Exercises to the lecture Logics

Sheet 6

Jun.-Prof. Dr. Roland Meyer

Due July 5th, 2013, 12:00pm
Exercise 6.1 [Non-standard models]
Let $S=(F, P)$ be the signature with function symbols $F=\{0 / 0,1 / 0,+/ 2, * / 2\}$ and predicate symbols $P=\{\leqslant / 2\}$. Furthermore, let $\mathcal{N}=\left(\mathbb{N}, I_{\mathbb{N}}\right)$ be the S-structure, in which the domain consists of the natural numbers and the symbole $0,1,+, \leqslant$, and $*$ are interpreted as usual. Finally, let $\mathcal{T}_{\mathcal{N}}$ be the set of all closed formulae that are satisfied by \mathcal{N}.
a) Consider the set

$$
\mathcal{T}_{\mathcal{N}}^{\prime}=\mathcal{T}_{\mathcal{N}} \cup\{\underbrace{1+\cdots+1}_{n} \leqslant \mathrm{x} \mid n \geqslant 1\},
$$

in which x is a variable. Show that $\mathcal{T}_{\mathcal{N}}^{\prime}$ is satisfiable. Hint: Employ the Compactness Theorem.
b) Let \mathcal{M} and \mathcal{M}^{\prime} be structures over the same signature S^{\prime}. The structures \mathcal{M} and \mathcal{M}^{\prime} are called elementarily equivalent if for every closed formula A in predicate logic over S, we have: $\mathcal{M} \models A$ if and only if $\mathcal{M}^{\prime} \models A$. Show that every structure \mathcal{M} that satisfies $\mathcal{T}_{\mathcal{N}}^{\prime}$ is elementarily equivalent to \mathcal{N}.
c) If $\mathcal{M}=(D, I)$ and $\mathcal{M}^{\prime}=\left(D^{\prime}, I^{\prime}\right)$ are structures over the same signature, we call \mathcal{M} and \mathcal{M}^{\prime} isomorphic if there is a bijection $\varphi: D \rightarrow D^{\prime}$ with

$$
\begin{aligned}
p^{\mathcal{M}}\left(d_{1}, \ldots, d_{k}\right) & =p^{\mathcal{M}^{\prime}}\left(\varphi\left(d_{1}\right), \ldots, \varphi\left(d_{k}\right)\right) & & \text { for all } d_{1}, \ldots, d_{k} \in D \text { and } \\
\varphi\left(f^{\mathcal{M}}\left(d_{1}, \ldots, d_{\ell}\right)\right) & =f^{\mathcal{M}^{\prime}}\left(\varphi\left(d_{1}\right), \ldots, \varphi\left(d_{\ell}\right)\right) & & \text { for all } d_{1}, \ldots, d_{\ell} \in D
\end{aligned}
$$

for every k-ary predicate symbol p and every ℓ-ary function symbol f. Conclude from a) and b) that there is a structure that die elementarily equivalent but not isomorphic to \mathcal{N}.

Exercise 6.2 [Satisfiability and deducibility]
Show that the following problems are semi-decidable but not decidable:
a) Given a formula Λ in predicate logic, decide whether Λ is satisfiable.
b) Given two formulae A and B in predicate logic, decide whether $A \models B$.

Exercise 6.3 [Undecidability]
A context-free grammar is called linear if in each rule, the right-hand side contains at most one occurrence of a nonterminal symbol. Show that the following problem is undecidable: Given linear context-free grammars G_{1} and G_{2}, is the set $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ empty?

Exercise 6.4 [Reductions]
Let \mathcal{C} be a class of problems. A problem A is called \mathcal{C}-hard if every problem in \mathcal{C} is many-one-reducible to A. Prove: If A is \mathcal{C}-hard and A many-one-reducible to a problem B, then B is \mathcal{C}-hard as well.

Delivery: until July 5th, 2013, 12:00pm into the box next to room 34/401.4

