
Bounded Model
Checking

Sebastian Henningsen,

G(¬(q ∧ ¬p))

Contents
Introduction / Bounded Model-Checking
Model Checking C-programs
Interpolation
Conclusion

Manuel Hoffmann

Motivation
Model Checking problems in general are hard
"After initialization, a safety property holds"
Previous™ algorithms designed for verification, not falsification
Falsification means: Bug hunting
Central Assumption: Errors occur in the first steps of a transition system

Context switches, program steps

Bounded Model Checking

k

What is BMC?
Given a transition system...
... and a safety property.
Unroll the transition relation
Formulate a SAT formula
feed it into a solver
and obtain trace leading to the bug

unroll this k-times check the condition (directly) check the condition (through
loops)

Towards SAT

∧s0

T(,) ∧s0 s1

T(,) ∧s1 s2

…

∧ ([[φ]]0k ∨
∧ [[φ])⋁

l=0

k

λl l]0k

Towards SAT
Transition relation:

Gets unrolled to:

Satisfiable:

Not satisfiable:

(∧ ∨ ∧) ∨ (∧) ∨ (∧ ∨ ∧)s0 s′
1 s0 s′

2 s1 s′
2 s2 s′

0 s2 s′
2

T =

(∧ ∨ ∧) ∨ (∧) ∨ (∧ ∨ ∧)s0 s′
1 s0 s′

2 s1 s′
2 s2 s′

0 s2 s′
2

∧
(∧ ∨ ∧) ∨ (∧) ∨ (∧ ∨ ∧)s′

0 s′′
1 s′

0 s′′
2 s′

1 s′′
2 s′

2 s′′
0 s′

2 s′′
2

∧
(∧ ∨ ∧) ∨ (∧) ∨ (∧ ∨ ∧)s′′

0 s′′′
1 s′′

0 s′′′
2 s′′

1 s′′′
2 s′′

2 s′′′
0 s′′

2 s′′′
2

…

T ∧ ∧ ∧s0 s′
1 s′′

2

T ∧ ∧ ∧s0 s′
2 s′′

1

translates to:

Towards SAT
Checking the condition for every unfolding step:

Finished formula:

Satisfied by:

q ∧ ¬p

holds(q ∧ ¬p) ∨
hold (q ∧ ¬p) ∨s′

hold (q ∧ ¬p)s′′ ∨ ∨s1 s′
1 s′′

1

I ∧ T ∧ (∨ ∨)s1 s′
1 s′′

1

, ,s0 s′
1 s′′

2

Contents
Introduction / Bounded Model-Checking
Model Checking C-programs
Interpolation
Conclusion

TCBMC
Rabinovitz, Grumberg
Show absence of bugs in C-programs
Source code describes transition system
Safety property given by assert statements
SAT solver (modulo theories) searches counter examples.

Original program:

x = x + y;
if(x != 1)
 x = 2;
else
 x++;

assert(x <= 3);

 In single-assignment form:

x1 = x0 + y0;
if(x1 != 1)
 x2 = 2;
else
 x3 = x1 + 1;

x4 = (x1 != 1) ? x2 : x3

assert(x4 <= 3);

TCBMC – One Thread

Yields equations:

= + ∧ = 2 ∧x1 x0 y0 x2

= + 1 ∧ = (≠ 1)? :x3 x1 x4 x1 x2 x3

∧ > 3x4

TCBMC – More Threads
Instrument every thread as shown
Introduce context switch blocks
Copy global variables

Rabinovitz, Grumberg: Context switch blocks in TCBMC

Contents
Introduction / Bounded Model-Checking
Model Checking C-programs
Interpolation
Conclusion

Interpolation
Originally from model theory (Craig 1957)
Extension of BMC which allows the verification of certain properties instead of plain
falsification
Various applications beyond BMC: Predicate Abstraction/Refinement, theorem proving, …

Definition of Interpolants
Assume holds in some logic. An interpolant (sometimes Craig interpolant) is a formula
such that:

1. and are valid and
2. every non-logical symbol in occurs in both and

where non-logical symbols are variables, free function symbols etc.

Definition is used "in reverse": If are unsat. then there is s.t. is valid and
 is unsat.

A → B I

A → I I → B
I A B

A ∧ B I A → I
B → I

Example
Consider which is valid

Then is an interpolant for

Verification:

1. holds
2. holds
3. is the only variable in both

In practice interpolants are not guessed but computed from resolution proofs: Given a proof of
unsatisfiability of an interpolant for can be derived in linear time

→(p ∧ q)
A

(q ∨ r)
B

I := q A and B

(p ∧ q) → q)
q → (q ∨ r)
q A and B

A ∧ B A → ¬B

What's the point?
Recall BMC formula from above:

Partition the formula into two parts:

Check if is sat. with resolution. If yes counter example, Else compute interpolant

BM = I() ∧ ∧Ck
j s0 (T(,))⋀

0≤i≤k

si si+1

Unfold transition relation k times

(F ())⋁
j≤i≤k

si

Reachable in j to k steps

A ∧ B ⇝ ⇝

Algorithmic Idea

Contents
Introduction / Bounded Model-Checking
Model Checking C-programs
Interpolation
Conclusion

Conclusion
Key take aways:

Fundamental ideas of bounded model checking:
Finite unrolling of transition relation
Check for counter example
If there is any, obtain corresponding trace

Possible application domains: Single and multi-threaded C programs
Basic idea of interpolants and their role as an extension to BMC

References
A. Biere: Bounded Model Checking. In: Handbook of Satisfiability: Volume 185 Frontiers in
Artificial Intelligence and Applications.
I.Rabinovitz, O. Grumberg: Bounded model checking of concurrent programs.
K McMillan: Interpolation and sat-based model checking. In: Computer Aided Verification,
15th International Conference

