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Abstract. We clarify the relationship between m-calculus and finite p/t
Petri nets. The first insight is that the concurrency view to processes
taken in [Eng96,AM02,BG09] and the structural view in [Mey09] are or-
thogonal. This allows us to define a new concurrency p/t net semantics
that can be combined with the structural semantics in [Mey09]. The re-
sult is a more expressive mixed semantics, which translates precisely the
so-called mixed-bounded processes into finite p/t nets. Technically, the
translation relies on typing of restricted names. As second main result
we show that mixed-bounded processes form the borderline to finite p/t
nets. For processes just beyond this class reachability becomes undecid-
able and so no faithful translation into finite p/t nets exists.

1 Introduction

There has been considerable recent interest in verification techniques for mo-
bile systems that are based on automata-theoretic and in particular Petri net
translations [AM02,FGMP03,KKN06,DKK08,MKS09,BG09,Mey09]. Most ver-
ification approaches and tool implementations have been developed for finite
place/transition (p/t) Petri nets. This raises the question for a characterisa-
tion of the processes that can be verified with the help of finite p/t Petri
net semantics. Despite the efforts in the semantics community dating back to
[BG95,MP95,Eng96,Pis99] the problem is still open and we tackle it in this pa-
per. The contribution is the precise borderline that separates m-calculus processes
from finite p/t Petri nets in terms of computational expressiveness.

In structurally stationary processes [Mey09] restricted names generate a finite
number of connection graphs at runtime. Although the constraint is semantical
and thus undecidable, large syntactic subclasses of structurally stationary pro-
cesses exist, e.g. finite control [Dam96] and restriction-free processes [AMO02].
The so-called structural semantics represents structurally stationary processes
as finite p/t nets and is sound wrt. the reaction semantics [Mey09]. Therefore,
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we take structurally stationary processes as starting point in our quest for the
borderline to finite p/t nets.

Mobile systems are concurrent systems where the connections between com-
ponents evolve over time. While the structural semantics focuses on these con-
nections, concurrency semantics highlight the interactions between components.
In [BG95,BG09], we defined a concurrency semantics that reflects the intended
causality semantics for m-calculus. It is finite for the semantic class of restriction-
bounded processes, which generate a finite number of restricted names. In this
work, we present the largest class of processes with a finite p/t net semantics
that is sound wrt. the reaction behaviour. We find it as follows.

We observe that the structural view to processes is orthogonal to the con-
currency view. The main result is that an appropriately defined concurrency
semantics can be combined with the structural semantics to a more expressive
mixed translation. Intuitively, the new translation mirrors the interactions be-
tween groups of components. Technically, the combination is achieved by typing
restricted names, and the type determines the semantics that handles a name.

We prove the mixed semantics to be finite precisely for mixed-bounded pro-
cesses, which combine the previous finiteness characterisations, i.e., they form
finitely many connection graphs with names of type one and generate finitely
many restricted names of type two. Again, mixed boundedness is an undecid-
able semantic condition, but it inherits all syntactic subclasses of structurally
stationary and restriction-bounded processes.

bounded depth [Mey08a]

< WSTS
mixed-bounded + depth one > finite p/t Petri nets

mixed-bounded = finite p/t Petri nets

struct. stat. [Mey09] restriction-bounded,
building upon [BG09]
restriction-free,
> finite p/t nets [AM02,Mey08b)]

Fig. 1. Hierarchy of process classes and relation to finite p/t Petri nets (— := C).

We then show that mixed-bounded processes form the borderline between -
calculus and finite p/t nets, since in a minimal extension of the class reachability
becomes undecidable. Unfortunately, this extension lies within the processes of
bounded depth, which are known to have well-structured transition systems
(WSTS) and so, e.g. a decidable termination problem [Mey08a]. Hence, our
results dash hope of a finite p/t net translation for this interesting class.

Note that every finite p/t net can be represented by a restriction-free pro-
cess of linear size with contraction-isomorphic transition system [AM02,Mey08b].
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Hence, all process classes we consider are at least as expressive as finite p/t nets.
Figure 1 illustrates the elaborated relationships. We summarise our contribution.

— We define a new concurrency semantics for the m-calculus, which satisfies
three indispensable quality criteria. It yields a bisimilar transition system,
translates processes with restricted names, and enjoys an intuitive finiteness
characterisation. The technical tool that facilitates the definition is a new
name-aware transition system, which manages the use of restricted names.

— We combine the concurrency semantics with the structural semantics and
prove the resulting translation finite precisely for so-called mized-bounded
processes. The idea to combine the semantics is to type restricted names.
Technically, the definition also relies on a new normal form for processes
under structural congruence.

— We prove that mixed-bounded processes form the borderline to finite p/t
nets. If we relax the requirement slightly, reachability becomes undecidable.

Related Work Although several automata-theoretic semantics for the m-calculus
have been proposed [Eng96,MP95,Pis99,AM02,BG95,BG09,KKN06,DKKO08], we
found them all defective in the sense that they do not satisfy the criteria we
require for a semantics to be usable for verification. We discuss their problems.

Engelfriet [Eng96] translates processes with replication into p/t nets that are
bisimilar to the reaction semantics. Since the Petri net representation is infinite
as soon as the replication operator is used, the requirement for finiteness is
not satisfied. In subsequent papers [EG99,EG04], Engelfriet and Gelsema show
that the discriminating power of their semantics corresponds to extended and
decidable versions of structural congruence. In the proofs, they exploit normal
forms for processes similar to the restricted form we present in Section 2.

