Bounded Model Checking

 $G(
eg(\neg (q \wedge \neg p))$

Sebastian Henningsen,

Manuel Hoffmann

- Introduction / Bounded Model-Checking
- Model Checking C-programs
- Interpolation
- Conclusion

Motivation

- Model Checking problems in general are hard
- "After initialization, a safety property holds"
- PreviousTM algorithms designed for *verification*, not *falsification*
- Falsification means: Bug hunting
- Central Assumption: Errors occur in the first k steps of a transition system
 - Context switches, program steps

Bounded Model Checking

What is BMC?

- Given a transition system...
- ... and a safety property.
- Unroll the transition relation
- Formulate a SAT formula feed it into a solver and obtain trace leading to the bug

Towards SAT

unroll this k-times

check the condition (directly)

check the condition (through loops)

Towards SAT

Transition relation:

$$(s_0 \wedge s_1' ee s_0 \wedge s_2') ee (s_1 \wedge s_2') ee (s_2 \wedge s_0' ee s_2 \wedge s_2')$$

Gets unrolled to: $\mathcal{T}=$

$$egin{aligned} &(s_0\wedge s_1'ee s_0\wedge s_2')ee(s_1\wedge s_2')ee(s_2\wedge s_0'ee s_2\wedge s_2')\ &\wedge\ &(s_0'\wedge s_1''ee s_0'\wedge s_2'')ee(s_1'\wedge s_2'')ee(s_2'\wedge s_0''ee s_2'\wedge s_2'')\ &\wedge\ &(s_0''\wedge s_1'''ee s_0'\wedge s_2''')ee(s_1''\wedge s_2''')ee(s_2''\wedge s_0'''ee s_2''\wedge s_2''')\ &\dots \end{aligned}$$

Satisfiable: $\mathcal{T} \wedge s_0 \wedge s_1' \wedge s_2''$ Not satisfiable: $\mathcal{T} \wedge s_0 \wedge s_2' \wedge s_1''$

Towards SAT

Checking the condition $q \land \neg p$ for every unfolding step:

$$egin{aligned} holds(q\wedge
eg p) ⅇ \ holds'(q\wedge
eg p) ⅇ \ holds''(q\wedge
eg p) ⅇ \ s_1 ee s_1' ee s_1'' ee s_1'' \end{aligned}$$

Finished formula:

$$\mathcal{I}\wedge\mathcal{T}\wedge(s_1ee s_1'ee s_1'')$$

Satisfied by: s_0, s_1', s_2''

- Introduction / Bounded Model-Checking
- Model Checking C-programs
- Interpolation
- Conclusion

TCBMC

- Rabinovitz, Grumberg
- Show absence of bugs in C-programs
- Source code describes transition system
- Safety property given by assert statements
- SAT solver (modulo theories) searches counter examples.

TCBMC – One Thread

Original program:

x = x + y; if(x != 1) x = 2; else x++; assert(x <= 3);</pre> In single-assignment form:

$$x_{1} = x_{0} + y_{0};$$

if(x_{1} != 1)
x_{2} = 2;
else
x_{3} = x_{1} + 1;
x_{4} = (x_{1} != 1) ? x_{2} : x_{3}
assert(x₄ <= 3);

Yields equations:

$$egin{aligned} x_1 &= x_0 + y_0 & \wedge & x_2 = 2 \ x_3 &= x_1 + 1 & \wedge & x_4 = (x_1
eq 1)? x_2 : x_3 \ & \wedge x_4 > 3 \end{aligned}$$

TCBMC – More Threads

- Instrument every thread as shown
- Introduce context switch blocks
- Copy global variables

Rabinovitz, Grumberg: Context switch blocks in TCBMC

- Introduction / Bounded Model-Checking
- Model Checking C-programs
- Interpolation
- Conclusion

Interpolation

- Originally from model theory (Craig 1957)
- Extension of BMC which allows the verification of certain properties instead of plain falsification
- Various applications beyond BMC: Predicate Abstraction/Refinement, theorem proving, ...

Definition of Interpolants

Assume $A \to B$ holds in some logic. An interpolant (sometimes Craig interpolant) is a formula I such that:

- 1. $A \to I$ and $I \to B$ are valid and
- 2. every non-logical symbol in I occurs in both A and B

where non-logical symbols are variables, free function symbols etc.

Definition is used "in reverse": If $A \wedge B$ are unsat. then there is I s.t. $A \to I$ is valid and $B \to I$ is unsat.

Example

Consider $\underbrace{(p \land q)}_{\mathrm{A}} \to \underbrace{(q \lor r)}_{\mathrm{B}}$ which is valid

Then I:=q is an interpolant for $A ext{ and } B$

Verification:

- 1. $(p \land q) \rightarrow q)$ holds 2. $q \rightarrow (q \lor r)$ holds
- 2. $q \rightarrow (q \lor r)$ holds 3. q is the only variable in both A and B
- In practice interpolants are not guessed but computed from resolution

In practice interpolants are not guessed but computed from resolution proofs: Given a proof of unsatisfiability of $A \wedge B$ an interpolant for $A \to \neg B$ can be derived in linear time

What's the point?

Recall BMC formula from above:

Partition the formula into two parts:

Check if $A \land B$ is sat. with resolution. If yes \rightsquigarrow counter example, Else \rightsquigarrow compute interpolant

Algorithmic Idea

- Introduction / Bounded Model-Checking
- Model Checking C-programs
- Interpolation
- Conclusion

Conclusion

Key take aways:

- Fundamental ideas of bounded model checking:
 - Finite unrolling of transition relation
 - Check for counter example
 - If there is any, obtain corresponding trace
- Possible application domains: Single and multi-threaded C programs
- Basic idea of interpolants and their role as an extension to BMC

References

- A. Biere: Bounded Model Checking. In: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
- I.Rabinovitz, O. Grumberg: Bounded model checking of concurrent programs.
- K McMillan: Interpolation and sat-based model checking. In: Computer Aided Verification, 15th International Conference