
Theory Solvers for Linear Arithmetic and Equality Logic
with Uninterpreted Functions

Martin Köhler

Department of Computer Science
University of Kaiserslautern

2014-11-24

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 1 / 18



Introduction

Predicate Logic . . .

. . . is an elegant way to express what we mean:

∃xstate, x ′
state : init(xstate) ∧ bad(x ′

state) ∧ reach(xstate, x ′
state)

Satisfiability not decidable
Some models are non-intuitive: x < y ∧ y < x is satisfiable

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 2 / 18



Introduction

Predicate Logic . . .

. . . is an elegant way to express what we mean:

∃xstate, x ′
state : init(xstate) ∧ bad(x ′

state) ∧ reach(xstate, x ′
state)

But:
Satisfiability not decidable

Some models are non-intuitive: x < y ∧ y < x is satisfiable

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 2 / 18



Introduction

Predicate Logic . . .

. . . is an elegant way to express what we mean:

∃xstate, x ′
state : init(xstate) ∧ bad(x ′

state) ∧ reach(xstate, x ′
state)

But:
Satisfiability not decidable
Some models are non-intuitive: x < y ∧ y < x is satisfiable

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 2 / 18



Introduction

Predicate Logic . . .

. . . is an elegant way to express what we mean:

∃xstate, x ′
state : init(xstate) ∧ bad(x ′

state) ∧ reach(xstate, x ′
state)

But:
Satisfiability not decidable
Some models are non-intuitive: x < y ∧ y < x is satisfiable

Idea: Restrict to certain structures

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 2 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures

A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion

Here, we treat T as a formula

T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

Common terms in the context of theories:

T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

Common terms in the context of theories:
T -satisfiable: At least one relevant structure is a model

T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

Common terms in the context of theories:
T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)

T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Introducing Theories

Theories restrict our scope to “the interesting” structures
A theory T is a set of closed formulas that is closed against conclusion
Here, we treat T as a formula

Common terms in the context of theories:
T -satisfiable: At least one relevant structure is a model
T -valid: All relevant structures are models (|=T A)
T -implication: Implication restricted to relevant structures (A |=T B)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 3 / 18



Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .

. . . a boolean assignment ϕ that satisfies the formula?

. . . a predicate logic structureM that is a model for the formula?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 4 / 18



Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .
. . . a boolean assignment ϕ that satisfies the formula?

. . . a predicate logic structureM that is a model for the formula?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 4 / 18



Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .
. . . a boolean assignment ϕ that satisfies the formula?
. . . a predicate logic structureM that is a model for the formula?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 4 / 18



Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .
. . . a boolean assignment ϕ that satisfies the formula?
. . . a predicate logic structureM that is a model for the formula?
↑ undecidable ↑ maybe a non-standard model

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 4 / 18



Introduction

Satisfiability Modulo Theories (SMT)

Recall: The classical SAT problem is: Given a formula A is there . . .
. . . a boolean assignment ϕ that satisfies the formula?
. . . a predicate logic structureM that is a model for the formula?
↑ undecidable ↑ maybe a non-standard model

The Satisfiability Modulo Theory Problem for a theory T : Given a formula
A is it satisfied by a model that is allowed by the theory T?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 4 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).

2 Derive a conjunct of literals:
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals:

3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)

3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)
3 Check the conjunct for satisfiability modulo theory (Theory Solver)

4 Backtrack until either all boolean assignments are checked or a
solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

Why does that suffice?

(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

Why does that suffice?
(boolean) unsatisfiable → unsatisfiable in theory as well

(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

Theory Solving

1 Boolean SAT methods yield satisfying assignments (boolean).
2 Derive a conjunct of literals: e.g.: (x < 3) 7→ true, (x < 7) 7→ false

becomes (x < 3) ∧ ¬(x < 7)
3 Check the conjunct for satisfiability modulo theory (Theory Solver)
4 Backtrack until either all boolean assignments are checked or a

solution in the theory is found

Why does that suffice?
(boolean) unsatisfiable → unsatisfiable in theory as well
(boolean) satisfiable → iff there is a model, a corresponding boolean
assignment will be found

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 5 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)

Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method

Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)

Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method

Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)
Integer Linear Programming: Branch-and-Bound

Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)
Integer Linear Programming: Branch-and-Bound

Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

How to build a Theory Solver?

