The Downward-Closure of Petri Net Languages

Peter Habermehl¹ Roland Meyer¹ Harro Wimmel²

LIAFA, University Paris 7, and CNRS

University of Rostock

June 2010

Goal

Determine influences N can tolerate without reaching M_B from M_0

Approximate environmental behaviour $\mathcal{L}_h(N, M_0, M_B)$

Scattered embedding [Hig52] forgets letters

$$\mathcal{L}_h(N, M_0, M_B) \subseteq \mathcal{L}_h(N, M_0, M_B) \downarrow$$

Approximate environmental behaviour $\mathcal{L}_h(N, M_0, M_B)$

 $\mathcal{L} \downarrow$ regular:

Approximate environmental behaviour $\mathcal{L}_h(N, M_0, M_B)$

 $\mathcal{L}\downarrow$ regular: complement upward-closed, finite basis by wgo

Approximate environmental behaviour $\mathcal{L}_h(N, M_0, M_B)$

 $\mathcal{L}\downarrow$ regular: complement upward-closed, finite basis by wgo

$$\overline{\mathcal{L}_h(N, M_0, M_B)}\downarrow \subseteq \overline{\mathcal{L}_h(N, M_0, M_B)}$$

Stability Analysis Ordinary Languages Terminal Languages Covering Languages Algebraic Languages

Contribution

Result

Downward-closure of Petri net languages computable

Result

Downward-closure of Petri net languages computable

Language types

• Ordinary $\mathcal{L}_h(N, M_0, M_f)$ accept by markings (PN)

Result

Downward-closure of Petri net languages computable

Language types

- Ordinary $\mathcal{L}_h(N, M_0, M_f)$ accept by markings (PN)
- Terminal $\mathcal{T}_h(N, M_0)$ accept by deadlocks (TPN)

Result

Downward-closure of Petri net languages computable

Language types

- Ordinary $\mathcal{L}_h(N, M_0, M_f)$ accept by markings (PN)
- Terminal $T_h(N, M_0)$ accept by deadlocks (TPN)
- Covering $C_h(N, M_0, M_f)$ accept by upward-closed sets (CPN)

Result

Downward-closure of Petri net languages computable

Language types

- Ordinary $\mathcal{L}_h(N, M_0, M_f)$ accept by markings (PN)
- Terminal $T_h(N, M_0)$ accept by deadlocks (TPN)
- Covering $C_h(N, M_0, M_f)$ accept by upward-closed sets (CPN)

Further applications

- Analysis of asynchronous systems
- Compositional verification
- Regular approximation

Petri net p_1 p_2 p_3

Petri net

$$(1,\stackrel{\downarrow}{0},0)\stackrel{t_1}{\longrightarrow} (0,1,0)$$

Petri net

$$(1,\stackrel{\downarrow}{0},0)\stackrel{t_1}{\longrightarrow} (0,1,0)\stackrel{t_2}{\longrightarrow} (0,1,1)$$

Petri net

$$(1,\overset{\downarrow}{0},0)\overset{t_1}{\longrightarrow}(0,1,0)\overset{t_2}{\longrightarrow}(0,1,\omega)$$

Petri net

$$(1,\stackrel{\downarrow}{0},0)\stackrel{t_1}{\longrightarrow} (0,1,0)\stackrel{t_2}{\longrightarrow} (0,1,\omega)\stackrel{t_2}{\longrightarrow} t_2$$

Main Result

Definition (Ordinary Petri net language in PN)

$$\mathcal{L}_h(N, M_0, M_f) := \{h(\sigma) \mid M_0[\sigma\rangle M_f\}$$

Main Result

Definition (Ordinary Petri net language in PN)

$$\mathcal{L}_h(N, M_0, M_f) := \{h(\sigma) \mid M_0[\sigma\rangle M_f\}$$

Theorem (Representation)

A regular expression ϕ is computable with

$$\mathcal{L}_h(N,M_0,M_f) \downarrow = \phi$$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$ $C_1 \qquad C_2 \qquad C_3 \qquad C_3 \qquad C_4 \qquad C_4 \qquad C_5 \qquad C_6 \qquad C_7 \qquad$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$ $m_{1,in}$ $m_{1,out}$ $m_{3,out}$

Properties

• C strongly connected coverability graph

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$ $C_1 \qquad C_2 \qquad C_3 \qquad C_3 \qquad C_4 \qquad C_4 \qquad C_5 \qquad C_6 \qquad C_7 \qquad C_8 \qquad C_9 \qquad$

- C strongly connected coverability graph
- M initial marking

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

- C strongly connected coverability graph
- M initial marking, m_{in} input marking

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

- C strongly connected coverability graph
- M initial marking, m_{in} input marking, m_{out} output marking

