
Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Modern SAT Solvers

Albert Schimpf

6. Januar 2015

1 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Propositional Satisfiability
Problem (SAT)

2 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

First NP-complete problem

Recent development enabled industry use

Random problems <-> Structured problems

3 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

First NP-complete problem

Recent development enabled industry use

Random problems <-> Structured problems

3 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

First NP-complete problem

Recent development enabled industry use

Random problems <-> Structured problems

3 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

First NP-complete problem

Recent development enabled industry use

Random problems <-> Structured problems

3 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

First NP-complete problem

Recent development enabled industry use

Random problems <-> Structured problems

3 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”

Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size

Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”

Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)

Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

SAT

Random SAT instance

”Harder”
Small clause and
variable size
Solved by stochastic
algorithms

Industry SAT instance

”Structured”
Very large clause and
variable size (around
106)
Solved by conflict-driven
algorithms

Focus: conflict-driven SAT solvers

Specifically: depth-first search and backtrack based

4 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){

necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);

newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);

if(isSatisfied(formula, newAsgnmnt)){
return SAT;

}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}

if(isConflicting(formula, newAsgnmnt)){
return CONFLICT;

}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

} else {
asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
}

else {
asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);

return = DPLL(formula, asgn2);
} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if(DPLL(formula, newAsgnmnt) == SAT){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }

5 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:

Describe high level structure

Deduction phase

Variable selection
Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:
Describe high level structure

Deduction phase

Variable selection
Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:
Describe high level structure

Deduction phase

Variable selection
Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:
Describe high level structure

Deduction phase

Variable selection

Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:
Describe high level structure

Deduction phase

Variable selection
Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

DPLL

DPLL(formula, assignment){
necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

if(DPLL(formula, newAsgnmnt) == SAT){
return SAT;

}else {
asgn2 = union(newAsgnmnt, assign(var, 0) ;

return = DPLL(formula, asgn2);
} }

Improvements:
Describe high level structure

Deduction phase

Variable selection
Data structure

Backtracking

6 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

1 Basic State Transition System

2 Non-Chronological Backtracking

3 Two-Watched-Literals Scheme

4 VSIDS Heuristic

5 Summary: The Modern Solver

7 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.

We need to describe:

Formula F
Recursive stacks created by DPLL calls
Truth assignment trail M
Conflict management set C
Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.
We need to describe:

Formula F

Recursive stacks created by DPLL calls
Truth assignment trail M
Conflict management set C
Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.
We need to describe:

Formula F
Recursive stacks created by DPLL calls

Truth assignment trail M
Conflict management set C
Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.
We need to describe:

Formula F
Recursive stacks created by DPLL calls
Truth assignment trail M

Conflict management set C
Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.
We need to describe:

Formula F
Recursive stacks created by DPLL calls
Truth assignment trail M
Conflict management set C

Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Main idea: describe solving process precisely.
We need to describe:

Formula F
Recursive stacks created by DPLL calls
Truth assignment trail M
Conflict management set C
Transition Rules (e.g. unit, decision etc.)

8 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - Trail M

Recursive calls: Introduce checkpoint symbol ♦

red: variable assignment already visited

F

1

2 2

F

1

2 2

As a trail with checkpoints:

M = {♦1♦2}

M = {♦12}

9 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.

10 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.

10 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.

10 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.

10 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.

10 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);

asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P and l, l 6∈M

M := M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P and l, l 6∈M

M := M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P

and l, l 6∈M

M := M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P and l, l 6∈M

M := M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P and l, l 6∈M

M :=

M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Decide

var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));

(Decide)
l ∈ P and l, l 6∈M

M := M +♦+ l

11 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Unit

necessary = deduction(formula, assignment);

(UnitPropag)
l ∨ l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M and l, l 6∈M

M := M + l

12 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Unit

necessary = deduction(formula, assignment);

(UnitPropag)
l ∨ l1 ∨ ... ∨ lk ∈ F

and l1, ..., lk ∈M and l, l 6∈M

M := M + l

12 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Unit

necessary = deduction(formula, assignment);

(UnitPropag)
l ∨ l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

and l, l 6∈M

M := M + l

12 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Unit

necessary = deduction(formula, assignment);

(UnitPropag)
l ∨ l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M and l, l 6∈M

M := M + l

12 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Unit

necessary = deduction(formula, assignment);

(UnitPropag)
l ∨ l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M and l, l 6∈M

M := M + l

12 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct

and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F

and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk}

& l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F

& lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct

and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Transition Rules: Conflict and Backtrack

(Conflict)
C = no_cflct and l1 ∨ ... ∨ lk ∈ F and l1, ..., lk ∈M

C := {l1, ..., lk}

(Backtrack)
C = {l, l1, ..., lk} & l ∨ l1 ∨ ... ∨ lk ∈ F & lvl l ≥ lvl li > 0 for (i = 1,..,k)

