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Abstract. In this paper we propose a technique for verification of mo-
bile systems. We translate finite control processes, which are a well-known
subset of π-Calculus, into Petri nets, which are subsequently used for
model checking. This translation always yields bounded Petri nets with
a small bound, and we develop a technique for computing a non-trivial
bound by static analysis. Moreover, we introduce the notion of safe pro-
cesses, which are a subset of finite control processes, for which our trans-
lation yields safe Petri nets, and show that every finite control process can
be translated into a safe one of at most quadratic size. This gives a pos-
sibility to translate every finite control process into a safe Petri net, for
which efficient unfolding-based verification is possible. Our experiments
show that this approach has a significant advantage over other existing
tools for verification of mobile systems in terms of memory consumption
and runtime.
Keywords: finite control processes, safe processes, π-Calculus, mobile
systems, model checking, Petri net unfoldings.

1 Introduction

Mobile systems permeate our lives and are becoming ever more important. Ad-
hoc networks, where devices like mobile phones, PDAs and laptops form dynamic
connections are common nowadays, and the vision of pervasive (ubiquitous) com-
puting, where several devices are simultaneously engaged in interaction with the
user and each other, forming dynamic links, is quickly becoming a reality. This
leads to the increasing dependency of people on the correct functionality of mo-
bile systems, and to the increasing cost incurred by design errors in such systems.
However, even the conventional concurrent systems are notoriously difficult to
design correctly because of the complexity of their behaviour, and mobile sys-
tems add another layer of complexity due to their dynamical nature. Hence for-
mal methods, especially computer-aided verification tools implementing model
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checking (see, e.g., [CGP99]), have to be employed in the design process to ensure
correct behaviour.

The π-Calculus is a well-established formalism for modelling mobile systems
[Mil99,SW01]. It has an impressive modelling power, but, unfortunately, is dif-
ficult to verify. The full π-Calculus is Turing complete, and hence, in general,
intractable for automatic techniques. A common approach is to sacrifice a part
of the modelling power of π-Calculus in exchange for the possibility of fully au-
tomatic verification. Expressive fragments of π-Calculus have been proposed in
the literature. In particular finite control processes (FCPs) [Dam96] combine an
acceptably high modelling power with the possibility of automatic verification.

In this paper, we propose an efficient model checking technique for FCPs.
We translate general FCPs into their syntactic subclass, called safe processes. In
turn, safe processes admit an efficient translation into safe Petri nets — a well-
investigated model for concurrent systems, for which efficient model checking
techniques have been developed.

This approach has a number of advantages, in particular it does not depend
on a concrete model checking technique, and can adapt any model checker for
safe Petri nets. Moreover, Petri nets are a true concurrency formalism, and so one
can efficiently utilise partial-order techniques. This alleviates the main drawback
of model checking — the state explosion problem [Val98]; that is, even a small
system specification can (and often does) yield a huge state space.

Among partial-order techniques, a prominent one is McMillan’s (finite pre-
fixes of) Petri Net unfoldings (see, e.g., [ERV02,Kho03,McM92]). They rely on
the partial-order view of concurrent computation, and represent system states
implicitly, using an acyclic net, called a prefix. Many important properties of
Petri nets can be reformulated as properties of the prefix, and then efficiently
checked, e.g., by translating them to SAT. Our experiments show that this ap-
proach has a significant advantage over other existing tools for verification of
mobile systems in terms of memory consumption and runtime. The proofs of the
results and other technical details can be found in the technical report [MKS08].

2 Basic Notions

In this section, we recall the basic notions concerning π-Calculus and Petri nets.

The π-Calculus We use a π-Calculus with parameterised recursion as proposed

in [SW01]. Let the set N
df
= {a, b, x, y . . .} of names contain the channels (which

are also the possible messages) that occur in communications. During a process
execution the prefixes π are successively consumed (removed) from the process
to communicate with other processes or to perform silent actions:

π ::= a〈b〉 p a(x) p τ.

The output action a〈b〉 sends the name b along channel a. The input action a(x)
receives a name that replaces x on a. The τ prefix stands for a silent action.



Verification of Mobile Systems Using Net Unfoldings 3

To denote recursive processes, we use process identifiers from the set PIDS
df
=

{H,K,L, . . .}. A process identifier is defined by an equation K(x̃) := P , where
x̃ is a short-hand notation for x1, . . . , xk. When the identifier is called, K⌊ã⌋, it
is replaced by the process obtained from P by replacing the names x̃ by ã. More
precisely, a substitution σ = {ã/x̃} is a function that maps the names in x̃ to
ã, and is the identity for all the names not in x̃. The application of substitution,
Pσ, is defined in the standard way [SW01]. A π-Calculus process is either a call
to an identifier, K⌊ã⌋, a choice process deciding between prefixes,

∑
i∈I πi.Pi,

a parallel composition of processes, P1 | P2, or the restriction of a name in a
process, νa.P :

P ::= K⌊ã⌋ p
∑

i∈I πi.Pi p P1 | P2 p νa.P .

The set of all processes is denoted by P. We abbreviate empty sums (i.e., those
with I = ∅) by 0 and use M or N to denote arbitrary sums. We also use the
notation Πn

i=1Pi for iterated parallel composition. Processes that do not contain
the parallel composition operator are called sequential. We denote sequential
processes by PS , QS and the identifiers they use by KS . An identifier KS is de-
fined by KS(x̃) := PS where PS is a sequential process. W.l.o.g., we assume that
every process either is 0 or does not contain 0. To see that this is no restriction
consider the process a〈b〉.0. We transform it to a〈b〉.K⌊−⌋ with K(−) := 0.

The input action a(b) and the restriction νc.P bind the names b and c, re-
spectively. The set of bound names in a process P is bn (P ). A name which is not
bound is free, and the set of free names in P is fn (P ). We permit α-conversion
of bound names. Therefore, w.l.o.g., we assume that a name is bound at most
once in a process and bn (P )∩ fn (P ) = ∅. Moreover, if a substitution σ = {ã/x̃}
is applied to a process P , we assume bn (P ) ∩ (ã ∪ x̃) = ∅.

We use the structural congruence relation in the definition of the behaviour
of a process term. It is the smallest congruence where α-conversion of bound
names is allowed, + and | are commutative and associative with 0 as the neutral
element, and the following laws for restriction hold:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn (P ).

The last rule is called scope extrusion. The behaviour of π-Calculus processes is
then determined by the reaction relation → ⊆ P × P defined by:

(Par)
P → P ′

P | Q → P ′ | Q
(Tau) τ.P + M → P (Res)

P → P ′

νa.P → νa.P ′

(React) (x(y).P + M) | (x〈z〉.Q + N) → P{z/y} | Q

(Const) K⌊ã⌋ → P{ã/x̃}, if K(x̃) := P

(Struct)
P → P ′

Q → Q′
, if P ≡ Q and P ′ ≡ Q′.