Montanari and Pistore propose history dependent automata (HDA) as se-
mantic domain, finite automata where states are labelled by sets of names that
represent the restrictions in use [MP95,Pis99]. The ground and early labelled
transition semantics are translated into HDA in a way that bisimilarity on the
automata coincides with the corresponding bisimilarity on processes. The trans-
lations yield finite HDA only for finitary processes, the subclass of structurally
stationary processes obtained by bounding the degree of concurrency [Mey09].

Amadio and Meyssonnier [AMO02] translate restriction-free processes into
bisimilar (reaction semantics) and finite p/t nets. To deal with a class of pro-
cesses that contain restrictions, a second translation identifies restricted names
as unsed and replaces them by generic free names. Since the number of processes
to be modified by replacement is not bounded, these authors rely on Petri nets
with transfer as semantic domain. Having an undecidable reachability problem,
transfer nets are strictly more expressive than finite p/t nets [DFS98].

Our work [BG95] translates the early labelled transition relation of restriction-
bounded processes into finite p/t Petri nets, but fails to prove bisimilarity. Based
on that translation, [BG09] studies non-interleaving and causal semantics for the
m-calculus and provides decidability results for model checking.
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Koutny et. al. [DKKO08] achieve a bisimilar translation of the indexed labelled
transition system into finite but high-level Petri nets, thus relying on a Turing
complete formalism where automatic analyses are necessarily incomplete. The
main contribution is compositionality, for every mw-calculus operator there is a
corresponding net operator and in many cases the size of the net is linear in
the size of the process. In [KKNO06], the translation is extended by an unfolding-
based model checker. To avoid the undecidability the verification approach is
restricted to recursion-free processes, a class of limited practical applicability.

2 Preliminaries

We recall the basics on m-calculus, p/t Petri nets, and the structural semantics.

w-calculus We use a m-calculus with parameterised recursion as proposed in
[SWO1]. Let the set N := {a,b,z,y,...} of names contain the channels, which
are also the possible messages, that occur in communications. During a process
execution the prefizes m are successively removed from the process to communi-
cate with other processes or to perform silent actions. The output action m = a(b)
sends the name b along channel a. The input action m = a(z) receives a name
that replaces = on a. Prefix m = 7 performs a silent action.

To denote recursive processes, we use process identifiers K, L, ... A process
identifier is defined by an equation K (&) := P, where Z is a short-hand notation
for x1,...,2,. When the identifier is called, K|a|, it is replaced by process P
with the names Z changed to a. More precisely, a substitution o = {a/Z} is a
function that maps the names in Z to a, and is the identity for all the names
not in . The application of a substitution is denoted by Po and defined in
the standard way [SWO01]. A m-calculus process is either a call to an identifier,
K|a]l, a choice process deciding between prefixes, M + N, a parallel composition
of processes, Py | Py, or the restriction of a name in a process, va.P:

M:=0 7P 1 M+ N P:=M  Kl|a] + P | P 1 va.P.

Writing 7 for 7.0 we omit pending O processes. By M =2 we denote choice com-
positions of stop processes 0+ ...+ 0. To indicate a choice composition contains
at least one term 7.P we denote it by M7°. Processes M7° and K|a| are called
sequential, and they are the basic processes that produce reactions, either alone
or by synchronisation of two of them, in the reaction relation defined below.

A restriction va that is not covered by a prefix 7 is active and the set of active
restrictions in a process is arn(P). For example, arn(va.a{b).vc.a(c)) = {a}. The
input action a(b) and the restriction ve.P bind the names b and ¢, respectively.
The set of bound names in a process P is (arn(P) C) bn(P). A name which is not
bound is free and the set of free names in P is fn(P). We permit a-conversion
of bound names. Therefore, wlog. we assume that a name is bound at most once
in a process and that bn(P) N fn(P) = 0. Moreover, if a substitution o = {a/Z}
is applied to a process P, we assume bn(P)N (aUz) = 0.
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We use the structural congruence relation in the definition of the behaviour
of a process term. It is the smallest congruence where a-conversion of bound
names is allowed, + and | are commutative and associative with 0 as the
neutral element, and the following laws for restriction hold:

vr.0=0 vr.vy. P =vyvx.P ve.(P|Q)=P| (va.Q), if x ¢ fn(P).

The last rule is called scope extrusion. The behaviour of w-calculus processes is
then determined by the reaction relation — C P x P defined by the rules in
Table 1. By Reach(P) we denote the set of all processes reachable from P by

(Tau) 7.P+ M — P  (React) z(y).P+ M |Z(z).Q+ N — P{z/y} | Q
(Const) K|a] — P{a/}, if K(3) := P

Table 1. Rules defining the reaction relation — C P x P.

(Par)

va.P — va.P’

the reaction relation. The transition system of process P factorises the reachable
processes along structural congruence, T (P) := (Reach(P)/=, —, [P]) with the
transition relation [P] —7 [Q] defined by P — Q.

