.

(3) Otherwise, A non-deterministically chooses processes p and q. Let r be the next read
of the remaining input of p. The remaining input of q contains a first write w that
has the same value v as r and the prefix up to w contains no read. If the remainder
of p is α.r.β and the remainder of q is γ.w.δ with α, γ ∈ (w,∗,∗,∗,∗)∗ and β, δ ∈ O∗,
the algorithm returns α.γ.w.r. The value of the variable is updated to v.

LEMMA 5.4. For every test T it holds that A accepts all inputs Ox restricted to
variable x if and only if T is CC consistent.

PROOF SKETCH. Since for each process the order of operations remains unchanged,
the algorithm creates a total order respecting the program order. The algorithm en-
sures that for every read the preceding write has the correct value. This means the
resulting order is a constructive serial view. It follows that the algorithm is correct: if
A accepts all inputs Ox of a test T , then T is CC consistent.

It remains to prove completeness. Given some constructive serial view for CC, we
can modify it to a sequence of operations that is generated by the algorithm. We apply
reorderings that respect the serial view property and the program order.

The idea is to move the reads to the front as far as possible without violating Prop-
erty (ii’) or program order. Moreover, writes of the same process are packed together.
When a read r receives its value from (w,x, v, q, j) in the constructive serial view, we
select the earliest write (w,x, v, q, i) with i < j in q instead, and order the read directly
after it. After these modifications we still have a valid serial view. Now the sequence of
writes that occurs between two reads r followed by r′ can be turned into the following
form. Let w be the write accessed by r′. The first writes are those that occur before r′
in the program order followed by those that occur before w in the program order and
then w. Such a sequence is the result of a processing step of the algorithm.

To show that the problem is polynomial, it remains to determinize the non-
deterministic algorithm. We introduce, for every process p, a pointer referencing the
first operation in õpp that has not yet been processed. There are ∣ID∣ many point-
ers with at most ∣O∣ positions for each pointer. Hence, there are at most ∣O∣∣ID∣ many
pointer configurations. The algorithm also stores the last write, which can have at
most ∣O∣ many values. This means the algorithm can reach at most ∣O∣∣ID∣+1 different
configurations.
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To determinize the algorithm, we store sets of configurations. Like in the powerset
construction for finite automata, the current set contains all configurations that the
non-deterministic algorithm could have reached after having performed the process-
ing steps so far. With sets of configurations, the algorithm no longer has to guess the
processes p and q. Instead, we compute all successor configurations of a given set of
configurations. To determine this successor set takes time ∣ID∣2 × ∣O∣∣ID∣+2. We check
for every configuration in the current set whether it can reach another configuration by
moving the pointers of two processes and update the current value. Note that moving
the pointers adds another factor of ∣O∣. In every step a read is processed. Since we have
at most ∣O∣ many reads, the overall running time of the algorithm is ∣ID∣2 × ∣O∣∣ID∣+3.
With ∣ID∣ fixed, the resulting deterministic algorithm processes an input Ox in poly-
nomial time. With Lemma 5.4, we have:

THEOREM 5.5. TESTP (CC) is in P.

According to Definition 3.5, a test succeeds under SLOW if and only if there are
constructive serial views for every process p and variable x such that the following
holds. The view contains all operations of p on x and all writes to x of other processes.
This testing problem amounts to a task that is similar to CC but with the additional
restriction that only one process contains reads. The presented algorithm A can be
used to solve the testing problem for SLOW [Furbach et al. 2014].

THEOREM 5.6. TESTP (SLOW) is in P.

Similar to this approach is the polynomial algorithm for TESTL(PRAM).
THEOREM 5.7. TESTL(PRAM) is in P.

The PRAM model requires a serial view per process. In a recursion, we traverse the
reads of this process and attempt to assign the writes they could access from other
processes. It is enough to check the earliest matching write from each process. The
depth of the recursion is bounded by the length of the test, which we assume to be
fixed. From this observation, we obtain a polynomial runtime.