By Reach (P ) we denote the set of all processes reachable from P by the reaction
relation. We use a client-server system to illustrate the behaviour of a π-Calculus
process. It will serve us as a running example throughout the paper.
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Example 1. Consider the process C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ modelling two clients
and a sequential server, with the corresponding process identifiers defined as

C (url) := νip.url〈ip〉.ip(s).s(x).C ⌊url⌋

S (url) := url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋.

The server is located at some URL, S⌊url⌋. To contact it, a client sends its
ip address on the channel url , url〈ip〉. This ip address is different for every
client, therefore it is restricted. The server receives the IP address of the client
and stores it in the variable y, url(y). To establish a private connection with
the client, the server creates a temporary session, νses, which it passes to the
client, y〈ses〉. Note that by rule (React), y is replaced by ip during the system
execution. Thus, the client receives this session, ip(s). Client and server then
continue to interact, which is not modelled explicitly. At some point, the server
decides that the session should be ended. It sends the session object itself to
the client, ses〈ses〉, and becomes a server again, S⌊url⌋. The client receives the
message, s(x), and calls its recursive definition to be able to contact the server
once more, C ⌊url⌋. The model can contain several clients (two in our case), but
the server is engaged with one client at a time. ♦

Our theory employs a standard form of process terms, the so-called restricted
form [Mey07]. It minimises the scopes of all restricted names νa not under
a prefix π. Then processes congruent with 0 are removed. For example, the
restricted form of P = νa.νd.(a〈b〉.Q | b〈c〉.R) is νa.a〈b〉.Q | b〈c〉.R, but the
restricted form of a〈b〉.P is a〈b〉.P itself. A fragment is a process of the form

F ::= K⌊ã⌋ p
∑

i∈I 6=∅ πi.Pi p νa.(F1 | . . . | Fn),

where Pi ∈ P and a ∈ fn (Fi) for all i. We denote fragments by F or G. A
process Pν is in the restricted form, if it is a parallel composition of fragments,

Pν = Πi∈IGi. The set of fragments in Pν is denoted by Frag (Pν)
df
= {Gi | i ∈ I}.

The set of all processes in restricted form is denoted by Pν .
For every process P , the function (−)ν computes a structurally congruent

process (P )ν in the restricted form [Mey07]. For a choice composition and a

call to a process identifier (−)ν is defined to be the identity, and (P | Q)ν

df
=

(P )ν | (Q)ν . In the case of restriction, νa.P , we first compute the restricted
form of P , which is a parallel composition of fragments, (P )ν = Πi∈IFi. We
then restrict the scope of a to the fragments Fi where a is a free name (i.e.,

i ∈ Ia ⊆ I): (νa.P )ν

df
= νa.(Πi∈Ia

Fi) | Πi∈I\Ia
Fi.

Lemma 1. For every process P ∈ P it holds (P )ν ∈ Pν and P ≡ (P )ν . For
Pν ∈ Pν we have (Pν)ν = Pν .

If we restrict structural congruence to processes in restricted form, we get the
restricted equivalence relation ≡̂ . It is the smallest equivalence on processes
in restricted form that permits (1) associativity and commutativity of parallel
composition and (2) replacing fragments by structurally congruent ones, i.e.,
F | Pν ≡̂G | Pν if F ≡ G. It characterises structural congruence [Mey07]:

Lemma 2. P ≡ Q iff (P )ν ≡̂ (Q)ν .
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Petri Nets A net is a triple N
df
= (P, T,W ) such that P and T are disjoint sets of

respectively places and transitions, and W : (P×T )∪(T×P ) → N
df
= {0, 1, 2, . . .}

is a weight function. A marking of N is a multiset M of places, i.e., M : P → N.
The standard rules about drawing nets are adopted in this paper, viz. places
are represented as circles, transitions as boxes, the weight function by arcs with
numbers (the absence of an arc means that the corresponding weight is 0, and an
arc with no number means that the corresponding weight is 1), and the marking

is shown by placing tokens within circles. As usual, •z
df
= {y | W (y, z) > 0}

and z•
df
= {y | W (z, y) > 0} denote the pre- and postset of z ∈ P ∪ T , and

•Z
df
=

⋃
z∈Z

•z and Z• df
=

⋃
z∈Z z•, for all Z ⊆ P ∪T . In this paper, the presets of

transitions are restricted to be non-empty, •t 6= ∅ for every t ∈ T . A net system

is a pair Υ
df
= (N,M0) comprising a finite net N and an initial marking M0.

A transition t ∈ T is enabled at a marking M , denoted M [t〉, if M(p) ≥
W (p, t) for every p ∈ •t. Such a transition can be fired, leading to the marking

M ′ with M ′(p)
df
= M(p) − W (p, t) + W (t, p), for every p ∈ P . We denote this

by M [t〉M ′ or M [〉M ′ if the identity of the transition is irrelevant. The set of
reachable markings of Υ is the smallest (w.r.t. ⊆) set [M0〉 containing M0 and
such that if M ∈ [M0〉 and M [〉M ′ then M ′ ∈ [M0〉.

A net system Υ is k-bounded if, for every reachable marking M and every
place p ∈ P , M(p) ≤ k, and safe if it is 1-bounded. Moreover, Υ is bounded if it
is k-bounded for some k ∈ N. One can show that the set [M0〉 is finite iff Υ is
bounded. W.l.o.g., we assume that for net systems known to be safe the range
of the weight function is {0, 1}.

3 A Petri Net Translation of the π-Calculus

We recall the translation of π-Calculus processes into Petri nets defined in
[Mey07]. The translation is based on the observation that processes are con-
nected by restricted names they share. Consider the fragment νa.(K⌊a⌋ | L⌊a⌋).
As the scope of a cannot be shrunk using the scope extrusion rule, the restricted
name a ‘connects’ the processes K⌊a⌋ and L⌊a⌋. The idea of the translation is
to have a separate place in the Petri net for each reachable ‘bunch’ of processes
connected by restricted names, i.e., the notion of fragments plays a crucial role
in the proposed translation. The algorithm takes a π-Calculus process P and
computes a Petri net PN [[P ]] as follows:

– The places in the Petri net are all the fragments of every reachable process
(more precisely, the congruence classes of fragments w.r.t. ≡).

– The transitions consist of three disjoint subsets:

• Transitions t = ([F ] , [Q]) model reactions inside a fragment F , where Q
is such that F → Q and [F ] is a place (i.e., F is a reachable fragment).
These reactions are communications of processes within F , τ actions,
or calls to process identifiers, K⌊ã⌋. There is an arc weighted one from
place [F ] to t.
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• Transitions t = ([F | F ] , [Q]) model reactions between two structurally
congruent reachable fragments along public channels, i.e., F | F → Q
and [F ] is a place. There is an arc weighted two from [F ] to t. If this
transition is fired, F contains a sequential process sending on a public
channel and another one receiving on that channel, and there are two
copies (up to ≡) of F in the current process.

• Transitions t = ([F1 | F2] , [Q]) model reactions between reachable frag-
ments F1 6≡ F2 along public channels: F1 | F2 → Q and [F1] and [F2] are
places. There are two arcs each weighted one from [F1] and [F2] to t.

