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Approximate environmental behaviour L£,(N, My, Mg)
Scattered embedding [High2] forgets letters
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Approximate environmental behaviour £,(N, My, M)

L | regular: complement upward-closed, finite basis by wqo

Ly(N, Mo, Mg)| C Lp(N, Mo, M)
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Downward-closure of Petri net languages computable
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Stability Analysis

Contribution

Downward-closure of Petri net languages computable

Language types
e Ordinary Lx(N, My, M¢) accept by markings (PN)
e Terminal 7x(N, My) accept by deadlocks (TPN)
e Covering Cp(N, My, M¢) accept by upward-closed sets (CPN)

Further applications
@ Analysis of asynchronous systems
@ Compositional verification

@ Regular approximation m
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Petri Nets and Coverability Graphs
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Its coverability graph [KM69]
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Petri Nets and Coverability Graphs
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P2 P3
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Its coverability graph [KM69]
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Its coverability graph [KM69]
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Petri Nets and Coverability Graphs

P1

P2 P3
O O=r 20
Its coverability graph [KM69]

v

t: t
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Stability Analysis

Petri Nets and Coverability Graphs

p1 P2 P3
O—fa—O—a—9
Its coverability graph [KM69]

v t2

t t
(1,0,0) = (0,1,0) = (0,1,w) __ )
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Main Result

n (Ordinary Petri net language in PN)
Lu(N, My, M¢) :={h(c) | Molo)Ms}
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Ordinary Languages

d-Closure

Main Result

Definition (Ordinary Petri net language in PN)
Lu(N, My, M¢) :={h(c) | Molo)Ms}

Theorem (Representation)

A regular expression ¢ is computable with

Lp(N, Mo, M¢)| = ¢
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Computin vard-Closure

Lambert's Marked Graph Transition Sequences [Lam92]

G G
- . . e
mi in mq out my in m2 out ms3in m3 out

@ C strongly connected coverability graph

@ M initial marking, m;, input marking
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Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving R

Computing nward-Closure

Ordinary Languages

Lambert's Marked Graph Transition Sequences [Lam92]

G G
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mi in mq out my in m2 out ms3in m3 out

@ C strongly connected coverability graph

@ M initial marking, m;, input marking , my,: output marking
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Marked Graph Transition Sequences
a istic Equation and Perfectness

Ordinary Languages

C1 C2
. . s
mi in mq out my in m2 out ms3in m3 out

@ C strongly connected coverability graph
@ M initial marking, m;, input marking , my,: output marking

@ Input and output less abstract <, than initial marking

mip = M if min(p) = M(p) or M(p)=w iz
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Solving R
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Ordinary Languages

Lambert's Marked Graph Transition Sequences [Lam92]

G G
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Lambert's Marked Graph Transition Sequences [Lam92]

G G
- . . e
mi in mq out my in m2 out ms3in m3 out

Solutions £(G)
Transition sequence o through G = Ci.t1.Co.1.C3
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Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN Languages |  (Rennes, June 2010)



Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving R

Computing nward-Closure
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Lambert's Marked Graph Transition Sequences [Lam92]

G G
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Solutions £(G)
Transition sequence o through G = Ci.t1.Co.1.C3
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Solving R
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Lambert's Marked Graph Transition Sequences [Lam92]

G G
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Solutions £(G)
Transition sequence o through G = Ci.t1.Co.1.C3
@ Start in my jp, fire transitions in Cy, reach my oyt
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Marked Graph Transition Sequences

Characteristic Equation and Perfectness
Solving R

Computing nward-Closure

Ordinary Languages

Lambert's Marked Graph Transition Sequences [Lam92]

G G
- . . e
mi in mq out my in m2 out ms3in m3 out

Solutions £(G)
Transition sequence o through G = Ci.t1.Co.1.C3
@ Start in my jp, fire transitions in Cy, reach my oyt

@ Fire t; to reach my ;,, etc.

