Exercises to the lecture Logics

Sheet 1
Jun.-Prof. Dr. Roland Meyer
Due 26. April 2013 12:00 Uhr

Exercise 1.1 [Structural Induction]
The depth $t(A)$ of a formula A is defined as follows.

- If A is atomic, then $t(A)=0$.
- If $A \equiv(B * C)$ for a binary connective *, then

$$
t(A)=\max \{t(B), t(C)\}+1
$$

- If $A \equiv \neg(B)$, then $t(A)=t(B)+1$.

Furthermore, let $|A|$ be the length of the formula A, i.e., the number of symbols in A (including parentheses and connectives).
Prove by structural induction that in every correctly bracketed formula
a) the number of opening and the number of closing parentheses coincide.
b) $|A| \leqslant 5 k+1$, where k is the number of occurrences of connectives in A.
c) $|A| \leqslant 4 \cdot 2^{t(A)}-3$.

Exercise 1.2 [Semantics of formulae]
a) Let φ be a valuation with $\varphi(p)=1$ and $\varphi(q)=\varphi(r)=0$. Calculate

$$
\varphi(\neg(p \wedge q) \rightarrow r)
$$

step-by-step using the definition of the evaluation of valuations.
b) Prove or disprove that $q \rightarrow(r \rightarrow(p \vee q))$ is a tautology.
c) Prove or disprove $q \rightarrow p \vDash p \rightarrow q$.
d) Prove or disprove $\neg p \vee \neg q \models \neg(p \wedge q)$.

Exercise 1.3 [Deduction theorem]
a) Let A_{1}, \ldots, A_{n}, B be formulae in propositional logic. Show that $A_{1} \wedge \cdots \wedge A_{n} \vDash B$ if and only if $\models\left(A_{1} \rightarrow\left(A_{2} \rightarrow\left(\cdots\left(A_{n-1} \rightarrow\left(A_{n} \rightarrow B\right)\right) \cdots\right)\right)\right.$.
b) Let Σ be a set of formulae and B a formula in propositional logic. Show that $\Sigma \vDash B$ if and only if $\Sigma \cup\{\neg B\}$ is unsatisfiable.

Exercise 1.4 [Paths in rooted trees]
A rooted tree is a tree in which one node is chosen as the root and the edges are directed such that their source is closer to the root than their target. A rooted path is a path that starts in the root (but does not necessarily end in a leaf). For each rooted path P, we write \hat{P} for the set of nodes it meets. A subset of nodes is called rooted path set if it is of the form \hat{P} for some rooted path P.
Let $V=\left\{a_{1}, \ldots, a_{n}\right\}$ be the nodes of a rooted tree and let p_{1}, \ldots, p_{n} be atomic formulae. The subsets of V and the valuations on p_{1}, \ldots, p_{n} are in one-to-one correspondence, where the set $S \subseteq V$ corresponds to the valuation φ for which

$$
\varphi\left(p_{i}\right)=1 \text { if and only if } a_{i} \in S
$$

for each $i \in\{1, \ldots, n\}$.
a) For the rooted tree on the right, present a formula A for which $\varphi(A)=1$ if and only if φ corresponds to a rooted path set.
b) Devise a general method that, given a rooted tree T, constructs a formula A such that $\varphi(A)=1$ if and only if φ corresponds to a rooted path set in T.

Delivery: until 26. April 2013 12:00 Uhr into the box next to room 34/401.4