The postsets of each kind of transitions are the reachable fragments in the
restricted form of Q. If the fragment G occurs (up to ≡) k ∈ N times in
(Q)ν , then there is an arc weighted k from ([F ] , [Q]) to [G]. For example,
from the transition (

[
τ.Π3

i=1K⌊a⌋
]
,
[
Π3

i=1K⌊a⌋
]
) there is an arc weighted

three to the place [K⌊a⌋].
– The initial marking of place [F ] in PN [[P ]] equals to the number of fragments

in the restricted form of P that are congruent with F .

Note that if it is known in advance that the resulting Petri net will be safe, then
no transition incident to an arc of weight more than one can fire, and so they can
be dropped by the translation (in particular, the second kind of transitions will
never appear). This fact can be used to optimise the translation of safe processes
defined in Section 5.

It turns out that a π-Calculus process and the corresponding Petri net ob-
tained by this translation have isomorphic transition systems [Mey07]. Hence,
one can verify properties specified for a process P using PN [[P ]]. Returning to
our running example, this translation yields the Petri net in Figure 1(a) for the
process in Example 1.

Our translation is particularly suitable for verification because it represents
an expressive class of processes (viz. FCPs) with potentially unbounded creation
of restricted names as bounded Petri nets.

4 Boundedness of FCP Nets

For general π-Calculus processes, the translation presented in the previous sec-
tion may result in infinite Petri nets, and even when the result is finite, it can
be unbounded, which is bad for model checking. (Model checking of even sim-
plest properties of unbounded Petri nets is ExpSpace-hard.) To make verifica-
tion feasible in practice, we need bounded nets, preferably even safe ones (the
unfolding-based verification is especially efficient for safe nets), and so we have
to choose an expressive subclass of π-Calculus which admits efficient verification.

In this section, we investigate the translation of the well-known finite control
processes (FCPs), a syntactic subclass of the π-Calculus [Dam96]. FCPs are
parallel compositions of a finite number of sequential processes PS i, PFC =
νã.(PS1 | . . . | PSn), and so new threads are never created and the degree of
concurrency is bounded by n. The main result in this section states that the Petri
net PN [[PFC ]] is bounded, and a non-trivial bound can be derived syntactically
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p1

p2

t1

t2

p3

p4

t3 p5 t4 p6 t5

p1 = [C ⌊url⌋] p2 = [S⌊url⌋]

p3 =
ˆ

νip.url〈ip〉.ip(s).s(x).C ⌊url⌋
˜

p4 = [url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋]

p5 =
ˆ

νip.(ip(s).s(x).C ⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S⌊url⌋)
˜

p6 = [νses.(ses(x).C ⌊url⌋ | ses〈ses〉.S⌊url⌋)]

(a)

p1

p2

p3

t1

t2

t3

p4

p5

p6

t4

t5

p7

p8

t6

t7

p9

p10

t8

t9

p1 =
ˆ

C 1⌊url⌋
˜

p2 =
ˆ

S3⌊url⌋
˜

p3 =
ˆ

C 2⌊url⌋
˜

p4 =
ˆ

νip.url〈ip〉.ip(s).s(x).C 1⌊url⌋
˜

p5 =
ˆ

url(y).νses.y〈ses〉.ses〈ses〉.S3⌊url⌋
˜

p6 =
ˆ

νip.url〈ip〉.ip(s).s(x).C 2⌊url⌋
˜

p7 =
ˆ

νip.(ip(s).s(x).C 1⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S3⌊url⌋)
˜

p8 =
ˆ

νip.(ip(s).s(x).C 2⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S3⌊url⌋)
˜

p9 =
ˆ

νses.(ses(x).C 1⌊url⌋ | ses〈ses〉.S3⌊url⌋)
˜

p10 =
ˆ

νses.(ses(x).C 2⌊url⌋ | ses〈ses〉.S3⌊url⌋)
˜

(b)

Fig. 1. The Petri nets corresponding to the FCP in Example 1 (a) and to the corre-
sponding safe process in Example 3 (b).
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from the structure of PFC . The intuitive idea is that k tokens on a place [F ]
require at least k processes PS i in PFC = νã.(PS1 | . . . | PSn) that share some
process identifiers.

To make the notion of sharing process identifiers precise we define orbits. The
orbit of a sequential process PS i consists of the identifiers PS i calls (directly or
indirectly). With this idea, we rephrase our result: if there are at most k orbits
in PFC whose intersection is non-empty then the net PN [[PFC ]] is k-bounded.

Generally, the result states that the bound of PN [[PFC ]] is small. If PFC =
νã.(PS1 | . . . | PSn) then PN [[PFC ]] is trivially n-bounded, as the total number
of orbits is n. Often, our method yields bounds which are better than n. This
should be viewed in the light of the fact that for general bounded Petri nets the
bound is double-exponential in the size of the net [Esp98]. This limits the state
space in our translation and makes such nets relatively easy to model check.

The intuitive idea of the orbit function is to collect all process identifiers
syntactically reachable from a given process. We employ the function ident :
P → P(PIDS ) which gives the set of process identifiers ident(P ) that are in the
process P ∈ P:

ident(K⌊ã⌋)
df
= {K} ident(

∑
i∈I πi.Pi)

df
=

⋃
i∈I ident(Pi)

ident(νa.P )
df
= ident(P ) ident(P | Q)

df
= ident(P ) ∪ ident(Q).

The orbit of a process P , orb(P ), is the smallest (w.r.t. ⊆) set such that
ident(P ) ⊆ orb(P ) and if a process identifier K with a defining equation K(x̃) :=
Q is in orb(P ) then ident(Q) ⊆ orb(P ). The maximal number of intersecting or-
bits of a process PFC = νã.(PS1 | . . . | PSn) is

#∩(PFC)
df
= max

{
|I| | I ⊆ {1, . . . , n} and

⋂
i∈Iorb(PS i) 6= ∅

}
.

The main result of this section can now be stated as follows.

Theorem 1. PN [[PFC ]] is #∩(PFC)-bounded.

Example 2. Consider PFC = C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ in Example 1. We have
orb(S⌊url⌋) = {S} and orb(C ⌊url⌋) = {C} for both clients. Thus, #∩(PFC) = 2,
and so the corresponding Petri net PN [[PFC ]] in Figure 1(a) is 2-bounded. This
is an improvement on the trivial bound of 3 (i.e., the number of concurrent
processes in the system). ♦

We spend the rest of the section sketching the proof of this result. The Petri
net PN [[PFC ]] is k-bounded iff in every reachable process Q ∈ Reach (PFC)
there are at most k fragments that are structurally congruent. Thus, we need
to show that the number of structurally congruent fragments is bounded by
#∩(PFC) in every reachable process Q. To do so, we assume there are k fragments
F1 ≡ . . . ≡ Fk in Q and conclude that there are at least k intersecting orbits
in PFC , i.e., #∩(PFC) ≥ k. We argue as follows. From structural congruence we
know that the identifiers in all Fi are equal. We now show that the identifiers
of the Fi are already contained in the orbits of different PS i in PFC . Thus, the
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intersection orb(PS1) ∩ . . . ∩ orb(PSk) is not empty. This means that we have
found k intersecting orbits, i.e., #∩(PFC) ≥ k.