C := no_cflct and M := M [level l−1] + d
level l

13 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Strategy

System is non-deterministic

Restrict rule usage to speed up process

Classic DPLL:

(((Conflict; Backtrack) || UnitPropag)* ; [Decide])*

14 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Strategy

System is non-deterministic

Restrict rule usage to speed up process

Classic DPLL:

(((Conflict; Backtrack) || UnitPropag)* ; [Decide])*

14 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Strategy

System is non-deterministic

Restrict rule usage to speed up process

Classic DPLL:

(((Conflict; Backtrack) || UnitPropag)* ; [Decide])*

14 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Strategy

System is non-deterministic

Restrict rule usage to speed up process

Classic DPLL:

(((Conflict; Backtrack) || UnitPropag)*

; [Decide])*

14 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Strategy

System is non-deterministic

Restrict rule usage to speed up process

Classic DPLL:

(((Conflict; Backtrack) || UnitPropag)* ; [Decide])*

14 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct >

Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→

< F, [♦1], no_cflct > UnitPropag
−→

< F, [♦12], no_cflct > Decide
−→ < F, [♦12♦3], no_cflct > UnitPropag

−→
< F, [♦12♦34], no_cflct > Decide

−→ < F, [♦12♦34♦5], no_cflct > UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct >

UnitPropag
−→

< F, [♦12], no_cflct > Decide
−→ < F, [♦12♦3], no_cflct > UnitPropag

−→
< F, [♦12♦34], no_cflct > Decide

−→ < F, [♦12♦34♦5], no_cflct > UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→

< F, [♦12], no_cflct > Decide
−→ < F, [♦12♦3], no_cflct > UnitPropag

−→
< F, [♦12♦34], no_cflct > Decide

−→ < F, [♦12♦34♦5], no_cflct > UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct >

Decide
−→ < F, [♦12♦3], no_cflct > UnitPropag

−→
< F, [♦12♦34], no_cflct > Decide

−→ < F, [♦12♦34♦5], no_cflct > UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→

< F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct >

UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct >

Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→

< F, [♦12♦34♦5], no_cflct > UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct >

UnitPropag
−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→

< F, [♦12♦34♦56], no_cflct > Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct >

Conflict
−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack

−→
< F, [♦12♦345], no_cflct > Decide

−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→

< F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} >

Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct >

Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→

< F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Classic DPLL Run

Finit = {1 ∨ 2, 3 ∨ 4, 5 ∨ 6, 2 ∨ 5 ∨ 6}

< F, [], no_cflct > Decide
−→ < F, [♦1], no_cflct > UnitPropag

−→
< F, [♦12], no_cflct > Decide

−→ < F, [♦12♦3], no_cflct > UnitPropag
−→

< F, [♦12♦34], no_cflct > Decide
−→ < F, [♦12♦34♦5], no_cflct > UnitPropag

−→
< F, [♦12♦34♦56], no_cflct > Conflict

−→ < F, [♦12♦34♦56], {2, 5, 6} > Backtrack
−→

< F, [♦12♦345], no_cflct > Decide
−→ < F, [♦12♦3456], no_cflct >

15 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

1 Basic State Transition System

2 Non-Chronological Backtracking

3 Two-Watched-Literals Scheme

4 VSIDS Heuristic

5 Summary: The Modern Solver

16 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1

∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2)

∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3

∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4)

∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5

∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6)

∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0

17 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)

18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)

18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)

18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)

18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)

18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)
18 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Goals

Determine reason of current conflict

Jump over decision levels that are irrelevant

Save reason to prevent future conflicts

19 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Goals

Determine reason of current conflict

Jump over decision levels that are irrelevant

Save reason to prevent future conflicts

19 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Goals

Determine reason of current conflict

Jump over decision levels that are irrelevant

Save reason to prevent future conflicts

19 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9 ∨ 6 ∨ 7 ∨ 8) ∧ (8 ∨ 7 ∨ 5) ∧ (6 ∨ 8 ∨ 4) ∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨ 2) ∧
(5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦9854123}

1 2 3

20 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9 ∨ 6 ∨ 7 ∨ 8) ∧ (8 ∨ 7 ∨ 5) ∧ (6 ∨ 8 ∨ 4) ∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨ 2) ∧
(5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦9854123}

1 2 3

20 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9∨ 6∨ 7∨ 8)∧ (8∨ 7∨ 5)∧ (6∨ 8∨ 4)∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨ 2) ∧

(5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦9854 123 }

Work backwards starting with conflict literals

1 2 3

4 5

7

21 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9 ∨ 6 ∨ 7 ∨ 8) ∧ (8 ∨ 7 ∨ 5) ∧ (6 ∨ 8 ∨ 4) ∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨
2) ∧ (5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦98 54 123}.

