Exercises to the lecture Logics Sheet 5

Jun.-Prof. Dr. Roland Meyer

Due June 21st, 2013, 12pm

Exercise 5.1 [Semantics of predicate logic]

On the slides, the semantics of a formula $A \in FO(S)$ in a structure $\mathcal{M} = (D, I)$ is defined as a function

$$\mathcal{M}\llbracket A \rrbracket : D^V \to \mathbb{B}.$$

Since a function $D^V \to \mathbb{B}$ corresponds to a subset of D^V (and vice versa), we can define the semantics of a formula A as such a subset.

- a) Define the semantics of formulae $t_1 = t_2$, $p(t_1, \ldots, t_k)$, $\neg A$, $A \land B$, $A \lor B$, $\exists xA$, and $\forall xA$, if $\mathcal{M}[\![A]\!]$ is to be a subset of D^V . Hint: Use set operators.
- b) Using the new semantics of formulae, how do you define logical consequence $\Sigma \models A$?

Exercise 5.2 [Cardinality of domains]

Given a structure $\mathcal{M} = (D, I)$, we write $|\mathcal{M}|$ for |D|, the cardinality of D. We say \mathcal{M} is *finite* if the set D is finite.

- a) Present a closed formula A such that $\mathcal{M} \models A$ if and only if $|\mathcal{M}| = 1$.
- b) Let *B* be a formula without the predicate symbol "=". Given a finite interpretation \mathcal{M} with $\mathcal{M} \models B$, how can you construct an interpretation \mathcal{M}' with $|\mathcal{M}'| = |\mathcal{M}| + 1$ and $\mathcal{M}' \models B$? A proof for $\mathcal{M}' \models B$ is not absolutely necessary here.
- c) Deduce from b) that there is no formula without "=" that is equivalent to the formula A above.

Exercise 5.3 [A satisfiability check]

- a) Present an algorithm that, given a formula A, a finite interpretation \mathcal{M} , and a valuation $\sigma \in D^V$, decides whether $\mathcal{M}, \sigma \models A$. Note: This means you have shown that satisfaction under a given finite interpretation is decidable.
- b) Let A be a closed formula of the form $\exists x_1 \cdots \exists x_n B$, in which B contains no quantifier. Show: If A is satisfiable, then it has a model \mathcal{M} with $|\mathcal{M}| \leq |B|$. (We say that the class of formulae of this shape exhibits a *small model property*.)
- c) Prove using a) and b): Given a closed formula $A \equiv \exists x_1 \cdots \exists x_n B$ as above, it can be decided algorithmically whether A is satisfiable.

Exercise 5.4 [Modelling]

- a) Describe function symbols and predicate symbols that model name, address, and preferred political party of individuals (e.g. in a database). It should be possible that for certain individuals, not all the data is available. In particular, you should specify the arity and the intended meaning of the function and predicate symbols.
- b) Formalize the following integrity constraint: "If a person prefers party P or $\mathsf{L},$ then their name and address are available."

Delivery: until June 21st, 2013, 12pm into the box next to room 34/401.4