6. TESTING IS IN NP
We show that the testing problem is in NP for all memory models in the Steinke-Nutt
hierarchy. To this end, we propose a polynomial-time reduction of the testing problem
to SAT. The main contribution in this section is not so much the SAT encoding (which
is quite intuitive), but rather the observation that the results in [Steinke and Nutt
2004] work well with SAT. The Steinke-Nutt formulation of memory models is well-
suited for SAT encodings for two reasons. First, the formulation is uniform: all mem-
ory models are defined via serial views, and memory models only differ in the serial
views they require. Our SAT encoding inherits this uniformity: we handle all models
with one reduction. More precisely, we propose two parameterized formulas that are
instantiated and composed as required by a memory model. Second, the definition of
whether a test succeeds is simple. It essentially requires to serialize partial orders,
which is easily expressed in SAT. Finding a direct reduction of the testing problem to
SAT, without using the results of Steinke and Nutt, appears much harder.

6.1. Building Blocks of a Uniform Reduction
We define two propositional formulas in conjunctive normal form: EXE(T ) and
SV(T ,O,<). The former takes as input a test T and encodes the existence of an ex-
ecution. To this end, we introduce variables exw,r for every pair of write and read oper-
ations w, r ∈ T that use the same variable and access the same value, var(w) = var(r)
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and val(w) = val(r). Formula EXE(T ) is the following Conjunction (2). It requires that
every read has a write providing its value (left) and no read has two sources (right):

⋀
r∈T

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⋁
w∈T

var(w)=var(r)
val(w)=val(r)

exw,r ∧ ⋀
r,w1,w2∈T ,w1≠w2

var(w1)=var(w2)=var(r)
val(w1)=val(w2)=val(r)

(¬exw1,r ∨ ¬exw2,r)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

LEMMA 6.1. EXE(T ) is in CNF and cubic in the size of T . Moreover, EXE(T ) is
satisfiable if and only if there is an execution ↦ ⊆ T × T .

Satisfiability of the second formula SV(T ,O,<) reflects the existence of a serial view
of the operations O in an execution. The formula takes as input a test T , a subset of
operations O ⊆ T , and a strict partial order < ⊆ O ×O. Serial views are defined relative
to an execution. To access the execution determined by EXE(T ), formula SV(T ,O,<)
makes use of the variables exw,r defined above.

Formally, a serial view is a strict total order <sv ⊆ O ×O. We encode it with variables
svop1,op2

, one for each pair of operations op1,op2 ∈ O. Intuitively, variable svop1,op2
is

set to true iff op1 <sv op2 holds. The following exclusive-or ensures the serial view
is total and asymmetric. The implication is transitivity. We use the exclusive-or as a
macro for a conjunction and the implication as a macro for a disjunction so that the
resulting formula is in conjunctive normal form:

⋀
op1,op2,op3∈O

op1≠op3
op1≠op2≠op3

[(svop1,op2
⊕ svop2,op1

) ∧ (svop1,op2
∧ svop2,op3

→ svop1,op3
)] . (3)

Definition 3.3 requires that <sv refines < to a total order:

⋀
op1,op2∈O
op1<op2

svop1,op2
. (4)

The next formula requires that for every pair w ↦ r we have w <sv r and that no write
to the variable is placed in between:

⋀
w,r∈O

var(w)=var(r)
val(w)=val(r)

⎡⎢⎢⎢⎢⎢⎣
(¬exw,r ∨ svw,r) ∧ ⋀

w′∈O
var(w′)=var(r)

(¬exw,r ∨ ¬svw,w′ ∨ ¬svw′,r)
⎤⎥⎥⎥⎥⎥⎦
. (5)

Formula SV(T ,O,<) is the conjunction of the Formulas (3) to (5). To state the rela-
tionship between SerialView (↦,O,<) in Definition 3.3 and SV(T ,O,<), we restrict the
satisfying assignments to the propositional variables. An assignment respects↦ ⊆ T ×T
if op1 ↦ op2 holds if and only if exop1,op2

is set to true.

LEMMA 6.2. SV(T ,O,<) is in CNF and cubic in its input. There is a strict total or-
der <sv that is SerialView (↦,O,<) if and only if SV(T ,O,<) has a satisfying assignment
that respects ↦.