Concrete values must be reached exactly! m
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MGTS and Reachability

Reachability problem RP = (N, My, My)
Is M¢ reachable from My in N7
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MGTS and Reachability

Reachability problem RP = (N, My, My)
Is M¢ reachable from My in N7

Corresponding mgts Ggrp

gt fa.teT

RP holds iff L(Ggrp) # 0
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Marked Graph Transition Sequences
C on and Perfectness

Ordinary Languages

ard-Closure

MGTS and Reachability

Reachability problem RP = (N, My, My)
Is M¢ reachable from My in N7

Corresponding mgts Ggrp

gt fa.teT

RP holds iff L(Ggrp) # 0

Even more

L(N, Mo, M¢) = {0 | Mo[o)M¢} = L(Grp) -
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Characteristic Equation and Perfectness
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Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
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Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
o Variables x(mj,(p))
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Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
e Variables x(mj,(p)), x(mout(p))
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Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
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d-Closure

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b

e Variables x(mjn(p)), x(mout(p)), x(t)
@ Find non-negative solutions
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Characteristic Equation and Perfectness
Solving R ability

Computin vard-Closure

Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
e Variables x(mjn(p)), x(mout(p)), x(t)
e Find non-negative solutions

They are computable! [Lam88]

Relationship

L(G)#0 = Ax= b solvable
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Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
e Variables x(mjn(p)), x(mout(p)), x(t)
e Find non-negative solutions

They are computable! [Lam88]

Relationship

L(G)#0 = Ax= b solvable
<« does not hold
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Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving R ability

Computin vard-Closure

Ordinary Languages

Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.G.1.C3 into Ax = b
e Variables x(mjn(p)), x(mout(p)), x(t)
e Find non-negative solutions

They are computable! [Lam88]

Relationship

L(G)#0 = Ax= b solvable

< does not hold ... in general
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S E

Ordinary Languages

Perfect MGTS
Perfect sG=C.t1.G.1.C3

o Edge variables x(t) unbounded in solution space of Ax = b
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Perfect MGTS
Perfect mgts G = C1.t1.Go. 1. C3
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ard-Closure

Perfect MGTS
Perfect mgts G = C1.t1.Go. 1. C3

o Edge variables x(t) unbounded in solution space of Ax = b

o Marking variables x(mj,/o,:(p)) unbounded for w-entries

L(G) #0 & Ax = b solvable (later)
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Marked Graph Transition Sequences
Characteristic Equation and Perfectness

Ordinary Languages

vard-Closure

Perfect MGTS
Perfect mgts G = C1.t1. G 1. C3

o Edge variables x(t) unbounded in solution space of Ax = b

o Marking variables x(mij,/o,:(p)) unbounded for w-entries

L(G)#£D & Ax = b solvable (later)

But not every mgts is perfect!
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Marked Graph Transition Sequences
Characteristic Equation and Perfectness
gR lity

Ordinary Languages

d-Closure

Perfect MGTS
Perfect mgts G = C1.t1. G 1. C3

o Edge variables x(t) unbounded in solution space of Ax = b

o Marking variables x(mij,/o,:(p)) unbounded for w-entries

L(G) #0 & Ax = b solvable (later)

Improve perfectness by unrolling
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Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving

Ordinary Languages

ard-Closure

Perfect MGTS
Perfect mgts G = C1.t1.Go. 1. C3

@ Edge variables x(t) unbounded in solution space of Ax = b

@ Marking variables x(mj,/o,:(p)) unbounded for w-entries

Property
L(G) #0 & Ax = b solvable (later)

Theorem (Lambert's decomposition theorem [Lam92])

G can be effectively decomposed into a finite set [ ¢ of perfect
mgts with

L(G) = Uger L(G) -n
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Computing the D rd-C

Solving Reachability

RP = (N, Mo, Mr) holds

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN ages |  (Rennes, June 201



\ d Graph Transition Seque
Ct ristic Equation and Per
Solving Reachability
Computing the D rd-C

Ordinary Languages

Solving Reachability

RP = (N, Mo, M) holds < L(Ggp) # 0
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Solving Reachability

Computing the O Closure

Ordinary Languages

Solving Reachability

L(G)#0 < Ax= b solvable
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d Graph Transition Sequences
C ristic Equation and Perfectness
Solving Reachability
Computing the Do ard-Closure

