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Introduction

Predicate Logic . . .

. . . is an elegant way to express what we mean:

∃xstate, x ′
state : init(xstate) ∧ bad(x ′

state) ∧ reach(xstate, x ′
state)

Satisfiability not decidable
Some models are non-intuitive: x < y ∧ y < x is satisfiable
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Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures

A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)
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Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .

. . . a boolean assignment ϕ that satisfies the formula?

. . . a predicate logic structureM that is a model for the formula?
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Recall: The classical SAT problem is: Given a formula A is there . . .
. . . a boolean assignment ϕ that satisfies the formula?
. . . a predicate logic structureM that is a model for the formula?
↑ undecidable ↑ maybe a non-standard model

The Satisfiability Modulo Theory Problem for a theory T : Given a formula
A is it satisfied by a model that is allowed by the theory T?
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Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).

2 Derive a conjunct of literals:
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found
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Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions
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Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied
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Introduction

Example for Difference Arithmetic

Which of the following conjunctions is satisfiable?

A ≡ (y − x ≤ 2) ∧ (z − y ≤ −3) ∧ (x − z ≤ 7)
B ≡ (v − u ≤ 2) ∧ (w − v ≤ 3) ∧ (u − w ≤ −7)
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Left graph: Weight of 6 → satisfiable e.g. not (6, 6, 6) but (7, 3, 0)
Right graph: Weight of −2 → unsat.: u-to-u takes 0 steps but only −7
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Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)

x − y − 1 ≤ 1
x − y ≤ 2 (isolate constants)
x − y − s = 0 (s is a fresh variable) s ≤ 2
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Introduction

Running the General Simplex

Basic idea: Adjust variables until they fit.
Make sure the zero-checks are satisfied (How?)

Goal: Adjust assignments to meet bounds
How? Swapping variables with and without bounds (pivoting)
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Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. (Why?)

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?
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Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution:
Integer solution: problem solved.
Non-integer solution:

No recursive call finds a solution? Unsatisfiable.
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Variable Elimination: Omega Test

Idea: Recursive procedure. Eliminate variable, try three different types of
additional constraints recursively.

Real Shadow: Eliminate variable as before
Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable
Grey Shadow: Real Shadow without dark shadow
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Introduction

How can we search in the shadow?

Assume we eliminated the variable y .

Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.
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Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
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Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Formulas become huge
Implications are not conjunctions
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Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
Unite all sets that share at least one term:
Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set
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