To show ident(Fi) ⊆ orb(PS i) we need to relate the processes in every reach-
able fragment with the initial process PFC = νã.(PS1 | . . . | PSn). To achieve
this, we prove that every reachable process is a parallel composition of subpro-
cesses of PS i. These subprocesses are in the set of derivatives of PS i, which are
defined by removing prefixes from PS i as if those prefixes were consumed.

Definition 1. The function der : P → P(P) assigns to every process P the set
der(P ) as follows:

der(0)
df
= ∅ der(K⌊ã⌋)

df
= {K⌊ã⌋}

der(
∑

i∈I 6=∅ πi.Pi)
df
= {

∑
i∈I 6=∅ πi.Pi} ∪

⋃
i∈Ider(Pi)

der(νa.P )
df
= der(P ) der(P | Q)

df
= der(P ) ∪ der(Q).

Consider an FCP PFC = νã.(PS1 | . . . | PSn). We assign to every PS i the
set of derivatives, derivatives(PS i). It is the smallest (w.r.t. ⊆) set such that
der(PS i) ⊆ derivatives(PS i) and if KS⌊ã⌋ ∈ derivatives(PS i) then der(PS) ⊆
derivatives(PS i), where KS(x̃) := PS . ♦

Using structural congruence, every process reachable from PFC can be rewritten
as a parallel composition of derivatives of the processes in PFC . This technical
lemma relates every reachable process with the processes in PFC .

Lemma 3. Let PFC = νã.(PS1 | . . . | PSn). Then every Q ∈ Reach (PFC)
is structurally congruent with νc̃.(Q1σ1 | . . . | Qmσm) such that there is an
injective function inj : {1, . . . ,m} → {1, . . . , n} with Qi ∈ derivatives(PS inj (i))
and σi : fn (Qi) → c̃ ∪ fn (PFC).

For the derivatives Q of PS it holds that the identifiers in Q are in the orbit of
PS . Combined with the previous lemma, this relates the identifiers in a reachable
fragment and the orbits in the initial process.

Lemma 4. If Q ∈ derivatives(PS) then ident(Q) ⊆ orb(PS).

By an induction along the structure of processes we show that for all P ∈ P the
following holds: if Q ∈ der(P ) then ident(Q) ⊆ ident(P ). With this observation,
Lemma 4 follows by an induction on the structure of derivatives(PS).

We return to the argumentation on Theorem 1. Consider a reachable process
Q ≡ ΠkF | Q′ for some Q′. By Lemma 3, Q ≡ νc̃.(Q1σ1 | . . . | Qmσm) with
Qi ∈ derivatives(PS inj (i)). By transitivity, ΠkF |Q′ ≡ νc̃.(Q1σ1 | . . . |Qmσm).

By Lemmata 1 and 2, ΠkF | (Q′)ν ≡̂Πi∈IGi = (νc̃.(Q1σ1 | . . . | Qmσm))ν for
some fragments Gi.

By definition of ≡̂ , k of the Gis are structurally congruent. As identifiers
are preserved by ≡, these Gis have the same identifiers. Each Gi is a parallel
composition of some Qiσis. With Lemma 4, Qi ∈ derivatives(PS inj (i)) implies
ident(Qi) ⊆ orb(PS inj (i)). Since every Gi consists of different Qis and inj is
injective, we have k processes PS inj (i) sharing identifiers, i.e., Theorem 1 holds.
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In the case the orbits of all PS i in PFC = νã.(PS1 | . . . | PSn) are pairwise
disjoint, Theorem 1 implies the safeness of the Petri net PN [[PFC ]]. In the fol-
lowing section we show that every FCP can be translated into a bisimilar process
with disjoint orbits.

5 From FCPs to Safe Processes

Safe nets are a prerequisite to apply efficient unfolding-based verification tech-
niques. According to Theorem 1, the reason for non-safeness of the nets of ar-
bitrary FCPs is the intersection of orbits. In this section we investigate a trans-
lation of FCPs into their syntactic subclass called safe processes, where the
sequential processes comprising an FCP have pairwise disjoint orbits. The idea
of translating PFC = νã.(PS1 | . . . | PSn) to the safe process Safe(PFC) is to
create copies of the process identifiers that are shared among several PS i, i.e.,
of those that belong to several orbits. (The corresponding defining equations are
duplicated as well.) The intuition is that every PS i gets its own set of process
identifiers (together with the corresponding defining equations) which it can call
during system execution. Hence, due to Theorem 1, safe processes are mapped
to safe Petri nets.

The main result in this section states that the processes PFC and Safe(PFC)
are bisimilar, and, moreover, that the fragments are preserved in some sense.
Furthermore, the size of the specification Safe(PFC) is at most quadratic in the
size of PFC , and this translation is optimal.

Definition 2. An FCP PFC = νã.(PS1 | . . . | PSn) is a safe process if the
orbits of all PS i are pairwise disjoint, i.e., for all i, j ∈ {1, . . . , n} : if i 6= j then
orb(PS i) ∩ orb(PS j) = ∅. ♦

To translate an FCP PFC = νã.(PS1 | . . . | PSn) into a safe process Safe(PFC),
we choose unique numbers for every sequential process, say i for PS i. We then
rename every process identifier K in the orbit of PS i to a fresh identifier Ki

using the unique number i. We use the functions renk : P → P, defined for
every k ∈ N by

renk(K)
df
= Kk renk(K⌊ã⌋)

df
= renk(K)⌊ã⌋

renk(
∑

i∈I πi.Pi)
df
=

∑
i∈I πi.renk(Pi) renk(P | Q)

df
= renk(P ) | renk(Q)

renk(νa.P )
df
= νa.renk(P ).

Employing the renk function, the FCP PFC = νã.(PS1 | . . . | PSn) is translated
into a safe process as follows:

Safe(PFC)
df
= νã.(ren1(PS1) | . . . | renn(PSn)),

where the defining equation of Kk
S is Kk

S(x̃) := renk(PS) if KS(x̃) := PS . The
original defining equations KS(x̃) := PS are then removed. We demonstrate this
translation on our running example.
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Example 3. Consider the FCP PFC = C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ in Example 1.
The translation is Safe(PFC) = C 1⌊url⌋ | C 2⌊url⌋ | S 3⌊url⌋, where

C i(url) := νip.url〈ip〉.ip(s).s(x).C i⌊url⌋, i = 1, 2

S 3(url) := url(y).νses.y〈ses〉.ses〈ses〉.S 3⌊url⌋.