Ordinary Languages

Solving Reachability

L(G)#0 < Ax= b solvable

Compute o € L(G) from solution to Ax = b
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d Graph Transition Sequences
C eristic Equation and Perfectness
Solving Reachability

Computing the vard-Closure

Ordinary Languages

Solving Reachability

G

my in mi out my in m2 out ms3 ip ms3 out

Pumping tokens

Sequence u leads from m;, to M
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Solving Reachability

G
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Pumping tokens

Sequence u leads from m;, to M

@ u adds tokens to p with M(p) = w > mj(p)
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M 1 Graph Transition Sequences
Ch istic Equation and Perfectness
Solving Reachability

Computing the vard-Closure

Ordinary Languages

Solving Reachability

G
. e ffof e e
my in mi out my in m2 out ms3 ip ms3 out

Pumping tokens

Sequence u leads from m;, to M
@ u adds tokens to p with M(p) = w > mj(p)
@ u does not change tokens on p with M(p) = mj,(p) = k € N
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Marked Graph Transition Sequences

Ch teristic Equation and Perfectness
Solving Reachability

Computing the D vard-Closure

Ordinary Languages

Solving Reachability

G
."‘ ) ."‘b
mi in mq out my in m2 out ms3in m3 out

Pumping tokens

Sequence u leads from m;, to M
@ u adds tokens to p with M(p) = w > mj(p)
@ u does not change tokens on p with M(p) = mj,(p) = k € N

u is computable! [Lam92]
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M 1 Graph Transition Sequences
Ch istic Equation and Perfectness
Solving Reachability

Computing the vard-Closure

Ordinary Languages

Solving Reachability

C1 C2
. e . . . s
my in mi out my in m2 out ms3 ip ms3 out

Pumping tokens

Sequence u leads from m;, to M
@ u adds tokens to p with M(p) = w > mj(p)
@ u does not change tokens on p with M(p) = mj,(p) = k € N

Sequence v leads from M to mg,:
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Ordinary Languages g’\} ked Graph Transition Sequences

istic Equation and Perfectness
Solving Reachability
Computing the vard-Closure

Solving Reachability

G
mi in mi out my.in m3 out m3 in m3 out

Theorem (Lambert's pumping lemma)

Let Ax = b have solution. Then oy € L(G) for every k > ko with

ok = (uf.Br.aX vi).tr.(uX Bo.a5 vE) . tyq.(uk. B0k vE)

-
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Marked Graph Transition Seque

Ordinary Languages c Equation and Pe

Computing the Downward-Closure

Computing the Downward-Closure

Computing the downward-closure

L(N, Mo, M¢)
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Ordinary Languages

Computmg the Downward-Closure

Computing the Downward-Closure

ward-closure
L(N, Mo, M¢) = L(Grp)
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Ordinary Languages

Computing the Downward-Closure

Computing the downward-closure

L(N, Mo, Ms) = L(Grp) = Uger,, £(G)

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) (Rennes, June 2010)



aph Transition Seque
quation and Per
S g Re bility
Computing the Downward-Closure

Ordinary Languages

Computing the Downward-Closure

Computing the downward-closure

E(Na MOa Mf)l = E(GRP)l = UGEFGRP‘C(G)l
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Graph Transition Sequel
Equation and Per
hability
Computing the Downward-Closure
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L(N, Mo, M) | = L(Grp) | = Uger,, £(G)

Theorem (Downward-closure of mgts)
Let G= C.t1.Co . .. th—1.C,, have solution. Then

LG)| =T (t1+¢€).T5...(th—1 +€).T,

D: Choose u with all transitions T in C
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d Graph Transition Sequences
istic Equation and Perfectness
Solving chability
Computing the Downward-Closure

Ordinary Languages

Computing the Downward-Closure

Computing the downward-closure

ﬁ(N7 M07 Mf)l - ﬁ(GRP)l — UGGFGRPE(G)‘L

Theorem (Downward-closure of mgts)
Let G = C1.t1.Co ... ty_1.C,, have solution. Then

LG) =T{(t1+¢€).T5...(th—1 +€).T,

D: Choose u with all transitions T in C

Apply Lambert's pumping lemma

T* C Uks ko uk|
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Computing the downward-closure

