In-class Exercises to the Lecture Logics Sheet 2

Jun.-Prof. Dr. Roland Meyer

Discussion on 10. Mai 2013

Exercise 2.1 [Inconsistency]

Show that $\Sigma \vdash_{\mathcal{F}_0} A$ if and only if $\Sigma \cup \{\neg A\}$ is inconsistent. You can use the Deduction Theorem and the given theorems 1–11 from the old slides.

Exercise 2.2 [Derivations in \mathcal{F}_0]

Present proofs in \mathcal{F}_0 for the following formulae:

- a) $(A \to B) \to (\neg B \to \neg A)$. You can use the Deduction Theorem and the given theorems 1–7 from the old slides.
- b) $B \to (\neg C \to \neg (B \to C))$. You can use the Deduction Theorem and the given theorems 1–8 from the old slides.

Exercise 2.3 [Completeness of \mathcal{F}_0]

Prove Lemma 1.24 on the old slides: Let $A \equiv A(p_1, \ldots, p_n) \in F$, n > 0, where p_1, \ldots, p_n are the propositional variables occurring in A. Let φ be a valuation. If

$$P_i := \begin{cases} p_i, & \text{if } \varphi(p_i) = 1, \\ \neg p_i, & \text{if } \varphi(p_i) = 0, \end{cases} \quad A' := \begin{cases} A, & \text{if } \varphi(A) = 1, \\ \neg A, & \text{if } \varphi(A) = 0, \end{cases}$$

for $1 \leq i \leq n$, then $P_1, \ldots, P_n \vdash A'$. You can use the Deduction Theorem, the given theorems 1–11 from the old slides, and Exercise 2.1.

Exercise 2.4 [Completeness of calculi]

Let $\mathcal{K} = (Ax, R)$ be the calculus where R contains only Modus Ponens and Ax is given by just one axiom scheme, namely $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$.

- a) Show by induction on n that for each proof B_0, \ldots, B_n and each $i \in \{0, \ldots, n\}$, the following holds: The number of occurrences of each propositional variable p in B_i is even.
- b) Conclude that in \mathcal{K} , not every tautology is derivable (even if it contains only \neg and \rightarrow as connectives).