Our theory employs two normal forms for processes. The classical standard
form of Milner [Mil99] maximises the scopes of active restricted names and re-
moves unused restrictions and 0 processes. For example, the standard form of
va.K|a| | vb.0 | K|c| is va.(K|a| | K|c|). We compute it with the function
sf, which is the identity on sequential processes. For a restriction va.P we have
sf(va.P) := va.sf(P) if a € fn(P) and sf(va.P) := sf(P) otherwise. The par-
allel composition of P and Q with sf(P) = vap.P7" and sf(Q) = vag.Q7"
maximises the scopes, sf(P | Q) := vap.vag.(P7" | Q7"). Of course, the se-
quences of names ap and ag may be empty and furthermore P#¥ and Q*
denote parallel compositions of sequential processes K |a| and M 70,

Dual to the standard form, the restricted form [Mey09] minimises the scopes
of active restrictions and also removes unused restrictions and processes con-
gruent to 0. For example, the restricted form of va.(K|a| | vb.0 | K|c]) is
va.K|a] | K|c]. Technically, the restricted form relies on the notion of fragments
F, G, H built inductively in two steps. Sequential processes K |G| and M7? are
called elementary fragments F¢,G¢ and form the basis. General fragments are
defined by the grammar

F¢:=Kla|] + M7° F:=F¢ ) va(F| ... |F,)

with a € fn(F}) for all i. A process P in restricted form is now a parallel com-
positions of fragments, P = II;c;F;, and we refer to the fragments in P/ by
fg(P™) := U, {F}. The decomposition function dec(P™) counts the number of
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fragments in P™/ that are in a given class, e.g. P = F |G | F/ with F = F' # G
yields (dec(P™))([F]) = 2, (dec(P™))([G]) = 1, and (dec(P™))([H]) = 0 for
F # H # G. The function characterises structural congruence: P = Q'
is equivalent to dec(P™) = dec(Q™) [Mey09]. This is crucial for the well-
definedness of the concurrency semantics we investigate in Section 3.

For a fragment F', we let |F|, denote the nesting of active restrictions. For
example, |va.(vb.K|a,b] | vewd.L|a,c,d])|, = 3. The depth of a fragment F
is then the nesting of active restrictions in the flattest representation, |F|p :=
min{|G|, 1 G = F}. A process is bounded in depth if there is a bound k € N
on the depth of all reachable fragments [Mey08a].

For a given process, function rf computes a structurally congruent one in
restricted form [Mey09]. It is the identity on sequential processes and a homo-
morphism for the the parallel composition, rf (P | Q) := rf(P) | rf(Q). In case
of restriction va.P, we first compute the restricted form rf(P) = IT;c; F;. Then
the scope of va is restricted to the fragments where a is a free name (let the set
I, contain their indices), rf (va.P) := va.(Ilicr, F;) | Hiep 1, Fi-

Petri Nets An (unmarked) Petri net is a triple (S,T, W) with disjoint and
potentially infinite sets of places S and transitions T, and a weight function
W:(SxT)Uu(T xS)— N:=1{0,1,2,...}. A Petri net is finite if S and T
are finite sets. A marking of the net is a function M : S — N and its support
supp(M) are the elements mapped to a value greater zero. As usual, places
are represented by circles, transitions by boxes, the weight function by arcs
with numbers (missing arcs have weight 0, unlabelled arcs have weight 1), and
markings by tokens within the circles. We denote pre- and postset of z € SUT
by *z:={y 1 W(y,z) >0} and 2* := {y 1 W(z,y) > 0}. A (marked) Petri net
is a pair N = (S, T, W, Mp) of an unmarked net (S, T, W) and an initial marking
M. The set of all marked Petri nets is denoted by PN

A transition t € T is enabled in marking M if M (s) > W (s, t) for every s € *t.
Firing an enabled transition leads to marking M’(s) := M (s)—W(s,t)+ W (t,s)
for every s € S, and is denoted by M[t)M’. In the transition system we work
with the unlabelled relation M — M’, which means M[t)M’ for some t € T

To relate a process and its Petri net representation, we rely on the notion
of bisimilarity [Mil89]. Two transition systems 7; = (St;, —;,s?) with i = 1,2
are bisimilar, 71 ~ 75, if there is a bisimulation relation R C St; x Sty that
contains the initial states, (s9,s9) € R. In a bisimulation relation R, containment
(s1,82) € R requires (1) that for every t; € Sty with sy —1 t1 there is a to € St
with sg —9 to and (t1,t2) € R and (2) similar for transitions from ss.

Structural Semantics We recall the translation of m-calculus processes into
Petri nets defined in [Mey09]. The idea is to have a separate place for each
reachable group of processes connected by restricted names, i.e., the notion of
fragments plays a crucial role. The algorithm takes a m-calculus process P and
computes a Petri net Ns[P], called the structural semantics of P, as follows.
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The places are the fragments of all reachable processes (. More precisely, we
take the structural congruence classes of fragments, fg(rf(Q))/=.

There are two disjoint sets of transitions. Transitions ¢ = ([F], [Q]) model
reactions inside fragment F' that lead to process Q). More formally, [F] is a place
and F — @ holds. These reactions are communications within F', silent actions,
or calls to process identifiers. There is an arc weighted one from place [F] to ¢.

Transitions ¢ = ([Fy | F»), [@]) model reactions between reachable fragments
along public channels: [F7] and [F5] are places and Fy | F5 — Q. To define the
preset of ¢, consider place [F]. If Fy, F», and F are structurally congruent there
is an arc weighted two from [F] to t. If F is structurally congruent with either
Fy or Fy, there is an arc weighted one. Otherwise there is no arc.

The postset of a transition ([F],[Q]) or ([F1 | Fz2],[Q]) are the reachable
fragments of Q. If fragment G occurs (up to =) k € N times in 7f(Q), then there
is an arc weighted k from ([F],[Q]) to [G]. For example, from the transition
([r.(K|a] | K|a])],[K|a] | K|a]]) there is an arc weighted two to place [K|a]].

