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Davis-Putnam-Logemann-Loveland Procedure

DPLL(formula, assignment){

necessary = deduction(formula, assignment);
newAsgnmnt = union(necessary, assignment);
if(isSatisfied(formula, newAsgnmnt)){

return SAT;
}
if(isConflicting(formula, newAsgnmnt)){

return CONFLICT;
}
var = chooseFreeVariable(formula, newAsgnmnt);
asgn1 = union(newAsgnmnt, assign(var, 1));
if( DPLL(formula, newAsgnmnt) == SAT ){

return SAT;
} else {

asgn2 = union(newAsgnmnt, assign(var, 0);
return = DPLL(formula, asgn2);

} }
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Basic Definitions - State

A DPLL state is a triple 〈F,M,C〉.

F is the formula

M is a check-pointed truth assignment trail

C is a set of conflict literals or the symbol no_cflct

Checkpoints allow for iterative implementation.
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Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)
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Decision Unit propagation
x1 = 1 x2 = 1
x3 = 1 x4 = 1
x5 = 1 x6 = 0
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Motivation

(¬x1 ∨ x2) ∧ (¬x3 ∨ x4) ∧ (¬x5 ∨ ¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2)

M = {♦x1x2♦x3x4♦x5x6}

Transform trail into an implication graph:

1

2

3

4

5

6

Reason for the conflict: Decision 1 and 5, or (1 ∨ 5)
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Jump over decision levels that are irrelevant

Save reason to prevent future conflicts
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Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9 ∨ 6 ∨ 7 ∨ 8) ∧ (8 ∨ 7 ∨ 5) ∧ (6 ∨ 8 ∨ 4) ∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨ 2) ∧
(5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦9854123}

1 2 3
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Constructing Partial Implication Graphs

Consider a state < F,M, {1, 2, 3} > where F =
(9 ∨ 6 ∨ 7 ∨ 8) ∧ (8 ∨ 7 ∨ 5) ∧ (6 ∨ 8 ∨ 4) ∧ (4 ∨ 1) ∧ (4 ∨ 5 ∨
2) ∧ (5 ∨ 7 ∨ 3) ∧ (1 ∨ 2 ∨ 3} ∪ Fother and

M = {...6...7...♦98 54 123}.

Stop at first unique implication point (UIP)
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Unique Implication Point and Backjump Clause

M = {...6...7...♦9854123}
1 2 3

4 5

786

Stop at first UIP (8)
Reason of the conflict are all literals without incoming
edges
Backjump clause is the negated disjunction of reason
literals (6 ∨ 8 ∨ 7)
Jump to second most recent decision level of backjump
clause
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Resolution

Apply resolution until first UIP is found.
In this case: stop resolution if only one literal is in current
decision level. Previous example:

M = {...6...7...♦9854123}

5 ∨ 7 ∨ 3 1 ∨ 2 ∨ 3
4 ∨ 5 ∨ 2 5 ∨ 7 ∨ 1 ∨ 2

4 ∨ 1 4 ∨ 5 ∨ 7 ∨ 1
6 ∨ 8 ∨ 4 5 ∨ 7 ∨ 4

8 ∨ 7 ∨ 5 6 ∨ 8 ∨ 7 ∨ 5
8 ∨ 7 ∨ 6

Resolution step can now be defined as a rule and integrated in
the state transition system.
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Theorem - Correctness

Theorem (Correctness): All runs of DPLL are finite. If, initialized
with the set of clauses Finit, DPLL terminates in the state
〈F,M,C〉, then: (a) C = no_cflct or C = ∅; (b) If C = ∅ then Finit

is unsatisfiable; (c) If C = no_cflct, then M is a model for Finit.
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Experiments