The equations for C and S are removed. ♦

In the example, we just created another copy of the equation defining a client.
In fact, the following result shows that the size of the translated system is at
most quadratic in the size of the original specification. We measure the size of
a π-Calculus process as the sum of the sizes of all the defining equations and
the size of the main process. The size of a process is the number of prefixes,
operators, and identifiers (with parameters) it uses. So the size of 0 is 1, the size
of K⌊ã⌋ is 1 + |ã|, the size of

∑
i∈I 6=∅ πi.Pi is 2|I| − 1 +

∑
i∈I size (Pi) (as there

are |I| prefixes and |I| − 1 pluses), the size of P | Q is 1 + size (P ) + size (Q),
and the size of νa.P is 1 + size (P ).

Proposition 1 (Size). Let PFC = νã.(PS1 | . . . | PSn) be an FCP. Then
size(Safe(PFC)) ≤ n · size(PFC).

Note that since n ≤ size(PFC), this result shows that the size of Safe(PFC) is at
most quadratic in the size of PFC .

Safe(PFC) is a safe process; this follows from the compatibility of the renam-
ing function with the function orb: orb(renk(P )) = renk(orb(P )).

Proposition 2 (Safeness). Let PFC = νã.(PS1 | . . . | PSn) be an FCP. Then
Safe(PFC) is a safe process.

The translation of PFC into Safe(PFC) does not alter the behaviour of the pro-
cess: both processes are bisimilar with a meaningful bisimulation relation. This
relation shows that the processes reachable from PFC and Safe(PFC) coincide
up to the renaming of process identifiers. Thus, not only the behaviour of PFC is
preserved by Safe(PFC), but also the structure of the reachable process terms, in
particular their fragments. Technically, we define the relation Ri by (P,Q) ∈ Ri

iff there are names ã and sequential processes PS1, . . . , PSn, where the topmost
operator of every PS i is different from ν, such that

P ≡ νã.(PS1 | . . . | PSn) and Q ≡ νã.(PS1 | . . . | reni(PS i) | . . . | PSn).

Note that it is obvious from this definition that νã.(PS1 | . . . | PSn) and
νã.(PS1 | . . . | reni(PS i) | . . . | PSn) are related by Ri.

Theorem 2. For any i ∈ {1, . . . , n}, the relation Ri is a bisimulation that
relates the FCPs νã.(PS1 | . . . | PSn) and νã.(PS1 | . . . | reni(PS i) | . . . | PSn).

By transitivity of bisimulation, Theorem 2 allows for renaming several PS i and
still gaining a bisimilar process. In particular, renaming all n processes in PFC =
νã.(PS1 | . . . | PSn) yields the result for the safe system Safe(PFC).
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Consider a process Q which is reachable from PFC . We argue that the struc-
ture of Q is essentially preserved (1) by the translation of PFC to the safe pro-
cess Safe(PFC) and then (2) by the translation of Safe(PFC) to the safe Petri
net PN [[Safe(PFC)]]. With this result we can reason about the structure of all
processes reachable from PFC using PN [[Safe(PFC)]].

According to Theorem 2, PFC and Safe(PFC) are bisimilar via the rela-
tion R1 ◦ · · · ◦ Rn, e.g., a process Q=νa.νb.(H⌊a⌋ | K⌊a⌋ | L⌊b⌋) reachable
from PFC corresponds to Q′=νa.νb.(H1⌊a⌋ | K2⌊a⌋ | L3⌊b⌋) reachable from
Safe(PFC). Hence, one can reconstruct the fragments of Q form those of Q′.
Indeed, compute the restricted forms: (Q)ν =νa.(H⌊a⌋ | K⌊a⌋) | νb.L⌊b⌋ and
(Q′)ν =νa.(H1⌊a⌋ |K2⌊a⌋) | νb.L3⌊b⌋. Dropping the superscripts in (Q′)ν yields
the fragments in (Q)ν , since only the restricted names influence the restricted
form of a process, not the process identifiers. The transition systems of Safe(PFC)
and PN [[Safe(PFC)]] are isomorphic, e.g., Q′ corresponds to the marking M =
{
[
νa.(H1⌊a⌋ | K2⌊a⌋)

]
,
[
νb.L3⌊b⌋

]
} [Mey07, Theorem 1]. Thus, from a marking

of PN [[Safe(PFC)]] one can obtain the restricted form of a reachable process
in Safe(PFC), which in turn corresponds to the restricted form in PFC (when
the superscripts of process identifiers are dropped). Furthermore, the bisimula-
tion between PFC and PN [[Safe(PFC)]] allows one to reason about the behaviour
of PFC using PN [[Safe(PFC)]]. (This bisimulation follows from the bisimulation
between PFC and Safe(PFC) and the isomorphism of the transition systems of
Safe(PFC) and PN [[Safe(PFC)]]).

We discuss our choice to rename all PS i in νã.(PS1 | . . . | PSn) to gain
a safe process. One might be tempted to improve our translation by renaming
only a subset of processes PS i whose orbits intersect with many others, in hope
to get a smaller specification than Safe(PFC). We show that this idea does not
work, and the resulting specification will be of the same size, i.e., our definition
of Safe(PFC) is optimal. First, we illustrate this issue with an example.

Example 4. Let P = τ.K⌊ã⌋ + τ.L⌊ã⌋, R = τ.K⌊ã⌋ and S = τ.L⌊ã⌋, where
K(x̃) := Def 1 and L(x̃) := Def 2. Consider the process P | R | S. The orbits of
P and R as well as the orbits of P and S intersect.

The renaming of P yields ren1(P ) | R | S = τ.K1⌊ã⌋+τ.L1⌊ã⌋ | R | S, where
K and L are defined above and K1(x̃) := ren1(Def 1), L

1(x̃) := ren1(Def 2). This
means we create additional copies of the shared identifiers K and L.

The renaming of R and S yields the process P | ren1(R) | ren2(S) =
P | τ.K1⌊ã⌋ | τ.L2⌊ã⌋, where we create new defining equations for the iden-
tifiers K1 and L2. The size of our translation is the same. ♦

This illustrates that any renaming of processes PS i where the orbits overlap
results in a specification of the same size. To render this intuition precisely, we
call Kk

S(x̃) := renk(PS) a copy of the equation KS(x̃) := PS , for any k ∈ N. We
also count KS(x̃) := PS as a copy of itself.

Proposition 3 (Necessary condition for safeness). The number of copies
of an equation KS(x̃) := PS necessary to get a safe process from PFC equals to
the number of orbits that contain KS .
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(a)

(¬confe4∨confe1)∧(¬confe4∨confe2)∧(¬confe5∨confe2)∧(¬confe5∨confe3)∧
(¬confe6∨confe4)∧(¬confe7∨confe5)∧(¬confe4∨¬confe5) .

(b)

confe1∧confe2∧confe3∧(¬confe1∨¬confe2∨confe4∨confe5)∧(¬confe2∨¬confe3∨
confe4∨confe5)∧(¬confe4∨confe6)∧(¬confe5∨confe7)∧¬confe6∧¬confe7 .

