Games with perfect information Exercise sheet 12

Sebastian Muskalla Prof. Dr. Roland Meyer TU Braunschweig Summer term 2017

Out: June 30 Due: July 7

Submit your solutions until Friday, July 7, 14:00, in the box next to office 343.

Exercise 1

Formally prove Lemma 10.14 from the lecture notes:

Let p be a finite play of \mathcal{G}^{inf} . Then purge*(p) is a valid play of \mathcal{G}^{fin} ending the same position.

Conclude the statement of Lemma 10.16 from the lecture notes:

If $s_{\frac{1}{2}}^{fin}$ is a positional strategy, then so is the lifted strategy $s_{\frac{1}{2}}^{inf}$.

Exercise 2: Parallel-free and bipartite

a) Throughout the whole lecture, we have assumed that the game arena is parallel-free, meaning there is at most one arc from some position to another.

Assume you are given a game arena that is not parallel free. Show how to construct an equivalent game arena that is parallel-free

- · for reachability/Büchi/parity games,
- · for mean payoff games.
- b) In the section on mean payoff games, we have assumed that the game arena is bipartite and the players alternately take turns.

Assume you are given a non-bipartite game arena. Show how to construct an equivalent bipartite game arena for reachability/Büchi/parity games.

Does this also work for mean payoff games?

Here, by equivalent game arena, we mean that for each player, there is a map $\iota_{\stackrel{\leftarrow}{\sim}}: V_{\stackrel{\leftarrow}{\sim}} \to V'_{\stackrel{\leftarrow}{\sim}}$ embedding her positions in the old game arena into the set of positions of the new game arena. Furthermore, we want that a position $x \in V$ is winning for player $\stackrel{\leftarrow}{\sim}$ if and only if $\iota(x)$ is winning for $\stackrel{\leftarrow}{\sim}$.

Exercise 3: Büchi games as mean payoff games

Let G be a finite, bipartite, deadlock-free game arena, and let B be the winning set for a Büchi game from a fixed initial position x_0 .

Show how this Büchi game can be transformed into a mean payoff game.

Assume the initial position x_0 is winning for some player \nleq in the Büchi game. How is this reflected in the mean payoff game? Make your argumentation formal!