Marked graph transition sequence $G = \overline{C_1.t_1.C_2.t_2.C_3}$

- C strongly connected coverability graph
- M initial marking, m_{in} input marking, m_{out} output marking
- Input and output less abstract ≺ω than initial marking

$$m_{in} \leq_{\omega} M$$
 if $m_{in}(p) = M(p)$ or $M(p) = \omega$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$ $C_1 \qquad C_2 \qquad C_3 \qquad C_3 \qquad C_4 \qquad C_4 \qquad C_5 \qquad C_7 \qquad$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

• Start in $m_{1,in}$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

• Start in $m_{1,in}$, fire transitions in C_1

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

• Start in $m_{1,in}$, fire transitions in C_1 , reach $m_{1,out}$

Marked graph transition sequence $G = C_1.t_1.C_2.t_2.C_3$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

- Start in $m_{1,in}$, fire transitions in C_1 , reach $m_{1,out}$
- Fire t_1 to reach $m_{2,in}$, etc.

Marked graph transition sequence $G = \overline{C_1.t_1.C_2.t_2.C_3}$

Solutions $\mathcal{L}(G)$

Transition sequence σ through $G = C_1.t_1.C_2.t_2.C_3$

- Start in $m_{1,in}$, fire transitions in C_1 , reach $m_{1,out}$
- Fire t_1 to reach $m_{2,in}$, etc.

Concrete values must be reached exactly!

Reachability problem $RP = (N, M_0, M_f)$

Is M_f reachable from M_0 in N?

Reachability problem $RP = (N, M_0, M_f)$

Is M_f reachable from M_0 in N?

Corresponding mgts GRP

Reachability problem $RP = (N, M_0, M_f)$

Is M_f reachable from M_0 in N?

Corresponding mgts G_{RP}

iff $\mathcal{L}(G_{RP}) \neq \emptyset$ RP holds

Reachability problem $RP = (N, M_0, M_f)$

Is M_f reachable from M_0 in N?

Corresponding mgts G_{RP}

iff $\mathcal{L}(G_{RP}) \neq \emptyset$ RP holds

Even more

$$\mathcal{L}(N, M_0, M_f) = \{ \sigma \mid M_0[\sigma \rangle M_f \} = \mathcal{L}(G_{RP})$$

Characteristic Equation

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

• Variables $x(m_{in}(p))$

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

• Variables $x(m_{in}(p)), x(m_{out}(p))$

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

• Variables $x(m_{in}(p))$, $x(m_{out}(p))$, x(t)

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

- Variables $x(m_{in}(p))$, $x(m_{out}(p))$, x(t)
- Find non-negative solutions

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

- Variables $x(m_{in}(p)), x(m_{out}(p)), x(t)$
- Find non-negative solutions

They are computable! [Lam88]

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

- Variables $x(m_{in}(p)), x(m_{out}(p)), x(t)$
- Find non-negative solutions

They are computable! [Lam88]

Relationship

$$\mathcal{L}(G) \neq \emptyset \Rightarrow Ax = b \text{ solvable}$$

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

- Variables $x(m_{in}(p)), x(m_{out}(p)), x(t)$
- Find non-negative solutions

They are computable! [Lam88]

Relationship

$$\mathcal{L}(G) \neq \emptyset \Rightarrow Ax = b \text{ solvable}$$

 $\Leftarrow \text{ does not hold}$

Characteristic equation for mgts

Encode firing in $G = C_1.t_1.C_2.t_2.C_3$ into Ax = b

- Variables $x(m_{in}(p))$, $x(m_{out}(p))$, x(t)
- Find non-negative solutions

They are computable! [Lam88]

Relationship

$$\mathcal{L}(G) \neq \emptyset \quad \Rightarrow \quad Ax = b \text{ solvable}$$
 $\leftarrow \quad \text{does not hold } \dots \text{ in general}$

Perfect mgts $\mathbb{G} = C_1.t_1.C_2.t_2.C_3$

• Edge variables x(t) unbounded in solution space of Ax = b

Perfect mgts $\mathbb{G} = C_1.t_1.C_2.t_2.C_3$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Perfect mgts $\mathbb{G} = C_1.t_1.C_2.t_2.C_3$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Property

$$\mathcal{L}(\mathbb{G})
eq \emptyset$$

$$\Leftrightarrow$$

Ax = b solvable

Perfect mgts $\mathbb{G} = C_1.t_1.\overline{C_2.t_2.C_3}$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Property

$$\mathcal{L}(\mathbb{G})
eq \emptyset$$

$$\Leftrightarrow$$

$$Ax = b$$
 solvable

(later)

Perfect mgts $\mathbb{G} = C_1.t_1.\overline{C_2.t_2.C_3}$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Property

$$\mathcal{L}(\mathbb{G}) \neq \emptyset$$

$$\Leftrightarrow$$

$$Ax = b$$
 solvable

(later)

But not every mgts is perfect!