(c)

Fig. 2. A finite and complete unfolding prefix of the Petri net in Figure 1(b) (a), the
corresponding configuration constraint CONF (b), and the corresponding violation
constraint VIOL expressing the deadlock condition (c).

Now we show that our translation provides precisely this minimal number of
copies of defining equations for every identifier, i.e., that it is optimal.

Proposition 4 (Optimality of our translation). Our translation Safe(PFC)
provides as many copies of a defining equation KS(x̃) := PS as there are orbits
containing KS .

Remark 1. Note that one can, in general, optimise the translation by performing
some dynamic (rather than syntactic) analysis, and produce a smaller process
whose corresponding Petri net is safe; however, our notion of a safe process is
syntactic rather than dynamic, and so the resulting process will not be safe
according to our definition. ♦

6 Net Unfoldings

A finite and complete unfolding prefix of a bounded Petri net Υ is a finite acyclic
net which implicitly represents all the reachable states of Υ together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding Υ ,
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by successive firing of transitions, under the following assumptions: (i) for each
new firing a fresh transition (called an event) is generated; (ii) for each newly
produced token a fresh place (called a condition) is generated. For example, a
finite and complete prefix of the Petri net in Figure 1(b) is shown in Figure 2(a).
Due to its structural properties (such as acyclicity), the reachable states of Υ
can be represented using configurations of its unfolding. A configuration C is
a downward-closed set of events (being downward-closed means that if e ∈ C
and f is a causal predecessor of e then f ∈ C) without choices (i.e., for all
distinct events e, f ∈ C, •e ∩ •f = ∅). For example, in the prefix in Figure 2(a),
{e1, e2, e4} is a configuration, whereas {e1, e2, e6} and {e1, e2, e3, e4, e5} are not
(the former does not include e4, which is a predecessor of e6, while the latter
contains a choice between e4 and e5). Intuitively, a configuration is a partially
ordered execution, i.e., an execution where the order of firing some of its events
(viz. concurrent ones) is not important; e.g., the configuration {e1, e2, e4} corre-
sponds to two totally ordered executions reaching the same final marking: e1e2e4

and e2e1e4. Since a configuration can correspond to multiple executions, it is of-
ten much more efficient in model checking to explore configurations rather than
executions. We will denote by [e] the local configuration of an event e, i.e., the
smallest (w.r.t. ⊆) configuration containing e (it is comprised of e and its causal
predecessors).

The unfolding is infinite whenever the original Υ has an infinite run; however,
since Υ is bounded and hence has only finitely many reachable states, the un-
folding eventually starts to repeat itself and can be truncated (by identifying a
set of cut-off events) without loss of information, yielding a finite and complete
prefix. Intuitively, an event e can be declared cut-off if the already built part
of the prefix contains a configuration Ce (called the corresponding configuration
of e) such that its final marking coincides with that of [e] and Ce is smaller than
[e] w.r.t. some well-founded partial order on the configurations of the unfolding,
called an adequate order [ERV02].

Efficient algorithms exist for building such prefixes [ERV02,Kho03], which
ensure that the number of non-cut-off events in a complete prefix never exceeds
the number of reachable states of the original Petri net. Moreover, complete
prefixes are often exponentially smaller than the corresponding state graphs,
especially for highly concurrent Petri nets, because they represent concurrency
directly rather than by multidimensional interleaving ‘diamonds’ as it is done
in state graphs. For example, if the original Petri net consists of 100 transitions
which can fire once in parallel, the state graph will be a 100-dimensional hyper-
cube with 2100 vertices, whereas the complete prefix will coincide with the net
itself. Also, if the example in Figure 1(b) is scaled up (by increasing the number
of clients), the size of the prefix is linear in the number of clients, even though
the number of reachable states grows exponentially. Thus, unfolding prefixes
significantly alleviate the state explosion in many practical cases.

A fundamental property of a finite and complete prefix is that each reachable
marking of Υ is a final marking of some configuration C (without cut-offs) of the
prefix, and, conversely, the final marking of each configuration C of the prefix is a
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reachable marking in Υ . Thus various reachability properties of Υ (e.g., marking
and sub-marking reachability, fireability of a transition, mutual exclusion of a
set of places, deadlock, and many others) can be restated as the corresponding
properties of the prefix, and then checked, often much more efficiently.

Most of ‘interesting’ computation problems for safe Petri nets are PSpace-
complete [Esp98], but the same problems for prefixes are often in NP or even
P. (Though the size of a finite and complete unfolding prefix can be exponential
in the size of the original Petri net, in practice it is often relatively small, as
explained above.) A reachability property of Υ can easily be reformulated for
a prefix, and then translated into some canonical problem, e.g., Boolean satis-
fiability (SAT). Then an off-the-shelf solver can be used for efficiently solving
it. Such a combination ‘unfolder & solver’ turns out to be quite powerful in
practice [KKY04].

Unfolding-Based Model Checking This paper concentrates on the following
approach to model checking. First, a finite and complete prefix of the Petri net
unfolding is built. It is then used for constructing a Boolean formula encoding
the model checking problem at hand. (It is assumed that the property being
checked is the unreachability of some ‘bad’ states, e.g., deadlocks.) This formula
is unsatisfiable iff the property holds, and such that any satisfying assignment
to its variables yields a trace violating the property being checked.

Typically such a formula would have for each non-cut-off event e of the prefix
a variable confe (the formula might also contain other variables). For every

satisfying assignment A, the set of events C
df
= {e | confe = 1} is a configuration

whose final marking violates the property being checked. The formula often has
the form CONF ∧ VIOL. The role of the property-independent configuration
constraint CONF is to ensure that C is a configuration of the prefix (not just
an arbitrary set of events). CONF can be defined as the conjunction of the
formulae

∧

e∈E\Ecut

∧

f∈••e

(¬confe ∨ conff ) and
∧

e∈E\Ecut

∧

f∈Che

(¬confe ∨ ¬conff ) ,

where Che
df
= {((•e)•\{e})\Ecut} is the set of non-cut-off events which are in the

direct choice relation with e. The former formula is basically a set of implications
ensuring that if e ∈ C then its immediate predecessors are also in C, i.e., C is
downward closed. The latter one ensures that C contains no choices. CONF is
given in the conjunctive normal form (CNF) as required by most SAT solvers.
For example, the configuration constraint for the prefix in Figure 2(a) is shown
in part (b) of this figure. The size of this formula is quadratic in the size of the
prefix, but can be reduced down to linear by introducing auxiliary variables.

The role of the property-dependent violation constraint VIOL is to express
the property violation condition for a configuration C, so that if a configuration C
satisfying this constraint is found then the property does not hold, and C can be
translated into a violation trace. For example, for the deadlock condition VIOL



16 R. Meyer, V. Khomenko, T. Strazny

can be defined as ∧

e∈E

( ∨

f∈••e

¬conff ∨
∨

f∈(•e)•\Ecut

conff

)
.

