SS 2013 June 5th, 2013

In-class Exercises to the Lecture Logics Sheet 4

Jun.-Prof. Dr. Roland Meyer

Discussion on June 6th/7th, 2013

Exercise 4.1 [Resolution]

Prove by resolution that the following formula is unsatisfiable:

$$(\neg p \lor s) \land (p \lor q \lor \neg r) \land (r \lor q \lor s) \land (q \lor \neg s) \land (\neg q \lor s) \land (\neg q \lor \neg s)$$

Exercise 4.2 [Formulae in 2CNF]

A formula is in 2CNF if it is of the form $C_1 \wedge \cdots \wedge C_n$, where each C_i is a clause with at most two literals. Devise a method to check satisfiability for such formulae that runs in polynomial time.

Exercise 4.3 [Complete sets of connectives]

- a) Prove that for any formula $A \in F(\{ \lor \})$, we have $\varphi(A) = 0$, where φ is the valuation with $\varphi(p) = 0$ for each atomic formula p.
- b) Show that $\{\vee\}$ is *not* a complete set of connectives.

Exercise 4.4 [Predicate Logic]

Suppose the signature S contains the predicates p_{IsFish} and p_{CanSwim} . Let $A \equiv \forall x (p_{\text{CanSwim}}(x) \rightarrow p_{\text{IsFish}}(x))$.

- a) Present a structure \mathcal{M} over the signature S with $\mathcal{M} \models A$.
- b) Present a structure $\mathcal{M} = (D, I)$ over the signature S with $\mathcal{M} \models A$, where $D = \{\text{Duck}, \text{Herring}, \text{Carp}\}.$