We have to build Theory Solvers specifically for each Theory.
We will look at:

Difference Arithmetic (simple example)
Linear Arithmetic (real)

Linear Programming: Simplex Method
Variable elimination: Fourier Motzkin

Linear Arithmetic (integer)
Integer Linear Programming: Branch-and-Bound
Variable elimination: Omega-Test

Equality Logic with uninterpreted functions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 6 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.

Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.

Unsatisfiable if and only if the circle has a negative weight

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

How does the graph help?

Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

How does the graph help?
Weights: y 7→ x Reach x from y by walking at most 7

Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

How does the graph help?
Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path

Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Small example: Difference Arithmetic

Difference Arithmetic: Logic fragment over integers. The predicates
define maximal gaps between two variables.
Example: x − y ≤ 7
How can we solve a conjunction of Difference Arithmetic literals?

Write variables as nodes in a graph, differences as weights.
Check for cycles.
Unsatisfiable if and only if the circle has a negative weight

How does the graph help?
Weights: y 7→ x Reach x from y by walking at most 7
Paths/Walks: Max-lengths of steps imply max-distance of the path
Cycle: Exactly 0 steps from x to x ; constraints < 0 cannot be satisfied

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 7 / 18



Introduction

Example for Difference Arithmetic

Which of the following conjunctions is satisfiable?

A ≡ (y − x ≤ 2) ∧ (z − y ≤ −3) ∧ (x − z ≤ 7)
B ≡ (v − u ≤ 2) ∧ (w − v ≤ 3) ∧ (u − w ≤ −7)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 8 / 18



Introduction

Example for Difference Arithmetic

Which of the following conjunctions is satisfiable?

A ≡ (y − x ≤ 2) ∧ (z − y ≤ −3) ∧ (x − z ≤ 7)
B ≡ (v − u ≤ 2) ∧ (w − v ≤ 3) ∧ (u − w ≤ −7)

The nodes in the graphs correspond to x , y , z and u, v ,w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 8 / 18



Introduction

Example for Difference Arithmetic

Which of the following conjunctions is satisfiable?

A ≡ (y − x ≤ 2) ∧ (z − y ≤ −3) ∧ (x − z ≤ 7)
B ≡ (v − u ≤ 2) ∧ (w − v ≤ 3) ∧ (u − w ≤ −7)

The nodes in the graphs correspond to x , y , z and u, v ,w

x

y

z

2

-3
7

u

v

w

2

3
-7

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 8 / 18



Introduction

Example for Difference Arithmetic
Which of the following conjunctions is satisfiable?

A ≡ (y − x ≤ 2) ∧ (z − y ≤ −3) ∧ (x − z ≤ 7)
B ≡ (v − u ≤ 2) ∧ (w − v ≤ 3) ∧ (u − w ≤ −7)

The nodes in the graphs correspond to x , y , z and u, v ,w

x

y

z

2

-3
7

u

v

w

2

3
-7

Left graph: Weight of 6 → satisfiable e.g. not (6, 6, 6) but (7, 3, 0)
Right graph: Weight of −2 → unsat.: u-to-u takes 0 steps but only −7
allowed
Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 8 / 18



Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)

x − y − 1 ≤ 1
x − y ≤ 2 (isolate constants)
x − y − s = 0 (s is a fresh variable) s ≤ 2

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 9 / 18



Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)
The General Simplex Method requires the input to look like:

4 · x + (−7) · y = 0 (zero check)
x ≤ 2 (bounds for variables)

Can we bring any literal in that form?

x − y − 1 ≤ 1
x − y ≤ 2 (isolate constants)
x − y − s = 0 (s is a fresh variable) s ≤ 2

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 9 / 18



Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)
The General Simplex Method requires the input to look like:

4 · x + (−7) · y = 0 (zero check)
x ≤ 2 (bounds for variables)

Can we bring any literal in that form? Indeed, we can!
Example:

x − y − 1 ≤ 1

x − y ≤ 2 (isolate constants)
x − y − s = 0 (s is a fresh variable) s ≤ 2

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 9 / 18



Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)
The General Simplex Method requires the input to look like:

4 · x + (−7) · y = 0 (zero check)
x ≤ 2 (bounds for variables)

Can we bring any literal in that form? Indeed, we can!
Example:

x − y − 1 ≤ 1
x − y ≤ 2 (isolate constants)

x − y − s = 0 (s is a fresh variable) s ≤ 2

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 9 / 18



Introduction

The General Simplex Method

We want to allow predicates like 7 · x − 3 · y ≤ 42. Idea: Use Simplex
Method from linear programming but strip the optimization part. (i.e.
General Simplex)
The General Simplex Method requires the input to look like:

4 · x + (−7) · y = 0 (zero check)
x ≤ 2 (bounds for variables)

Can we bring any literal in that form? Indeed, we can!
Example:

x − y − 1 ≤ 1
x − y ≤ 2 (isolate constants)
x − y − s = 0 (s is a fresh variable) s ≤ 2

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 9 / 18



Introduction

Running the General Simplex

Basic idea: Adjust variables until they fit.
Make sure the zero-checks are satisfied (How?)

Goal: Adjust assignments to meet bounds
How? Swapping variables with and without bounds (pivoting)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 10 / 18



Introduction

Running the General Simplex

Basic idea: Adjust variables until they fit.
Make sure the zero-checks are satisfied (How?)
→ Initialize all variables with 0
Goal: Adjust assignments to meet bounds

How? Swapping variables with and without bounds (pivoting)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 10 / 18



Introduction

Running the General Simplex

Basic idea: Adjust variables until they fit.
Make sure the zero-checks are satisfied (How?)
→ Initialize all variables with 0
Goal: Adjust assignments to meet bounds
How? Swapping variables with and without bounds (pivoting)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 10 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. (Why?)

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable

Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable (Why?)

Both bounds: “bounded” → derive implicit inequalities?

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities? (What?)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Example: 7 · y − 3 · z ≤ x ; x ≤ −2 · y + 5z Ignore x but keep “gaps” for it:
7 · y − 3 · z ≤ −2 · y + 5z

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Variable Elimination: Fourier-Motzkin

Assumption: We only have inequalities. Solve equalities for a variable,
substitute everywhere.
Basic idea: Iteratively eliminate variables:

Solve inequalities for a variable
Identify upper and lower bounds

Only one kind of bound: “unbounded” → ignore inequalities with this
variable
Both bounds: “bounded” → derive implicit inequalities?

Trivial once only one variable left
Example: 7 · y − 3 · z ≤ x ; x ≤ −2 · y + 5z Ignore x but keep “gaps” for it:
7 · y − 3 · z ≤ −2 · y + 5z

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 11 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution:
Integer solution: problem solved.
Non-integer solution:

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution:
Integer solution: problem solved.
Non-integer solution:

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution: terminate recursive call
Integer solution: problem solved.
Non-integer solution:

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution: terminate recursive call
Integer solution: problem solved.
Non-integer solution: introduce bounds, recursive calls

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution: terminate recursive call
Integer solution: problem solved.
Non-integer solution: introduce bounds, recursive calls
Example: Solution is x = 7.0, y = 6.9, two recursive calls: one with
y ≤ 6 and one with 7 ≤ y

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Integer Linear Programming: Branch and Bound

Idea: Use Simplex method to find solutions, try to restrict to integer
solutions.

Ask Simplex for a solution.
No solution: terminate recursive call
Integer solution: problem solved.
Non-integer solution: introduce bounds, recursive calls
Example: Solution is x = 7.0, y = 6.9, two recursive calls: one with
y ≤ 6 and one with 7 ≤ y

No recursive call finds a solution? Unsatisfiable.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 12 / 18



Introduction

Variable Elimination: Omega Test

Idea: Recursive procedure. Eliminate variable, try three different types of
additional constraints recursively.