The initial marking of place [F] in Ns[P] is determined by the number of
fragments in rf(P) that are congruent to F'. We illustrate the translation on our
running example: a model of a bag data structure that takes values from a fill
process on channel in and emits them on channel out in any order [Fok07].

Ezample 1. Consider FILL|in]| | BAG |in, out| with the equations FILL(in) :=
vval.in({val).FILL|in| and BAG (in, out) := in(y).(out(y) | BAG|in, out|). The
structural semantics Ns[FILL|in]| | BAG|in, out|] is the Petri net in Figure 2

without sg, ..., sg and with the following places:
s1 = [FILL|in]] sg 1= [BAG|in, out]] 85 := [vval.out{val)]
s3 := [vval.in(val). FILL|in|] s4 = [in(y).(out(y) | BAG|in, out])].

Note that the structural semantics remains finite if we restrict the name in
while it becomes infinite if we restrict out. A restricted name out, distributed to
an unbounded number of processes vval.out(val), would create an unbounded
number of places (unboundedness in breadth [Mey09]).

Q@slsSOSQ@Q s6 () (s
s O—SF—Ow O On

Fig. 2. Petri net representation of the different versions of the bag data structure
introduced in the Examples 1, 2, and 3. The places and the usage of sg, ..., s9 depend
on the semantics under consideration and are explained in the examples.

A m-calculus process and its structural semantics have isomorphic transition
systems [Mey09]. Moreover, the structural semantics is finite iff the translated
process is structurally stationary, i.e., generates finitely many types of fragments.
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3 A Sound Concurrency Semantics for the mw-calculus

Concurrency semantics highlight the communications between sequential pro-
cesses. As opposed to the structural semantics, the scopes of restricted names
are not important. The key idea to define a concurrency semantics is to use
designated free names for active restrictions. To generate these names system-
atically, we define the so-called name-aware transition system. It facilitates the
first bisimilarity proof P ~ N¢[P] for a concurrency semantics that handles
name creation and allows for a finiteness characterisation. Surprisingly, all ear-
lier attempts lacking this technical tool failed as explained in the introduction.

For a smooth definition of the name-aware transition system we assume that
restricted names have the form a,,, i.e., they carry an index m € N. a-conversion
of a restricted name a,, changes the index m but not the name a. Wlog., for
a process P of interest we assume the indices to be zero. If P uses defining
equations K;(Z) := P;, then the indices in the P; are zero as well. For a restriction
am the increment operation yields a,, + 1 := a,+1. Its application to sets is
defined elementwise, for example {ag,bo,c5} + 1 = {a4, b3, cs}-

In the name-aware transition system, the states are name-aware processes
of the form (P7¥,a). Intuitively, in an execution sequence leading to process
(P#V, &) the active restrictions @ have been found (the set may be empty, @ = ).
The names a are not chosen arbitrarily but are computed by incrementing the
indices. For example, the name-aware process (7.vag.K|ao],{ao,a1,a2}) con-
sumes a T-action and generates the restricted name as. Formally, the behaviour
of name-aware processes is captured by the name-aware reaction relation

P#" — ub.Q%" in standard form and

P7V . G) —"e Q¢”,dL+Jl~J = -
( ) ( ) Vb, €b:k—1=max{i I b, €a},

where we choose zero as index if there is no name b; € a. The set of all processes
reachable from (P7", @) by the name-aware reaction relation is Reachy,, (P7", ).
For the example process above, the definition in fact yields the name-aware reac-
tion (7T.vag.K|aol,{ao,a1,a2}) =" (K|as],{ao,a1,a2,as}). The name-aware
transition system T,,(P7",a) is again defined by factorising the reachable pro-
cesses along structural congruence, Reach,,(P7",a)/=. The name-aware reac-
tion relation is lifted to process classes ([P77],a), accordingly. Lemma 1 states
bisimilarity of the name-aware and the standard transition system of a process.

Lemma 1. For every process P € P with standard form sf(P) = va.P7" the
bisimilarity T (P) ~ T,,o(P7",a) holds.

Proof. The relation that connects
([Q7"],b) € Reachn,(P7",a)/= and [vb.Q7"] € Reach(P)/=
is a bisimulation and relates the initial processes in both transition systems.

Two basic ideas underly our concurrency semantics. First, as usual we let tokens
reflect the numbers of processes in a state. Second and unusual, we use additional
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name places to imitate the generation of free names in the name-aware transition
system; a construction that has precursor in our earlier works [BG95,BG09]. If a
place, say as, is marked, the names ag, a1, as have already been generated and ag
is the next one to be invented. The transition that corresponds to the reaction
(tvag.K|aol,{ao,a1,a2}) =™ (K|as],{ao,a1,a2,a3}) above moves the token
from name place a3 to ay.

Technically, we start with the name-aware transition system and compute
the two disjoint sets of name and process places. The name places are precisely
the names b in all reachable name-aware processes ([Q7], B) The process places
are given by the (structural congruence classes of) sequential processes in Q7".

Let ([P7¥],a) be the initial process in the name-aware transition system.
Also the initial marking is composed out of two disjoint functions. Function M{
marks the process places as required by the sequential processes in P#”. Marking
Mé\[ puts a single token on all name places with index zero—except a. If ag € a
the name is already in use and a; is the next to be generated. Therefore, name
place a; is marked by one token. In fact, all name places are 1-safe.