ﬁ(N7 M07 Mf)l - ﬁ(GRP)l — UGGFGRPE(G)‘L

Theorem (Downward-closure of mgts)
Let G = C1.t1.Co ... ty_1.C,, have solution. Then

LG) =T{(t1+¢€).T5...(th—1 +€).T,

D: Choose u with all transitions T in C

Apply Lambert's pumping lemma

Ti(ti+€).Ty ... (tho1+€). T,

C Ukao(ufﬂl.all‘.vf).tl.(ué‘ﬂg.aé.vk) . t,,_l.(u,fﬂ,,.aﬁ.v,l,‘)l M
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Ordinary Languages

Solv
Computing the Downward-Closure

Computing the Downward-Closure

Computing the downward-closure

ﬁ(N7 M07 Mf)l - ﬁ(GRP)l — UGEFGRPE(G)‘L

Theorem (Downward-closure of mgts)
Let G = C1.t1.Co ... ty_1.C,, have solution. Then

LG) =T{(t1+¢€).T5...(th—1 +€).T,

Construction of u
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Computing the Downward-Closure

Computing the downward-closure

ﬁ(N7 M07 Mf)l - ﬁ(GRP)l — UGGFGRPE(G)‘L

Theorem (Downward-closure of mgts)
Let G = C1.t1.Co ... ty_1.C,, have solution. Then

LG) =T{(t1+¢€).T5...(th—1 +€).T,

Construction of u

o Take u, by Lambert

@ Take up, with all transitions T in C (strongly connected)

. .m+1
ui=u, ".up
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d Graph Transition Sequences
istic Equation and Perfectness
Solving chability
Computing the Downward-Closure

Ordinary Languages

Computing the Downward-Closure

Computing the downward-closure

ﬁ(N7 M07 Mf)l - ﬁ(GRP)l — UGGFGRPE(G)‘L

Theorem (Downward-closure of mgts)
Let G = C1.t1.Co ... ty_1.C,, have solution. Then

LG) =T{(t1+¢€).T5...(th—1 +€).T,

Construction of u

o Take u, by Lambert

@ Take up, with all transitions T in C (strongly connected)

ui=um m = maximal negative effect of u,

-
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Terminal Languages

Terminal Languages

Definition (Terminal language in TPN)
Th(N, Mg) = {h(o) | Molo)M and -M[t) fa. t e T}
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Terminal Languages

Terminal Languages

Deadlocks given by finite set P of partial markings Mp, P C P’

Tn(N, Mo) = UpppepLn(N, Mo, Mp)
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Terminal Languages

Terminal Languages

Deadlocks given by finite set P of partial markings Mp, P C P’
Y;I(Na MO) = UMpepﬁh(N) M07 MP)
Compute downward-closure of partial languages

Ly(N, Mo, Mp) | = dump

Theorem (Representation)
Th(N, Mo) | = Zpper  Omp
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Terminal Languages

Partial Languages and their Representation

Partial languages: acceptance by corresponding markings

Ln(N, Mo, Mp) = Unpp=ms, £o(N, Mo, M)
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From infinite union to ordinary language [Hac76]
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Terminal Languages

Partial Languages and their Representation

Partial languages: acceptance by corresponding markings
Ln(N, Mo, Mp) = Unpp=ms, £o(N, Mo, M)

From infinite union to ordinary language [Hac76]

La(N, Mo, Mp) = Laop, (N, Mgn, ME™Y) -
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Covering Languages

Covering Languages

Definition (Covering language in CPN)
Ch(N, My, M¢) = {h(c) | Molo)M and M > My}
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Covering Languages

Covering Languages

Turn coverability tree into finite automaton

P3 P2 p1 pa Ps
O—1e=0 (® @==@

(0,1,0,0,0) —™ (1,0,0,0,0) —- (0,0,0,1,0)
tr | | ta
(0,1,w,0,0) (0,0,0,1,w) "
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Covering Languages

Turn coverability tree into finite automaton

@ Silent transitions to smaller nodes

P3 P2 p1 pa Ps
O—1e=0 (® @==@

(0,1,0,0,0) ™ (1,0,0,0,0) —2- (0,0,0,1,0)

ta [T Tl ta
(0,1,w,0,0) (0,0,0,1,w) .
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Covering Languages