6.2. A Uniform Reduction of Testing to SAT
We now show how to instantiate the above formulas to solve the testing problem for the
memory models in the Steinke-Nutt hierarchy. We proceed by means of an example:
we show how to reduce TEST(SLOW) to SAT. SLOW consistency serves as a repre-
sentative example. The other models in the hierarchy only differ in the serial views
they require.
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Computing an execution is equivalent to determining a satisfying assignment for
EXE(T ). To make sure that the required serial views exist, we instantiate formula
SV(●, ●, ●) with appropriate parameters:

EXE(T ) ∧ ⋀
p∈ID
x∈V

SV(T , (∗, x,∗, p,∗)T ∪ (w,x,∗,∗,∗)T ,<PO).

Test T succeeds under SLOW iff this formula is satisfiable. Note that the restriction
on the admissible assignments in Lemma 6.2 is no longer needed: EXE(T ) ensures
that the assignment to the execution variables matches an execution.

THEOREM 6.3. TEST(M) is in NP for all models M defined via serial views.

All memory models in Figure 3 except TSO and PSO are defined via serial views. The
testing problem for the latter has been shown to belong to NP in [Cantin et al. 2005].

7. CONCLUSIONS
We determined the complexity of the testing problem for most known weak memory
models. Figure 7 shows a summary of our results that cover all models in the Steinke-
Nutt hierarchy of Figure 3. To derive these results, we developed three general con-
cepts. (1) With range reductions, we proposed a proof technique for lower bounds that
hold for a range of memory models. This way, we learned about the importance to con-
struct tests that are insensitive to the relaxations of a memory model. (2) For very weak
models, we developed polynomial testing algorithms, using determinization tricks from
automata theory. (3) Finally, we presented a uniform reduction of the testing problem
to SAT. It works for all memory models defined via serial views and proves an NP up-
per bound. Combined with the NP lower bounds, these SAT-based testing algorithms
are optimal for most memory models. We note that the three general concepts allowed
us to fill the table in Figure 7 with only four reductions (NPC4−7) and three algorithms
(P1−3). The algorithms in Sections 5.2 and 5.3 lead to the results P1 to P3. The NPC
results NPC4, NPC5, NPC6, and NPC7 stem from the reductions in Sections 4.2, 4.3,
4.4, and 4.5, respectively.

Mem. Model Complexity Class of TEST(M)
TEST(M) TESTP (M) TESTL(M) TESTV (M)

SC NPC4 NPC7 NPC6 NPC4

TSO NPC4 NPC7 NPC6 NPC4

PSO NPC4 NPC7 NPC6 NPC4

PC-G NPC4 NPC6 NPC4

PC-D NPC4 NPC6 NPC4

GAO NPC4 NPC6 NPC4

GPO+GDO NPC4 NPC6 NPC4

Causal NPC4 NPC5 NPC4

PRAM-M NPC4 NPC4

GWO NPC5 NPC5

CC NPC4 P3 NPC6 NPC4

PRAM NPC4 P2 NPC4

SLOW NPC4 P3 P2 NPC4

LOCAL P1 P1 P1 P1

Fig. 7. Time complexity of the testing problem under the memory models in the Steinke-Nutt hierarchy of
Figure 3. We use TESTP (M), TESTL(M), and TESTV (M) for the restricted problems where the number of
processes, their length, and the number of variables are fixed, respectively. NPC means NP-complete: the
problem is NP-hard and in NP. Each index represents a different algorithm or reduction.
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Finding range reductions is challenging. However, they provide insights into the
synchronization capabilities of a memory model and guide the search for testing al-
gorithms. Therefore, as future work we plan to fill the missing entries in Figure 7.
Furthermore, range reductions could be used to analyse other problems like reachabil-
ity or robustness.

The reduction to SAT gives a solution to the testing problem that is both uniform
and optimal. However, it is optimal only in the complexity-theoretic sense that it shows
membership in NP. In practice, the degree of the polynomial in the reduction matters.
As another line of future work, it would therefore be interesting to study more compact
encodings, to SAT or to other NP-complete problems. Besides the size of the encoding,
also the solver technology is important. To handle serial views, it should be beneficial
to reduce to a problem with built-in support for transitive closures.
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