Like for the structural semantics we have two disjoint sets of transitions.
The first set contains transitions ¢ = ([M7°],b,[Q7"]) with the constraint that
[M#°] and b are places and M#° — vb.Q7” in standard form. The preset of
t are the process place [M7°] and the name places b. Hence, names can only
be generated if their places are marked. The postset is given by the reachable
sequential processes in Q7" and the names b+1. Thus, the transition moves a
token from by, € b to br41 as was explained. Similar transitions exist for K |¢].

The second set of transitions models communications between sequential pro-
cesses. Here we have transitions ¢ = ([Mf’60 | M;O], b, [Q7¥]) with the condition
that M7 | M7° reacts to vb.Q7" in standard form. There is an arc weighted
two from place [N#0] to t if M7® = N#° = M7°. In this case, two structurally
congruent processes communicate. If place [N7°] is only one of the sequential
processes, N70 = M7® xor N#0 = M3°, we draw an arc weighted one from the
place to the transition. In any other case there is no arc, which means transition
t represents a reaction where process [N7°] is not involved in. Like for the first
set of transitions, the places b in the preset of ¢ ensure restricted names are
invented in the correct order. The postset is similar as well. We illustrate the
definition of the concurrency semantics on the bag data structure.

Ezample 2. Consider the process ving.vouto.(FILLy | ing, val] | BAG |ing, outo])
where different from Example 1 data value val is not restricted, FILLy(ing, val) :=
ing(val).FILLy | ing, val]. The equation for BAG is as before. The concurrency
semantics N¢[ving.vouty.(FILLy | ing, val] | BAG|ing, outo|)] is the Petri net in
Figure 2 with the process places

s1:= [FILLs|ing,val]]  s3:= [BAGling, outo]] s := [oulo(val)]
s3 := [ing{val).FILLs|ing, val]] s4 = [ing(y).(outo(y) | BAG|ing, outo])]

and the name places sg := ing, sy := inq, Sg := outy, and sg := outy. Note that
place in; is initially marked as ing is active in the initial process. Moreover, if
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we restricted val the concurrency semantics would have an unbounded number
of wal; places and hence be infinite.

Formally, the concurrency semantics is the function Ng : P — PN It assigns to
a process Py € P with sf(Py) = vag.P]” the Petri net Ne[Po] = (S, T, W, M)
as follows. The set of places is the disjoint union S := SP & SN of the process
places S” and the name places SV:
SP = fg(Reachyq(P]" o))/ =
SN .= nms(Reachpna (PT" ,dg)) U nms(Reachnq (P do)) + 1,
where fg(P7",a) := fg(P7") and nms(P7",a) := a for a name-aware process
(P#", ). Note that since P7" is a parallel composition of elementary fragments,
it is in restricted form and we can access its elements via fg(P7").
To define the set T of transitions, consider the process places [F¢], [F¥], [F5]
and the name places @ in S. We have
T:= {([F,a[Q""]) 1 F®— va.Q”" in standard form}
U {([Ff | F$],a,[Q7"]) 1 Ff | F§ — va.Q”" in standard form}.
We define the weight function for transitions ¢ = ([Ff | F5],a, [Q7"]), for tran-
sitions ¢’ = ([F°],a, [@7"]) the definition is similar. Consider places a and [G*]
and let condition a € @ or a € (a+ 1) yield 1 if it is satisfied and 0 otherwise:
WG, 1) == (dec(FT | F5))([G]) W(a,t) :=aca
W (t,[G€)) = (dec(Q7))([G°]) W(ta):=ae(@+1).

The initial marking is the disjoint union My := MJ & M{JV. Since name places
receive a single token, we define Mé\/ by the set of marked places:

MY = dec(P7") MY = ({ap € S} \ do) U (ao + 1).

This definition in fact mirrors the name-aware transition system.

Lemma 2. For every process P € P with sf(P) = va.P7" the bisimilarity
T (Ne[P]) = Tna(P7",a) holds.

Proof. The lemma can be established by showing that
R = {(MPw MV, ((Q7"],0)) 1 Q7" = H[Fe]esupp(Mp)nM?ﬂF“‘DFe and
b={b; €S 1 MN(by)=1withi<k}}

is a bisimulation relation that connects the initial state of the name-aware tran-
sition system and the initial marking of the concurrency semantics.

By transitivity of bisimilarity, the Lemmas 1 and 2 prove our first main result.
The transition system of a process and that of its concurrency semantics are
bisimilar and the reachable processes can be recomputed from the markings
using the composed bisimulation relation.
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Theorem 1 (Retrievability). For every P € P we have T (N¢[P]) = T (P).

Our second result is a finiteness characterisation. The concurrency semantics is a
finite Petri net if and only if the process generates finitely many restricted names.
We call those processes restriction bounded. Since in the standard transition
system unused restrictions can be removed by va.P = P if a ¢ fn(P), we again
rely on the name-aware transition system to define restriction boundedness.

Definition 1. Consider P € P with sf(P) = va.P7". We call P restriction
bounded if there is a finite set of names m C N so that for every reachable
name-aware process (Q7, b) the inclusion b C m holds.

If the process is not restriction bounded, clearly the concurrency semantics is
infinite as every restricted name yields a place. Theorem 2 shows that also the
reverse holds, i.e., a bounded number of restricted names implies finiteness of
the Petri net. The proof uses the theory of derivatives [Mey09, Proposition 3].

Theorem 2 (Finiteness Characterisation). For any process P € P, the
concurrency semantics Ne[P] is finite if and only if P is restriction bounded.