This formula requires for each event e (including cut-off events) that some event
in ••e has not fired or some of the non-cut-off events (including e unless it is cut-
off) consuming tokens from •e has fired, and thus e is not enabled. This formula
is given in the CNF. For example, the violation constraint for the deadlock
checking problem formulated for the prefix in Figure 2(a) is shown in part (c) of
this figure. The size of this formula is linear in the size of the prefix.

If VIOL is a formula of polynomial size (in the size of the prefix) then one
can check CONF∧VIOL for satisfiability in non-deterministic polynomial time.
In particular, every polynomial size (w.r.t. the prefix) formula F over the places
of the net can be translated into a VIOL formula that is polynomial in the
size of the prefix. Here, an atomic proposition p of F holds iff place p carries a
token (we deal with safe nets). This covers reachability of markings and submar-
kings, deadlocks, mutual exclusion, and many other properties. Furthermore,
an unfolding technique for model checking state-based LTL-X is presented in
[EH01]. State-based means that the atomic propositions in the logic are again
the places of the Petri net.

7 Experimental Results

To demonstrate the practicality of our approach, we implemented the translation
of π-Calculus to Petri nets discussed in Section 3 and the translation of FCPs
to safe processes presented in Section 5. In this section, we apply our tool chain
to check three series of benchmarks for deadlocks. We compare the results with
other well-known approaches and tools for π-Calculus verification.

The NESS (Newcastle E-Learning Support System) example models an elec-
tronic coursework submission system. This series of benchmarks is taken from
[KKN06], where the only other unfolding-based verification technique for the π-
Calculus is presented. The approach described in [KKN06] is limited to the finite
π-Calculus, a subset of π-Calculus allowing to express only finite behaviours. It
translates finite π-Calculus terms into high-level Petri nets and model checks the
latter. The translation into Petri nets used in [KKN06] is very different from our
approach, and a high-level net unfolder is used there for verification, while our
technique uses the standard unfolding procedure for safe low-level nets. More-
over, our technique is not limited to the finite π-Calculus.

The model consists of a teacher process T composed in parallel with k stu-
dents S (the system can be scaled up by increasing the number of students)
and an environment process ENV . Every student has its own local channel for
communication, hi, and all students share the channel h:

νh.νh1. . . . νhk.(T⌊nessc, h1, . . . , hk⌋ | Πk
i=1S⌊h, hi⌋ | ENV ⌊nessc⌋) .

The idea is that the students are supposed to submit their work for assessment
to NESS . The teacher passes the channel nessc of the system to all students,
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FCP HLNet Model Checking mwb hal Struct Safe Struct Model Checking

Mod. Size |P| |T| unf |B| |E∗| sat dl π2fc |P| |T| B Size |P| |T| unf |B| |E∗| sat

dns4 84 1433 511 6 10429 181 < 1 10 93 22 47 8 98 32 50 < 1 113 38 < 1
dns6 123 3083 1257 46 28166 342 < 1 - - 32 94 12 145 48 99 < 1 632 159 < 1
dns8 162 5357 2475 354 58863 551 < 1 - - 42 157 16 192 64 164 < 1 3763 745 < 1
dns10 201 8255 4273 - - - 52 236 20 271 80 239 1 22202 3656 2
dns12 240 11777 6791 - - - 62 331 24 324 96 286 56 128295 18192 62

ns2 61 157 200 1 5553 127 < 1 < 1 < 1 18 28 4 67 26 40 < 1 61 27 < 1
ns3 88 319 415 7 22222 366 < 1 1 8 37 91 6 98 56 141 < 1 446 153 < 1
ns4 115 537 724 69 101005 1299 1 577 382 68 229 8 129 102 364 < 1 5480 1656 < 1
ns5 142 811 1139 532 388818 4078 58 - - 119 511 10 160 172 815 17 36865 7832 3
ns6 169 1141 1672 - - - 206 1087 12 191 282 1722 1518 377920 65008 84
ns7 196 1527 2335 - - - 361 2297 14 222 646 3605 -

ns2-r 61 n/a n/a 16 24 4 67 24 36 < 1 51 22 < 1
ns3-r 88 n/a n/a 29 70 6 98 48 117 < 1 292 99 < 1
ns4-r 113 n/a n/a 45 123 8 127 79 216 < 1 1257 392 < 1
ns5-r 140 n/a n/a 66 241 10 158 119 435 2 10890 2635 1
ns6-r 167 n/a n/a 91 418 12 189 167 768 123 107507 19892 31
ns7-r 194 n/a n/a 120 666 14 220 223 1239 -

Table 1. Experimental results I.

hi〈nessc〉, and then waits for the confirmation that they have finished working
on the assignment, hi(x). After receiving the ness channel, hi(nsc), students
organise themselves in pairs. To do so, they send their local channel hi on h and
at the same time listen on h to receive a partner, h〈hi〉 . . .+h(x) . . .. When they
finish, exactly one student of each pair sends two channels to the support system,
nsc〈hi〉.nsc〈x〉, which give access to their completed joint work. These channels
are received by the ENV process. The students finally notify the teacher about
the completion of their work, hi〈fin〉. Thus, the system is modelled by:

T (nessc, h1, . . . , hk) :=Πk
i=1hi〈nessc〉.hi(xi).0

S (h, hi) :=hi(nsc).(h〈hi〉.hi〈fin〉.0 + h(x).nsc〈hi〉.nsc〈x〉.hi〈fin〉.0)

ENV (nessc) :=nessc(y1). . . . .nessc(yk).0

In the following Table 1, the row nsk gives the verification results for the NESS
system with k ∈ N students. The property we verified was whether all processes
successfully terminate by reaching the end of their individual code (as distin-
guished from a deadlock where some processes are stuck in the middle of their
intended behaviour, waiting for a communication to occur). Obviously, the sys-
tem successfully terminates iff the number of students is even, i.e., they can be
organised into pairs. The dnsk entries refer to a refined NESS model where the
pairing of students is deterministic; thus the number of students is even, and
these benchmarks are deadlock-free.

The second example is the client-server system similar to our running exam-
ple. For a more realistic model, we extend the server to spawn separate sessions
that handle the clients’ requests. We change the server process in Section 2 to a
more concurrent CONCS and add separate session processes:

CONCS (url , getses) := url(y).getses(s).y〈s〉.CONCS⌊url , getses⌋

SES (getses) := νses.getses〈ses〉.ses〈ses〉.SES⌊getses⌋

On a client’s request, the server creates a new session object using the getses
channel, getses(s). A session object is modelled by a SES process. It sends its
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FCP mwb hal Struct Safe Struct Model Checking

Model Size dl π2fc |P| |T| B Size |P| |T| unf |B| |E∗| sat

gsm 194 - 18 374 138 1 194 148 344 < 1 345 147 < 1
gsm-r 194 n/a n/a 60 72 1 194 75 110 < 1 150 72 < 1

1s1c 44 - < 1 11 13 1 44 12 15 < 1 17 9 < 1
1s2c 47 - 6 12 15 2 58 22 30 < 1 35 17 < 1
2s1c 47 - 2 20 31 2 56 22 35 < 1 37 18 < 1
2s2c 50 - 138 31 59 2 70 40 66 < 1 73 33 < 1
3s2c 53 - - 68 159 3 82 66 128 < 1 137 57 < 1
3s3c 56 - - 85 217 3 96 100 194 < 1 216 87 < 1
4s4c 63 - - 362 1202 4 122 216 484 < 1 537 195 < 1
5s5c 68 - - 980 3818 5 148 434 1132 < 1 1238 403 < 1

Table 2. Experimental results II.

private channel νses along the getses channel to the server. The server forwards
the session to the client, y〈s〉, which establishes the private session, and becomes
available for further requests. This case study uses recursion and is scalable in
the number of clients and the number of sessions. In Table 2, e.g., the entry
5s5c gives the verification results for the system with five SES processes, five C
processes and one server. All these benchmarks are deadlock-free.