Perfect mgts $\mathbb{G} = C_1.t_1.C_2.t_2.C_3$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Property

$$\mathcal{L}(\mathbb{G}) \neq \emptyset$$

$$\Leftrightarrow$$

$$Ax = b$$
 solvable

(later)

Idea

Improve perfectness by unrolling

Perfect mgts $\mathbb{G} = C_1.t_1.C_2.t_2.C_3$

- Edge variables x(t) unbounded in solution space of Ax = b
- Marking variables $x(m_{in/out}(p))$ unbounded for ω -entries

Property

$$\mathcal{L}(\mathbb{G}) \neq \emptyset$$

$$\Leftrightarrow$$

Ax = b solvable

(later)

Theorem (Lambert's decomposition theorem [Lam92])

G can be effectively decomposed into a finite set Γ_G of perfect mgts with

$$\mathcal{L}(G) = \bigcup_{\mathbb{G} \in \Gamma_G} \mathcal{L}(\mathbb{G})$$

$$RP = (N, M_0, M_f)$$
 holds

$$RP = (N, M_0, M_f) \text{ holds} \Leftrightarrow \mathcal{L}(G_{RP}) \neq \emptyset$$

$$RP = (N, M_0, M_f) \text{ holds } \Leftrightarrow \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \neq \emptyset$$

$$RP = (N, M_0, M_f) \text{ holds} \Leftrightarrow \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \neq \emptyset$$
 $\mathcal{L}(\mathbb{G}) \neq \emptyset \Leftrightarrow Ax = b \text{ solvable}$

Where are we?

$$RP = (N, M_0, M_f) \text{ holds} \Leftrightarrow \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \neq \emptyset$$

 $\mathcal{L}(\mathbb{G}) \neq \emptyset \Leftrightarrow Ax = b \text{ solvable}$

Goal

Compute $\sigma \in \mathcal{L}(\mathbb{G})$ from solution to Ax = b

Pumping tokens

Sequence u leads from m_{in} to M

Pumping tokens

Sequence u leads from m_{in} to M

• u adds tokens to p with $M(p) = \omega > m_{in}(p)$

Pumping tokens

Sequence u leads from m_{in} to M

- u adds tokens to p with $M(p) = \omega > m_{in}(p)$
- u does not change tokens on p with $M(p) = m_{in}(p) = k \in \mathbb{N}$

Pumping tokens

Sequence u leads from m_{in} to M

- u adds tokens to p with $M(p) = \omega > m_{in}(p)$
- u does not change tokens on p with $M(p) = m_{in}(p) = k \in \mathbb{N}$

u is computable! [Lam92]

Pumping tokens

Sequence u leads from m_{in} to M

- u adds tokens to p with $M(p) = \omega > m_{in}(p)$
- u does not change tokens on p with $M(p) = m_{in}(p) = k \in \mathbb{N}$

Sequence v leads from M to m_{out}

Theorem (Lambert's pumping lemma)

Let Ax = b have solution. Then $\sigma_k \in \mathcal{L}(\mathbb{G})$ for every $k > k_0$ with

$$\sigma_k = (u_1^k.\beta_1.\alpha_1^k.v_1^k).t_1.(u_2^k.\beta_2.\alpha_2^k.v_2^k)...t_{n-1}.(u_n^k.\beta_n.\alpha_n^k.v_n^k)$$

$$\mathcal{L}(N, M_0, M_f)$$

$$\mathcal{L}(N, M_0, M_f) = \mathcal{L}(G_{RP})$$

$$\mathcal{L}(N, M_0, M_f) = \mathcal{L}(G_{RP}) = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G})$$

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let
$$\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$$
 have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

\supset : Choose u with all transitions T in C

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

\supseteq : Choose *u* with all transitions *T* in *C*

Apply Lambert's pumping lemma

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G}) \downarrow = T_1^* \cdot (t_1 + \epsilon) \cdot T_2^* \cdot \cdot \cdot (t_{n-1} + \epsilon) \cdot T_n^*$$

\supseteq : Choose *u* with all transitions *T* in *C*

Apply Lambert's pumping lemma

$$T^* \subseteq \bigcup_{k > k_0} u^k \downarrow$$

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

\supset : Choose *u* with all transitions *T* in *C*

Apply Lambert's pumping lemma

$$T_{1}^{*}.(t_{1}+\epsilon).T_{2}^{*}...(t_{n-1}+\epsilon).T_{n}^{*}$$

$$\subseteq \bigcup_{k\geq k_{0}}(u_{1}^{k}.\beta_{1}.\alpha_{1}^{k}.v_{1}^{k}).t_{1}.(u_{2}^{k}.\beta_{2}.\alpha_{2}^{k}.v_{2}^{k})...t_{n-1}.(u_{n}^{k}.\beta_{n}.\alpha_{n}^{k}.v_{n}^{k})\downarrow$$