The Examples 1 and 2 show that structurally stationary and restriction-bounded
processes are incomparable. Section 4 explains how to unify the classes.

4 Combining Structural and Concurrency Semantics

To combine the structural and the concurrency semantics we type restricted
names, and the type determines the semantics that handles a name. More pre-
cisely, restricted names va may carry a tag C. Tagged names vaC are translated
by the concurrency semantics while names va without tag are handled by the
structural semantics. Hence, tagged names yield name places in the combined
semantics and untagged names form fragments that replace the process places.
Like in the concurrency semantics, we assume that tagged names have indices.

Technically, the idea of adding tags raises two problems that need to be
addressed. (1) We need to define a name-aware transition system to generate
tagged names systematically. (2) We need to compute the fragments formed by
untagged names. The solution to both problems is a normal form for processes,
which combines the standard and the restricted form. Before we turn to its
definition, we illustrate the use of tags on our running example.

Ezample 3. Tagging the names ing and outy in the bag example yields process
vinS.voutS.(FILL|in§ | | BAG|inS, outS|) with the equations in Example 1.
Since channel out§ is shared by arbitrarily many processes, we tag it to treat it
by the concurrency semantics. Vice versa, as arbitrarily many instances of wval
are created we omit the tag to handle the name by the structural semantics.
The mixed translation will result in the Petri net in Figure 2 with the name
places sg := z'ng, 7 = z'n(f, sg = outg, and sg := out$. Different from the
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concurrency semantics, the mixed semantics has fragment places

81 := [FILL|in§|] s9 1= [BAG|in§, out |] s5 := [vval.out§ (val)]
83 1= [VU&Z.%(UCLD.FILLI_Z'TLSH 54 := [inS (y).(outS(y) | BAG|in§, out$|)).

Observe that neither the structural nor the concurrency semantics finitely rep-
resent the process. It is also worth comparing the places with those in the Ex-
amples 1 and 2 to see how the mixed semantics unifies the previous translations.

4.1 Mixed Normal Form

The idea of the mixed normal form is to maximise the scopes of tagged active
restrictions va® and to minimise the scopes of untagged ones va. In the result-
ing process P™ = va®.P™f the tagged names va€ surround a process P in
restricted form, which only contains untagged active restrictions. We call P™
a process in mized normal form and denote the set of all processes in mizred
normal form by Ppr. To give an example, process

P = vin§.voutS.(FILL|in§ | | BAG|in§, out§ | | out$ (val))

is in mixed normal form while vval.P is not as the scope of vwval is not minimal.

For every tagged process, the function mf : P — P, computes a structurally
congruent process in mixed normal form. Empty sums M=° are mapped to 0
and sequential processes are left unchanged. For the parallel composition P | Q,
we recursively compute the mixed normal forms mf (P) = va%.P™ and mf (Q) =
vah.Q", where a% and ag may be empty. Like the standard form, the mixed
normal form extrudes the scopes of dg’; and d%,

mf(P | Q) := Vd%.l/d%.(P7f | Q™).

Tagged active restricted names are handled like in the standard form, i.e.,
we have mf(va®.P) := va®.mf(P) if a° € fn(P) and mf(va€.P) := mf(P)
otherwise. For a process va.P with an untagged name va, we recursively compute
mf (P) = vaC.P™. This singles out the tagged names a¢ in P. Commuting va
with vaC yields va€.va.PY. Let P = II;c 1 F; and let I, contain the indices of
the fragments that have a as a free name. Shrinking the scope of va gives

mf (va.P) = vat. (va.(Ilicr, Fy) | Hiep 1, ) -

Example 4. We observed that vval.P ¢ Ppys. An application of the function
gives mf (vval.P) = vin§.vout$.(vval.out§ (val) | FILL|in§ | | BAG |in§, out§ |),
which is a process in mixed normal form.

Lemma 3. For every tagged process P € P function mf yields mf(P) € Puyy
with mf (P) = P. For P™ &€ Py, even mf(P™) = P™ holds.
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4.2 Mixed Semantics

Like the concurrency semantics, the definition of the mixed semantics relies on a
name-aware transition system that organises the creation of fresh tagged active
restrictions. With the mixed normal form va¢.P™ in mind, we define the new
name-aware processes to be pairs (P, a¢), where the active restrictions in P/
are untagged. For these name-aware processes, the name-aware reaction relation
"¢ is adapted accordingly. The only difference to Definition (&) is the use of
the mixed normal form instead of the standard form:

—

P — vb¢.Q™ in mixed normal form and

(PY,a) - (QV,a¢ wif) = .

Vb € b€ ik —1 = maz{i 1 b €ac}.
Without change of notation, let the resulting new name-aware transition system
be T, (P, ac). Tt is straightforward to modify the proof of Lemma 1 in order
to show bisimilarity for the adjusted definition.

Lemma 4. For every tagged process P € P with mf(P) = va®.P™ the bisimi-
larity Tpo(P™,aC) ~ T (P) holds.

The mixed semantics is a variant of the concurrency semantics, so again we
have two sets of places. While the tagged active restrictions ¢ in name-aware
processes ([Q™], l;c) yield name places, the process places known from the con-
currency semantics are replaced by fragment places fg(Q™)/= in the mixed se-
mantics. They represent the fragments generated by untagged active restrictions.
Also the transitions are changed to the form

t=([FL, Q") and t=([F|F] K [Q7])

with the condition that F' (and F; | F») has a name-aware reaction to the
process vb¢.Q™ in mixed normal form, i.e., F —"* vb€.Q" and vb€.Q" € P -
Intuitively, the transition models a communication of processes (or a T-action
or a call to an identifier) within F, which results in process Q™ and generates
the new tagged active restrictions €. The modification of the weight function
is immediate. We denote the mized semantics of a process P € P by Ny [P].
Also the proof of bisimilarity in Lemma 2 still holds for the mixed semantics.