Stop at first unique implication point (UIP)

1 2 3

4 5

786

22 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)
Reason of the conflict are all literals without incoming
edges
Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)
Jump to second most recent decision level of backjump
clause

23 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)

Reason of the conflict are all literals without incoming
edges
Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)
Jump to second most recent decision level of backjump
clause

23 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)
Reason of the conflict are all literals without incoming
edges

Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)
Jump to second most recent decision level of backjump
clause

23 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)
Reason of the conflict are all literals without incoming
edges
Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)

Jump to second most recent decision level of backjump
clause

23 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)
Reason of the conflict are all literals without incoming
edges
Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)
Jump to second most recent decision level of backjump
clause 23 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5
8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3

4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2
4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1

6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4
8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5

8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5
8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1

6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4
8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5

8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5
8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5

8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5
8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.

24 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Theorem - Correctness

Theorem (Correctness): All runs of DPLL are finite. If, initialized
with the set of clauses Finit, DPLL terminates in the state
〈F,M,C〉, then: (a) C = no_cflct or C = ∅; (b) If C = ∅ then Finit

is unsatisfiable; (c) If C = no_cflct, then M is a model for Finit.

25 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Experiments

Instance CB NCB
bf0432-079 >3000 3,73
ssa2670-141 >3000 101,69
ii16e1 >3000 0,53
par16-1-c 165,75 1362,53
flat200-39 656,55 1472,53
4blocksb >3000 639,87
logistics.c >3000 38,96
barrel5 189,88 635,12
queueinvar16 >3000 22,9
dlx2_aa >3000 32,35
2dlx... >3000 >3000
cnf-r3-b4-k1.2 >3000 18,69

26 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

1 Basic State Transition System

2 Non-Chronological Backtracking

3 Two-Watched-Literals Scheme

4 VSIDS Heuristic

5 Summary: The Modern Solver

27 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Formula F is stored as:

Set of Clauses
Variables

Variables handle assignments
Clauses need to know their current status

28 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Formula F is stored as:
Set of Clauses

Variables

Variables handle assignments
Clauses need to know their current status

28 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Formula F is stored as:
Set of Clauses
Variables

Variables handle assignments
Clauses need to know their current status

28 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Formula F is stored as:
Set of Clauses
Variables

Variables handle assignments

Clauses need to know their current status

28 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Definitions

Formula F is stored as:
Set of Clauses
Variables

Variables handle assignments
Clauses need to know their current status

28 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation for Lazy Structures

Specialize in deduction techniques which require little
information

Lose ability to implement techniques which require whole
clause status

Most used deduction technique in modern solvers: unit
propagation

29 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation for Lazy Structures

Specialize in deduction techniques which require little
information

Lose ability to implement techniques which require whole
clause status

Most used deduction technique in modern solvers: unit
propagation

29 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation for Lazy Structures

Specialize in deduction techniques which require little
information

Lose ability to implement techniques which require whole
clause status

Most used deduction technique in modern solvers: unit
propagation

29 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable

Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status

Status of only 2 literals per clause is needed to determine
unit status

30 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving 31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving 31 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Improvements

Assigning a variable has low computational cost

Backtracking has no computational cost

Allows for solving larger instances than before

32 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Improvements

Assigning a variable has low computational cost

Backtracking has no computational cost

Allows for solving larger instances than before

32 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Improvements

Assigning a variable has low computational cost

Backtracking has no computational cost

Allows for solving larger instances than before

32 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Experiments

Instance NCBcb NCBwl
bf0432-079 3,73 3,11
ssa2670-141 101,69 22,91
ii16e1 0,53 0,48
par16-1-c 1362,53 233,53
flat200-39 1472,53 396,95
sw100-49 17,15 12,19
4blocksb 639,87 248,04
logistics.c 38,96 27,39
facts7hh.13.simple 8,31 9,09
barrel5 635,12 146,74
queueinvar16 22,9 13,06
dlx2_aa 32,35 11,74
dlx2_cc_a_bug17 4,2 3,92
2dlx... >3000 >3000
cnf-r3-b4-k1.2 18,69 16,48

Overall big improvement

Not enough for hardest
instances

33 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Experiments

Instance NCBcb NCBwl
bf0432-079 3,73 3,11
ssa2670-141 101,69 22,91
ii16e1 0,53 0,48
par16-1-c 1362,53 233,53
flat200-39 1472,53 396,95
sw100-49 17,15 12,19
4blocksb 639,87 248,04
logistics.c 38,96 27,39
facts7hh.13.simple 8,31 9,09
barrel5 635,12 146,74
queueinvar16 22,9 13,06
dlx2_aa 32,35 11,74
dlx2_cc_a_bug17 4,2 3,92
2dlx... >3000 >3000
cnf-r3-b4-k1.2 18,69 16,48

