SS 2020 20. Mai 2020

Übungen zur Vorlesung Einführung in die Logik Blatt 1

Prof. Dr. Roland Meyer, Sören van der Wall

Abgabe bis Do, 28. Mai 2020 um 23:59

Aufgabe 1.1 (Axiom, Definition, Satz, Lemma, Korollar — 1 + 1 + 1 = 3**Pkt**) Diese Begriffe werden Ihnen während des Studiums stets begegnen.

- a) Beschreiben Sie mit einem bis zwei Sätzen die Bedeutung eines Axioms, einer Definition, eines Satzes, eines Lemmas und eines Korollars.
- b) Definieren Sie eine Funktion für den größten gemeinsamen Teiler zweier Zahlen.
- c) Nehmen Sie an, Sie hätten einen Algorithmus Alg(a,b) geschrieben, der den größten gemeinsamen Teiler berechnet. Formulieren Sie einen Satz, der besagt, dass ihr Algorithmus den korrekten Wert berechnet.

Aufgabe 1.2 (Strukturelle Induktion — 10Pkt)

Die Tiefe t(A) einer aussagenlogischen Formel A ist wie folgt definiert.

- Ist A eine atomare Formel, so ist t(A) = 0.
- Ist A = (B * C) für einen biänren Junktor *, so gilt $t(A) = \max\{t(B), t(C)\} + 1$.
- Ist $A = (\neg B)$, so definieren wir t(A) = t(B) + 1.

Außerdem sei |A| die Länge der Formel A, d.h. die Anzahl der Zeichen in A (Klammern und Junktoren zählen also mit). Beweisen Sie mit struktureller Induktion uüber den Aufbau der aussagenlogischen Formeln, dass in jeder vollständig geklammerten aussagenlogischen Formel A

- a) die Anzahl der öffnenden und schließenden Klammern übereinstimmt.
- b) $|A| \le 5k + 1$, wobei k die Anzahl der Junktoren in A ist.
- c) $|A| \le 4 \cdot 2^{t(A)} 3$.

 $\begin{array}{ll} \textbf{Aufgabe 1.3} & (\text{Deduktionstheorem, zweite Richtung} - \textbf{10Pkt}) \\ \text{In der Vorlesung haben Sie das Deduktionstheorem} \end{array}$

$$\Sigma, A \models B$$
 g.d.w. $\Sigma \models (A \rightarrow B)$

gesehen und

$$\Sigma, A \models B$$
 \Rightarrow $\Sigma \models (A \rightarrow B)$

gezeigt. Zeigen Sie dass die umgekehrte Richtung ebenfalls gilt, i.e.

$$\Sigma, A \vDash B \iff \Sigma \vDash (A \to B).$$

Aufgabe 1.4 (Endliche Erfüllbarkeit — 5Pkt)

Seien $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots$ endlich erfüllbare Formelmengen.

Zeigen Sie: $\Sigma = \bigcup_{i \in \mathbb{N}} \Sigma_i$ ist auch endlich erfüllbar.

Aufgabe 1.5 (Abzählbarkeit von Formeln — 5 + 5 + 6 + 6 = 22Pkt)

Eine Menge M heißt abzählbar, falls eine surjektive Funktion $f: \mathbb{N} \to M$ existiert, d.h. für alle $m \in M$ gibt es $n \in \mathbb{N}$, sodass f(n) = m. In dem Fall schreibt man häufig auch $M = \{m_0, m_1, \ldots\}$ oder $(m_i)_{i \in \mathbb{N}}$. Im Beweis des Kompaktheitssatzes gingen wir davon aus, dass die Menge F aller Formeln aufzählbar ist. Wir wollen dies beweisen. Dazu definieren wir: Die Strukturtiefe t(A) einer Formel A wie in Aufgabe 1 und die vorkommenden Variablen v(A) in einer Formel A, d.h.

$$v(A) = \{A\} \quad \text{ wenn } A \text{ eine Variable ist}$$

$$v(\neg A) = v(A) \quad \text{ und}$$

$$v(A*B) = v(A) \cup v(B) \, .$$

- a) Zeigen Sie: Wenn eine Menge M von einer abzählbaren Menge von endlichen Mengen $(M_i)_{i\in\mathbb{N}}$ abgedeckt wird, d.h. $M=\bigcup_{i\in\mathbb{N}}M_i$, dann ist M abzählbar.
- b) Zeigen Sie: Die Menge $F_{t,\mathcal{V}} = \{A \in F \mid t(A) \leq t \text{ und } v(A) \subseteq \mathcal{V}\}$ aller Formeln mit maximaler Strukturtiefe t und Variablen in $\mathcal{V} \subseteq_{\text{fin}} V$ ist endlich (\subseteq_{fin} besagt, dass die Teilmenge \mathcal{V} endlich ist).

Hinweis: Induktion.

c) Finden Sie eine abzählbare Menge von endlichen Variablenmengen $(\mathcal{V}_i)_{i \in \mathbb{N}}$, also $\mathcal{V}_i \subseteq_{\text{fin}} V$, sodass $V = \bigcup_{i \in \mathbb{N}} \mathcal{V}_i$. Wählen Sie sie so, dass die Menge aller Formeln $F = \bigcup_{t,i \in \mathbb{N}} F_{t,\mathcal{V}_i}$ abgedeckt wird. Beweisen Sie diese Gleichheit.

Hinweis: Was wissen Sie über V, die Menge aller Variablen?

d) Finden Sie eine surjektive Funktion $f: \mathbb{N} \to \{F_{t,\mathcal{V}_i} \mid t, i \in \mathbb{N}\}$. (Sie müssen die Funktion nicht formal angeben. Die Idee genügt.)

Abgabe bis Do, 28. Mai 2020 um 23:59 per Mail an Ihren Gruppenleiter.