Covering Languages

Turn coverability tree into finite automaton

@ Silent transitions to smaller nodes

@ Accept when final marking dominated

P3 p2 p1 P4 ps
O—E-O—8©O—8-O—&-O
(01000)<—(10000) (0,0,0,1,0)

ta T Tta
((0,1,w,0,0))f (0,0,0,1,w) .
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Covering Languages

Covering Languages

Turn coverability tree into finite automaton

@ Silent transitions to smaller nodes

@ Accept when final marking dominated

Lemma

Ch(N, Mo, M¢) | = L(FA) |
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Covering Languages

Downward-closure of the Automaton

Tree of strongly connected components

(0,1,0,0,0) ™ (1,0,0,0,0) —2- (0,0,0,1,0)
ta|] ([ ta
((071aw7070))f (anaoa 13"‘)) m
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Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

¢c = Te( )
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Covering Languages

Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

¢c = Te.(7c )

e 7c=¢c¢ (final) or 7c=0 (not final)
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Covering Languages

Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

¢c=Tc(tc + Xc vec-Pc)

e 7c=¢c¢ (final) or 7c=0 (not final)
°© yc,co=t+e (edge) or ycc =0 (noedge)

to t1 t3 ty
e
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Covering Languages

Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively
¢pc=Tc(tc + o vcc-dc)

e 7c=¢c¢ (final) or 7c=0 (not final)
°© yc,co=t+e (edge) or ycc =0 (noedge)

to t1 t3 ty
e e
by =(ti+e€)t;5 + (t3+e)t;0 -n
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Algebraic Languages

Van Leeuwen's Algebraic Languages

Definition (Algebraic languages over K)
e K-grammaris (V,X, P,S) with productions P of form

A—-LeK LCV*
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Algebraic Languages

Van Leeuwen's Algebraic Languages

Definition (Algebraic languages over K)

e K-grammaris (V, X, P,S) with productions P of form
A—-LeK LCV*

o L algebraic over K if generated by a K-grammar

o KV class of all algebraic languages over K

Example (Context-free languages)

REGY = CF

Theorem (Van Leeuwen's Theorem 4.5 [vL78])
L | effectively computable for all £ € KV iff so for all L € K

-
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Algebraic Languages

Consequences

Consequence of van Leeuwen's work and our results

L] effectively computable for £ in PNV, TPNV, and CPNVY
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Algebraic Languages

Consequences

Consequence of van Leeuwen's work and our results

L] effectively computable for £ in PNV, TPNV, and CPNVY

Corollary

Emptiness decidable for languages in PNV, TPNY, and CPNV

Example (Language in PNV)

u1.uf...u,,.u,",?. v1.v1"?...v,,.v,’$. W1.W1R ... Wn.WR

~An ~Bn ~Cn
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Algebraic Languages

Conclusion

Downward-closure of all Petri net languages computable
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Conclusion

Downward-closure of all Petri net languages computable

@ Ordinary languages via mgts and Lambert’'s pumping lemma
for reachability

@ Terminal languages by reduction from partial languages to
ordinary languages and previous result

@ Covering languages from coverability tree

@ Algebraic languages over Petri nets

Applications

@ Stability analysis computes tolerable intrusions
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Algebraic Languages

Conclusion

Downward-closure of all Petri net languages computable

@ Ordinary languages via mgts and Lambert’'s pumping lemma
for reachability

@ Terminal languages by reduction from partial languages to
ordinary languages and previous result

@ Covering languages from coverability tree

@ Algebraic languages over Petri nets

Applications

@ Stability analysis computes tolerable intrusions

o Compositional verification
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Algebraic Languages

Related Work

e Upward/Downward-closure of context-free languages [vL78]
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Related Work

e Upward/Downward-closure of context-free languages [vL78]

L7 effectively computable for £ in PNY, TPNY, CPNY
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Algebraic Languages

Related Work

e Upward/Downward-closure of context-free languages [vL78]
L7 effectively computable for £ in PNY, TPNY, CPNY

@ Size of automata representation [GHK07, GHK09]
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