Lemma 5. Consider the tagged process P € P with mf (P) = va®.P™. We have
the bisimilarity T (Nm[P]) = Tno (P, aC).

Combining the bisimilarities in Lemma 4 and 5, we obtain bisimilarity for the
mixed semantics. Moreover, the bisimulation relation used in the proof allows
one to reconstruct the reachable process terms from the markings.

Theorem 3 (Retrievability). For every tagged process P € P the bisimilarity
T (Nm[P]) = T (P) holds.

For processes without tagged names the mixed semantics degenerates to the
structural semantics. The absence of tagged names leads to absence of name
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places in the semantics. Hence, transitions do not generate names and have
the form ([F],0,[Q™]) or ([F} | F»],0,[Q™]). They can be identified with the
transitions ([F],[Q]) and ([F1 | F»],[Q]) in the structural semantics. In case
all names are tagged in the process under consideration, the mixed semantics
corresponds to the concurrency semantics. This follows from the fact that the
mixed normal form coincides with the standard form for these processes. Hence,
the fragment places in the mixed semantics are in fact sequential processes.

Proposition 1 (Conservative Extension). If the process P € P does not use
tagged names, the mized semantics coincides with the structural semantics, i.e.,
Nm[P] = Ns[P]. If the process only uses tagged names, the mized semantics
coincides with the concurrency semantics, i.e., Ny[P] = Ne[P].

According to Theorem 2 the concurrency semantics is finite if and only if the
translated process is restriction bounded. The structural semantics is finite pre-
cisely if there is a finite set of fragments every reachable process consists of
(structural stationarity [Mey09]). We prove the mixed semantics to be finite if
and only if (a) finitely many tagged names are generated and (b) the untagged
names form finitely many fragments.

Definition 2. A tagged process P € P is mixed bounded if there are finite
sets of names mC and fragments {F1, ..., Fy,} so that for every reachable process
(Q™,6°) we have b¢ C ME and for every F € fg(Q™) there is F; with F = F;.

To see that Na[P] is finite iff P is mixed bounded, observe that finiteness of
the set of places implies finiteness of the mixed semantics. Finiteness of the set
of name places is equivalent to Condition (a), finiteness of the set of fragment
places equivalent to Condition (b) in the definition of mixed boundedness.

Theorem 4 (Finiteness Characterisation). For every tagged process P € P
the mized semantics Npm[[P] is finite if and only if P is mized bounded.

Structurally stationary and restriction-bounded processes are mixed bounded,
hence the mixed semantics finitely represents all their syntactic subclasses. In
finite control processes parallel compositions are forbidden within recursions,
but an unbounded number of restricted names may be generated [Dam96]. In-
comparable, restriction-free processes allow for unbounded parallelism but for-
bid the use of restrictions [AMO02]. They are generalised by finite handler pro-
cesses designed for modelling client-server systems [Mey09]. All these classes are
structurally stationary [Mey09]. Restriction-free processes are also generalised
by finite-net processes, which forbid the use of restrictions within recursions but
allow for unbounded parallelism (dual to finite control processes) [BG09]. They
form a subclass of restriction-bounded processes.

We conclude the section with a remark that mixed-bounded processes are a
subclass of the processes of bounded depth.

Proposition 2. If P € P is mized bounded, then it is bounded in depth.

Theorem 4 shows that if a process is mixed bounded then there is a faithful
representation as a finite p/t net. We now consider the reverse direction.
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5 Borderline to Finite P/T Petri Nets

We argue that if we have a superclass of mixed-bounded processes, there will
be no reachability-preserving translation into finite p/t Petri nets. This means
mixed-bounded processes form the borderline between 7-calculus and finite p/t
nets. Since it is always possible to handle particular classes of processes by
specialised translations, we make our argument precise. We show that in a slight
extension of mixed-bounded processes reachability becomes undecidable. Since
the problem is decidable for finite p/t nets [May84], there is no reachability-
preserving translation for the extended process class.

The processes we consider are bounded in depth by one. To establish undecid-
ability of reachability, we reduce the corresponding problem for 2-counter ma-
chines [Min67]. Due to the limitations of the process class, the counter machine
encoding differs drastically from those in the literature [Mil89,AM02,BGZ03]
modelling counters as stacks. The only related encoding that does not rely on
stacks is given in [BGZ04] to prove weak bisimilarity undecidable for CCS;.

We imitate a construction in [DFS98] which shows undecidability of reach-
ability for transfer nets. The idea of Dufourd, Finkel, and Schnoebelen is to
represent a counter ¢; by two places ¢; and ¢j. The test for zero

1 :if ¢; = 0 then goto I’; else ¢; := ¢; — 1; goto I”; (M)

is modelled by the transfer net in Figure 3. To test counter ¢; for being zero,
transition ¢ transfers the content of ¢f to a trash place s;. Since the transition is
enabled although ¢ is empty, the content of ¢; and ¢f coincides as long as the
net properly simulates the counter machine. If a transfer operation is executed
when ¢f is not empty, the amount of tokens in ¢; and ¢] becomes different,
Figure 3 (a) and (b). The difference is preserved throughout the computation,
because increment operations add the same amount of tokens to ¢; and ¢f.
Hence, a state (¢; = v1,c2 = vg,1) with vy,vs € N is reachable in the counter
machine if and only if a marking is reachable in the transfer net where place [ is
marked, counter ¢; and its copy ¢] carry vy tokens, and similar for ¢y and c5.