Overall big improvement

Not enough for hardest
instances

33 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

1 Basic State Transition System

2 Non-Chronological Backtracking

3 Two-Watched-Literals Scheme

4 VSIDS Heuristic

5 Summary: The Modern Solver

34 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

Decide rule leaves literal selection open

Random choice often not the best choice

Define decision scheme

35 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

Decide rule leaves literal selection open

Random choice often not the best choice

Define decision scheme

35 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Motivation

Decide rule leaves literal selection open

Random choice often not the best choice

Define decision scheme

35 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)
Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances
Do not capture relevant information about structured
problems

36 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)

Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances
Do not capture relevant information about structured
problems

36 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)
Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances
Do not capture relevant information about structured
problems

36 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)
Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances

Do not capture relevant information about structured
problems

36 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)
Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances
Do not capture relevant information about structured
problems

36 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

VSIDS

Based on literal counting

Idea: favor literals in recent conflicts

Simple and cheap heuristic
Dynamic adaption
State-independent

37 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

VSIDS

Based on literal counting
Idea: favor literals in recent conflicts

Simple and cheap heuristic
Dynamic adaption
State-independent

37 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

VSIDS

Based on literal counting
Idea: favor literals in recent conflicts

Simple and cheap heuristic

Dynamic adaption
State-independent

37 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

VSIDS

Based on literal counting
Idea: favor literals in recent conflicts

Simple and cheap heuristic
Dynamic adaption

State-independent

37 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

VSIDS

Based on literal counting
Idea: favor literals in recent conflicts

Simple and cheap heuristic
Dynamic adaption
State-independent

37 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Experiments
Instance NCBwlRSTslis NCBwlRSTvsids
bf0432-079 3,17 2,24
ssa2670-141 23,22 1,06
ii16e1 0,5 0,42
par16-1-c 198,51 178,36
flat200-39 125,95 12,96
sw100-49 10,3 2,35
4blocksb 232,74 85,94
logistics.c 30,99 26,8
facts7hh.13.simple 9,91 7,28
barrel5 175,74 41,07
queueinvar16 13,36 16,39
dlx2_aa 12,31 10,12
dlx2_cc_a_bug17 3,58 2,86
2dlx_cc_mc_ex_bp_f2_bug005 197,55 41,66
cnf-r3-b4-k1.2 16,78 15,39

Big improvement over static
heuristic

Problem are now solved in
acceptable time

38 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Experiments
Instance NCBwlRSTslis NCBwlRSTvsids
bf0432-079 3,17 2,24
ssa2670-141 23,22 1,06
ii16e1 0,5 0,42
par16-1-c 198,51 178,36
flat200-39 125,95 12,96
sw100-49 10,3 2,35
4blocksb 232,74 85,94
logistics.c 30,99 26,8
facts7hh.13.simple 9,91 7,28
barrel5 175,74 41,07
queueinvar16 13,36 16,39
dlx2_aa 12,31 10,12
dlx2_cc_a_bug17 3,58 2,86
2dlx_cc_mc_ex_bp_f2_bug005 197,55 41,66
cnf-r3-b4-k1.2 16,78 15,39

Big improvement over static
heuristic

Problem are now solved in
acceptable time

38 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

1 Basic State Transition System

2 Non-Chronological Backtracking

3 Two-Watched-Literals Scheme

4 VSIDS Heuristic

5 Summary: The Modern Solver

39 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Summary

We are now able to describe the modern Solver Chaff :

Non-chronological backtracking

Two-watched-literals scheme

VSIDS heuristic

The state transition introduced helps to implement the solver
and guarantees correctness.

40 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Summary

We are now able to describe the modern Solver Chaff :

Non-chronological backtracking

Two-watched-literals scheme

VSIDS heuristic

The state transition introduced helps to implement the solver
and guarantees correctness.

40 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Summary

We are now able to describe the modern Solver Chaff :

Non-chronological backtracking

Two-watched-literals scheme

VSIDS heuristic

The state transition introduced helps to implement the solver
and guarantees correctness.

40 / 40

Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Summary

We are now able to describe the modern Solver Chaff :

Non-chronological backtracking

Two-watched-literals scheme

VSIDS heuristic

The state transition introduced helps to implement the solver
and guarantees correctness.

40 / 40

	Basic State Transition System
	Non-Chronological Backtracking
	Two-Watched-Literals Scheme
	VSIDS Heuristic
	Summary: The Modern Solver