The last example is the well-known specification of the handover procedure in
the GSM Public Land Mobile Network. We use the standard π-Calculus model
with one mobile station, two base stations, and one mobile switching center
presented in [OP92].

We compare our results with three other techniques for π-Calculus verifica-
tion: the mentioned approach in [KKN06], the verification kit HAL [FGMP03],
and the mobility workbench (MWB) [VM94]. HAL translates a π-Calculus pro-
cess into a history dependent automaton (HDA) [Pis99]. This in turn is trans-
lated into a finite automaton which is checked using standard tools. The MWB
does not use any automata translation, but builds the state space on the fly.
These tools can verify various properties, but we perform our experiments for
deadlock checking only, as it is the common denominator of all these tools.

We briefly comment on the role of the models with the suffix −r in Table 1.
One can observe that parallel compositions inside a fragment lead to interleav-
ing ‘diamonds’ in our Petri net representation. Thus, restricted names that are
known to a large number of processes can make the size of our Petri net trans-
lation grow exponentially. We demonstrate this effect by verifying some of the
NESS benchmarks with and without (suffix −r in the table) the restrictions
on such critical names. Even with the critical restrictions our approach outper-
forms the other tools; but when such restrictions are removed, it becomes orders
of magnitude faster. (Removing such critical restrictions does not alter the pro-
cess behaviour: νa.P can evolve into νa.P ′ iff P can evolve into P ′; thus, one
can replace νa.P by P for model checking purposes.)

The columns in Tables 1 and 2 are organised as follows. FCP Size gives the
size of the process as defined in Section 5. The following two columns, HLNet
and Model Checking (present only in Table 1), are the verification results when
the approach in [KKN06] is applied. In the former column, |P | and |T | state the
number of places and transitions in the high-level Petri net. The following column
unf gives the time to compute the unfolding prefix of this net. (We measure all
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runtimes in seconds.) For this prefix, |B| is the number of conditions, and |E∗|
is the number of events (excluding cut-offs). Like our technique, the [KKN06]
employs a SAT solver whose runtime is given by sat. The following two columns,
mwb dl and hal π2fc, give the runtimes for the deadlock checking algorithm
in MWB and for converting a π-Calculus process into a finite automaton (via
HDA). This time includes the translation of a π-Calculus process into an HDA,
minimisation of this HDA, and the conversion of the minimised HDA into a finite
automaton [FGMP03]. The remaining entries are the results of applying our
model checking procedure. The column Struct gives the numbers of places and
transitions and the bounds of the Petri nets corresponding to a direct translation
of the FCPs. These nets are given only for comparison, and are not used for
model checking. Safe Size gives the size of the safe process computed by the
function Safe in Section 5, and the next column gives the numbers of places
and transitions of the corresponding safe Petri nets. Note that these nets, unlike
those in [KKN06], are the usual low-level Petri nets. The following columns give
the unfolding times, the prefix sizes, and the times for checking deadlocks on the
prefixes using a SAT solver. A ‘−’ in the tables indicates the corresponding tool
did not produce an output within 30 minutes, and an ‘n/a’ means the technique
was not applicable to the example.

Table 1 illustrates the results for checking the NESS example with the differ-
ent techniques. As the MWB requires processes where all names are restricted,
we cannot check the −r versions of the case studies. Our runtimes are by orders
of magnitude smaller in comparison with HAL and MWB , and are much bet-
ter compared with the approach in [KKN06]. Furthermore, they dramatically
improve when the critical names are removed (the −r models).

The approach in [KKN06] only applies to the finite π-Calculus, so one cannot
check the client-server or the GSM benchmarks with that technique. Table 2
shows that the proposed technique dramatically outperforms both MWB and
HAL, and handles the benchmark with five sessions and clients within a second.

8 Conclusions and Future Work

In this paper, we have proposed a practical approach for verification of finite
control processes. It works by first translating the given FCP into a safe process,
and then translating the latter into a safe Petri net for which unfolding-based
model checking is performed. Our translation to safe processes exploits a general
boundedness result for FCP nets based on the theory of orbits. Our experiments
show that this approach has significant advantages over other existing tools for
verification of mobile systems in terms of memory consumption and runtime. We
plan to further develop this approach, and below we identify potential directions
for future research.

It would be useful to extend some temporal logic so that it could express
interesting properties of π-Calculus. (The usual LTL does not capture, at least in
a natural way, the communication in dynamically created channels and dynamic
connectivity properties.) Due to our fragment-preserving (i.e., preserving the
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local connections of processes) bisimulation result, one should be able to translate
such properties into Petri net properties for verification. The hope is that since
this Petri net has a rich structure (e.g., the connectivity information can be
retrieved from place annotations), the resulting properties can be expressed in
some standard logic such as state-based LTL and then efficiently model checked
with existing techniques.

One can observe that after the translation into a safe process, some fragments
differ only by the replicated process identifiers. Such fragments are equivalent in
the sense that they react in the same way and generate equivalent places in the
postsets of the transitions. Hence, it should be possible to optimise our transla-
tion procedure, because many structural congruence checks can be omitted and
several computations of enabled reactions become unnecessary. Moreover, this
observation allows one to use in the unfolding procedure a weaker (compared
with the equality of final markings) equivalence on configurations, as explained
in [Kho03, Section 2.5]. This would produce cut-off events more often and hence
reduce the size of the unfolding prefix.

It seems to be possible to generalise our translation to a wider subclass of π-
Calculus. For example, consider the process S⌊url⌋ | C ⌊url⌋ | C ⌊url⌋ modelling
a concurrent server and two clients, with the corresponding process identifiers
defined as

S (url) := url(y).(νses.y〈ses〉.ses〈ses〉.0 | S⌊url⌋)

C (url) := νip.url〈ip〉.ip(s).s(x).C ⌊url⌋

Intuitively, when contacted by a client, the server spawns a new session and
is ready to serve another client, i.e., several clients can be served in parallel.
Though this specification is not an FCP, it still results in a 2-bounded Petri net
very similar to the one in Figure 1(a). Our method can still be used to convert
it into a safe Petri net for subsequent verification.
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