Instance CB NCB
bf0432-079 >3000 3,73
ssa2670-141 >3000 101,69
ii16e1 >3000 0,53
par16-1-c 165,75 1362,53
flat200-39 656,55 1472,53
4blocksb >3000 639,87
logistics.c >3000 38,96
barrel5 189,88 635,12
queueinvar16 >3000 22,9
dlx2_aa >3000 32,35
2dlx... >3000 >3000
cnf-r3-b4-k1.2 >3000 18,69
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Basic Definitions

Formula F is stored as:

Set of Clauses
Variables

Variables handle assignments
Clauses need to know their current status
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Motivation for Lazy Structures

Specialize in deduction techniques which require little
information

Lose ability to implement techniques which require whole
clause status

Most used deduction technique in modern solvers: unit
propagation
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Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable

Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status

Status of only 2 literals per clause is needed to determine
unit status

30 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Scheme

Main idea: optimize unit clause detection

Non-lazy: Variables store pointers to all clauses with
literals of that variable
Updating assignments expensive

Lazy: Reduce pointer count to a minimum to determine
unit status
Status of only 2 literals per clause is needed to determine
unit status

30 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving

31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving 31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Two-Watched-Literals Example

1 4 7 12 15
Two watched literals are
freely chosen

Decide 1 1 4 7 12 15
1 not watched, clause not
visited

Decide 7
Unit 15

1 4 7 12 15
Search for new unassigned
watch

Decide 4 1 4 7 12 15
Search; only free literal is
other watch. Clause is unit

Conflict
Backjump lvl 1

1 4 7 12 15
No work has to be done
when backtracking

Decide 12
Unit 7

1 4 7 12 15
When watch is assigned
true, clause not visited

Decide 4 1 4 7 12 15 Watches keep moving 31 / 40



Basic State Transition System
Non-Chronological Backtracking

Two-Watched-Literals Scheme
VSIDS Heuristic

Summary: The Modern Solver

Improvements

Assigning a variable has low computational cost

Backtracking has no computational cost

Allows for solving larger instances than before
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Experiments

Instance NCBcb NCBwl
bf0432-079 3,73 3,11
ssa2670-141 101,69 22,91
ii16e1 0,53 0,48
par16-1-c 1362,53 233,53
flat200-39 1472,53 396,95
sw100-49 17,15 12,19
4blocksb 639,87 248,04
logistics.c 38,96 27,39
facts7hh.13.simple 8,31 9,09
barrel5 635,12 146,74
queueinvar16 22,9 13,06
dlx2_aa 32,35 11,74
dlx2_cc_a_bug17 4,2 3,92
2dlx... >3000 >3000
cnf-r3-b4-k1.2 18,69 16,48

Overall big improvement

Not enough for hardest
instances
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Basic Heuristics

Early heuristics were mostly state-dependent:

Literal which generates largest number of implications
(Jeroslow-Wang)
Maximum Occurrences on Minimum sized clauses (MOM)

Mostly useful for random instances
Do not capture relevant information about structured
problems
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VSIDS

Based on literal counting

Idea: favor literals in recent conflicts

Simple and cheap heuristic
Dynamic adaption
State-independent
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Experiments
Instance NCBwlRSTslis NCBwlRSTvsids
bf0432-079 3,17 2,24
ssa2670-141 23,22 1,06
ii16e1 0,5 0,42
par16-1-c 198,51 178,36
flat200-39 125,95 12,96
sw100-49 10,3 2,35
4blocksb 232,74 85,94
logistics.c 30,99 26,8
facts7hh.13.simple 9,91 7,28
barrel5 175,74 41,07
queueinvar16 13,36 16,39
dlx2_aa 12,31 10,12
dlx2_cc_a_bug17 3,58 2,86
2dlx_cc_mc_ex_bp_f2_bug005 197,55 41,66
cnf-r3-b4-k1.2 16,78 15,39

Big improvement over static
heuristic

Problem are now solved in
acceptable time
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Summary

We are now able to describe the modern Solver Chaff :

Non-chronological backtracking

Two-watched-literals scheme

VSIDS heuristic

The state transition introduced helps to implement the solver
and guarantees correctness.
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