(@) 1 —Or (b) 1 —QOr
«@X O ‘ O
i @S- =0 « J-- O

Fig. 3. A Petri net with transfer modelling a test for zero in a counter machine. Dashed
lines represent transfer arcs of ¢ that move all tokens in c¢; to the trash place s;.

We represent a counter value by a parallel composition of processes, e.g.
¢f = 2 by a | a. The transfer operation requires us to change arbitrarily many
processes with one communication. To achieve this, we attach the processes @ to
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a so-called process bunch PB|a, ic)s det s tc;J by restricting the name a. The result
is a process va.(PBla, i, de,ter ] | @ | @). Since the name a is restricted, the
process bunch has exclusive access to its processes a. It offers three operations to
modify their numbers. A communication on i.; stands for increment and creates
a new process a. Similarly, a message on d.; decrements the process number by
consuming a process a. A test for zero on {.; creates a new and empty process
bunch for counter ¢{. The old process bunch terminates. A process va.(a | @)
without process bunch is considered to belong to the trash place. Abbreviating
dy, iz, tz by €z, a process bunch is defined by

PB(a, ¢y) := iy.(PBla, ¢ | @) + dy.a.PB|a, ¢; | + t,.vb.PB|b, ¢y .

Labelled instructions [ : inst of the counter machine are translated to process
identifiers K; where inst determines the defining process. The increment opera-
tion [:¢;:=ci+1gotol yields K(¢):= ic,.ic.Kp|¢]. Here, ¢ abbreviates
the channels of all four process bunches de,, ic,, te;, des s - - -, £y Note that both,
¢1 and ¢}, are incremented. Like in transfer nets, the test for zero (#) only
changes the value of counter c¢j. Decrement acts on both counters:

K[(E) = E.Kl/ I_EJ + dcl dci Ky I_EJ

If an empty process bunch accepts a decrement, the system deadlocks (requires
synchronisation actions that we omitted here to ease presentation) and reachabil-
ity is preserved. Finally, a halt instruction [ : halt is translated into K;(¢) := halt.
The full translation of a counter machine CM yields the process

PICM] := II  va,.PBla,, ¢ ]| K |c].

z€{cy,...,ch}

The counter machine CM reaches the state (¢; = v1, ca = v9,1) if and only if its
encoding P[CM] reaches the process

I va,.(PBlas, ¢ | | H"a;)| I  wva,.(PBlag, ¢ | II%a;) | K;|¢].

ze{ci,ci} z€{ca,ch}

The leftmost parallel composition ensures that the process bunches for ¢; and
¢ contain vy processes @, and @, respectively. The construction for c; and ¢
is similar. Combined with the observation that the process P[CM] is bounded
in depth by one, we arrive at the desired undecidability result.

Theorem 5 (Undecidability in Depth One). Consider P,Q € P where the
depth is bounded by one. The problem whether QQ € Reach(P) is undecidable.

Since reachability is decidable for finite p/t nets [May84], there does not exist a
reachability-preserving translation into finite p/t nets for any class of processes
subsuming those of depth one.

We argue that any reasonable extension of mixed-bounded processes will
already subsume those of depth one. Reconsider the counter machine encoding,
it exploits two features that mixed-bounded processes are forbidden to combine.
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First, in a process bunch va.(PB|a, ¢, | | @ | @) the number of processes @ under
the restriction may be unbounded. Second, arbitrarily many instances of va
may be generated. If either of the conditions is dropped, the resulting process is
mixed bounded. In case va is shared by a bounded number of processes a, we
translate the name by the structural semantics. If finitely many instances of va
are generated, we use the concurrency semantics (cf. Examples 1 and 2). Hence,
mixed-bounded processes form the borderline to finite p/t nets.

6 Discussion

Combining the structural semantics in [Mey09] and a new concurrency seman-
tics yields a mixed semantics that finitely represents the mixed-bounded pro-
cesses (Theorem 4). They generalise (Proposition 1) structurally stationary and
restriction-bounded processes, the latter are finitely represented by the new con-
currency semantics (Theorem 2). As it is not possible to extend mixed-bounded
processes without losing reachability (Theorem 5), the class defines the border-
line to finite p/t nets. Since mixed-bounded processes are bounded in depth
(Proposition 2), also this class is more expressive than finite p/t nets, Figure 1.

We use a m-calculus with guarded choice and step-unwinding recursion. The
former permits an elegant definition of fragments and the latter gives us decid-
ability of structural congruence. However, both restrictions do not delimit the
computational expressiveness of the m-calculus, which is the focus of the paper,
but are made for technical convenience.

The definition of the mixed semantics relies on a typing mechanism for re-
stricted names. In our tool PETRUCHIO [Pet08], an approximate algorithm infers
the types automatically. They need not be given by the user.

Finally, our implementation does not rely on the often infinite name-aware
transition system, but computes the mixed semantics as a least fixed point on
the set of Petri nets. Starting with the initially marked places it adds transitions
and places where appropriate. A coverability graph allows us to compute the
simultaneously markable places, and we currently experiment with more efficient
algorithms. The compilation terminates iff the process is mixed bounded.
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