Real Shadow: Eliminate variable as before
Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable
Grey Shadow: Real Shadow without dark shadow

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 13 / 18



Introduction

Variable Elimination: Omega Test
Idea: Recursive procedure. Eliminate variable, try three different types of
additional constraints recursively.
Adding constraints: The constraints describe where we search
(recursively)

Real Shadow

Dark Shadow

Grey Shadow

Real Shadow: Eliminate variable as before
Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable
Grey Shadow: Real Shadow without dark shadow

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 13 / 18



Introduction

Variable Elimination: Omega Test

Real Shadow

Dark Shadow

Grey Shadow

Real Shadow: Eliminate variable as before

Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable
Grey Shadow: Real Shadow without dark shadow

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 13 / 18



Introduction

Variable Elimination: Omega Test

Real Shadow

Dark Shadow

Grey Shadow

Real Shadow: Eliminate variable as before

Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable

Grey Shadow: Real Shadow without dark shadow

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 13 / 18



Introduction

Variable Elimination: Omega Test

Real Shadow

Dark Shadow

Grey Shadow

Real Shadow: Eliminate variable as before
Dark Shadow: Constraints enforce “big” gaps for the eliminated
variable

Grey Shadow: Real Shadow without dark shadow

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 13 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .

Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)

Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution

No solution: Even in a narrow gap might be an integer solution for y .
Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

How can we search in the shadow?

Assume we eliminated the variable y .
Real shadow: Over-approximation, since we ignore y

No solution: no solution at all (adding y won’t yield integer solutions)
Solution: If y is unbounded, a suitable solution can be found.
Solution: If y is bounded, the solution might not work with an integer y

Dark shadow: Under-approximation, since we only search in the wide
parts

Solution: We successfully found an integer solution
No solution: Even in a narrow gap might be an integer solution for y .

Grey Shadow: Excluding the dark shadow from the grey shadow
yields a finite set of possible constraints. Try them all.

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 14 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
Draw variables as nodes of a graph

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
Draw edges for equal and not-equal

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
Transitive closure for equal-edges

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
Connected components get the same value

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w)
What if we add (x = w)?

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic

Only predicate: Equality of two variables.
Example: (x = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = w) ∧ (x = u)
What if we add (x = w)?

x

y

z u

v

w

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 15 / 18



Introduction

Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Formulas become huge
Implications are not conjunctions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 16 / 18



Introduction

Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Ensuring functional consistency: (y1 = y2)→ (x1 = x2)

Formulas become huge
Implications are not conjunctions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 16 / 18



Introduction

Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Ensuring functional consistency: (y1 = y2)→ (x1 = x2)
Bugs:

Formulas become huge
Implications are not conjunctions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 16 / 18



Introduction

Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Ensuring functional consistency: (y1 = y2)→ (x1 = x2)
Bugs:

Formulas become huge

Implications are not conjunctions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 16 / 18



Introduction

Equality Logic with Uninterpreted Functions

We want to add functions.
First try: Introduce variables for each term:

f (g(y1), g(y2))⇒ x1 7→ g(y1), x2 7→ g(y2), x3 7→ f (g(y1), g(y2))

Ensuring functional consistency: (y1 = y2)→ (x1 = x2)
Bugs:

Formulas become huge
Implications are not conjunctions

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 16 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
Unite all sets that share at least one term:
Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:

Unite all sets that share at least one term:
Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}

Unite all sets that share at least one term:
Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:

Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:
{f (z), y , z} {u, v , f (y)}

Same function with parameters that are already in the same set:
Unite.
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:
{f (z), y , z} {u, v , f (y)}
Same function with parameters that are already in the same set:
Unite.

Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:
{f (z), y , z} {u, v , f (y)}
Same function with parameters that are already in the same set:
Unite.
{f (z), y , z , u, v , f (y)}

Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:
{f (z), y , z} {u, v , f (y)}
Same function with parameters that are already in the same set:
Unite.
{f (z), y , z , u, v , f (y)}
Check for unequal terms in the same set

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Congruence Closure Algorithm

Example:

(f (z) = y) ∧ (y = z) ∧ ¬(z = u) ∧ (u = v) ∧ (v = f (y))

Put equal terms in the same set:
{f (z), y} {y , z} {u, v} {v , f (y)}
Unite all sets that share at least one term:
{f (z), y , z} {u, v , f (y)}
Same function with parameters that are already in the same set:
Unite.
{f (z), y , z , u, v , f (y)}
Check for unequal terms in the same set
{f (z), y , z , u, v , f (y)}

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 17 / 18



Introduction

Thank you for your Attention

Martin Köhler (TU Kaiserslautern) LinArith and EuF 2014-11-24 18 / 18


	Introduction

