Exercises to the lecture Logics Sheet 6

Jun.-Prof. Dr. Roland Meyer

Due July 5th, 2013, 12:00pm

Exercise 6.1 [Non-standard models]

Let S = (F, P) be the signature with function symbols $F = \{0/0, 1/0, +/2, */2\}$ and predicate symbols $P = \{\leq/2\}$. Furthermore, let $\mathcal{N} = (\mathbb{N}, I_{\mathbb{N}})$ be the S-structure, in which the domain consists of the natural numbers and the symbole $0, 1, +, \leq$, and * are interpreted as usual. Finally, let $\mathcal{T}_{\mathcal{N}}$ be the set of all closed formulae that are satisfied by \mathcal{N} .

a) Consider the set

$$\mathcal{T}'_{\mathcal{N}} = \mathcal{T}_{\mathcal{N}} \cup \{\underbrace{1 + \dots + 1}_{n} \leqslant \mathsf{x} \mid n \ge 1\},\$$

in which x is a variable. Show that $\mathcal{T}'_{\mathcal{N}}$ is satisfiable. *Hint:* Employ the Compactness Theorem.

- b) Let \mathcal{M} and \mathcal{M}' be structures over the same signature S'. The structures \mathcal{M} and \mathcal{M}' are called *elementarily equivalent* if for every closed formula A in predicate logic over S, we have: $\mathcal{M} \models A$ if and only if $\mathcal{M}' \models A$. Show that every structure \mathcal{M} that satisfies $\mathcal{T}'_{\mathcal{N}}$ is elementarily equivalent to \mathcal{N} .
- c) If $\mathcal{M} = (D, I)$ and $\mathcal{M}' = (D', I')$ are structures over the same signature, we call \mathcal{M} and \mathcal{M}' isomorphic if there is a bijection $\varphi : D \to D'$ with

$$p^{\mathcal{M}}(d_1, \dots, d_k) = p^{\mathcal{M}'}(\varphi(d_1), \dots, \varphi(d_k)) \qquad \text{for all } d_1, \dots, d_k \in D \text{ and}$$
$$\varphi(f^{\mathcal{M}}(d_1, \dots, d_\ell)) = f^{\mathcal{M}'}(\varphi(d_1), \dots, \varphi(d_\ell)) \qquad \text{for all } d_1, \dots, d_\ell \in D$$

for every k-ary predicate symbol p and every ℓ -ary function symbol f. Conclude from a) and b) that there is a structure that die elementarily equivalent but not isomorphic to \mathcal{N} .

Exercise 6.2 [Satisfiability and deducibility]

Show that the following problems are semi-decidable but not decidable:

- a) Given a formula A in predicate logic, decide whether A is satisfiable.
- b) Given two formulae A and B in predicate logic, decide whether $A \models B$.

Exercise 6.3 [Undecidability]

A context-free grammar is called *linear* if in each rule, the right-hand side contains at most one occurrence of a nonterminal symbol. Show that the following problem is undecidable: Given linear context-free grammars G_1 and G_2 , is the set $L(G_1) \cap L(G_2)$ empty?

Exercise 6.4 [Reductions]

Let \mathcal{C} be a class of problems. A problem A is called \mathcal{C} -hard if every problem in \mathcal{C} is many-one-reducible to A. Prove: If A is \mathcal{C} -hard and A many-one-reducible to a problem B, then B is \mathcal{C} -hard as well.

Delivery: until July 5th, 2013, 12:00pm into the box next to room 34/401.4