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G}) \downarrow = T_1^* \cdot (t_1 + \epsilon) \cdot T_2^* \cdot \cdot \cdot (t_{n-1} + \epsilon) \cdot T_n^*$$

Construction of u

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G}) \downarrow = T_1^* \cdot (t_1 + \epsilon) \cdot T_2^* \cdot \cdot \cdot (t_{n-1} + \epsilon) \cdot T_n^*$$

Construction of u

Take u_a by Lambert

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G}) \downarrow = T_1^* \cdot (t_1 + \epsilon) \cdot T_2^* \cdot \cdot \cdot (t_{n-1} + \epsilon) \cdot T_n^*$$

Construction of u

- Take u_a by Lambert
- Take u_b with all transitions T in C (strongly connected)

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

Construction of u

- Take u_a by Lambert
- Take u_b with all transitions T in C (strongly connected)

$$u := u_a^{m+1}.u_b$$

Computing the downward-closure

$$\mathcal{L}(N, M_0, M_f) \downarrow = \mathcal{L}(G_{RP}) \downarrow = \bigcup_{\mathbb{G} \in \Gamma_{G_{RP}}} \mathcal{L}(\mathbb{G}) \downarrow$$

Theorem (Downward-closure of mgts)

Let $\mathbb{G} = C_1.t_1.C_2...t_{n-1}.C_n$ have solution. Then

$$\mathcal{L}(\mathbb{G})\downarrow = T_1^*.(t_1+\epsilon).T_2^*...(t_{n-1}+\epsilon).T_n^*$$

Construction of u

- Take u_a by Lambert
- Take u_b with all transitions T in C (strongly connected)

$$u := u_a^{m+1}.u_b$$
 $m = \text{maximal negative effect of } u_b$

Definition (Terminal language in TPN)

$$T_h(N, M_0) = \{h(\sigma) \mid M_0[\sigma\rangle M \text{ and } \neg M[t\rangle \text{ f.a. } t \in T\}$$

Idea

Deadlocks given by finite set \mathcal{P} of partial markings M_P , $P \subseteq P'$

$$\mathcal{T}_h(N, M_0) = \bigcup_{M_P \in \mathcal{P}} \mathcal{L}_h(N, M_0, M_P)$$

Idea

Deadlocks given by finite set \mathcal{P} of partial markings M_P , $P \subset P'$

$$\mathcal{T}_h(N, M_0) = \bigcup_{M_P \in \mathcal{P}} \mathcal{L}_h(N, M_0, M_P)$$

Compute downward-closure of partial languages

$$\mathcal{L}_h(N, M_0, M_P) \downarrow = \phi_{M_P}$$

Idea

Deadlocks given by finite set \mathcal{P} of partial markings M_P , $P \subseteq P'$

$$\mathcal{T}_h(N, M_0) = \bigcup_{M_P \in \mathcal{P}} \mathcal{L}_h(N, M_0, M_P)$$

Compute downward-closure of partial languages

$$\mathcal{L}_h(N, M_0, M_P) \downarrow = \phi_{M_P}$$

Theorem (Representation)

$$\mathcal{T}_h(N, M_0) \downarrow = \sum_{M_P \in \mathcal{P}} \phi_{M_P}$$

Partial Languages and their Representation

Partial languages: acceptance by corresponding markings

$$\mathcal{L}_h(N,M_0,M_P) = \bigcup_{M_P = M_P} \mathcal{L}_h(N,M_0,M)$$

Partial Languages and their Representation

Partial languages: acceptance by corresponding markings

$$\mathcal{L}_h(N, M_0, M_P) = \bigcup_{M_P = M_P} \mathcal{L}_h(N, M_0, M)$$

From infinite union to ordinary language [Hac76]

Partial Languages and their Representation

Partial languages: acceptance by corresponding markings

$$\mathcal{L}_h(N, M_0, M_P) = \bigcup_{M_P = M_P} \mathcal{L}_h(N, M_0, M)$$

From infinite union to ordinary language [Hac76]

Lemma

$$\mathcal{L}_h(N, M_0, M_P) = \mathcal{L}_{h \cup h_g}(N, M_0^{run}, M_P^{empty})$$

Definition (Covering language in CPN)

$$C_h(N, M_0, M_f) = \{h(\sigma) \mid M_0[\sigma\rangle M \text{ and } M \geq M_f\}$$

Turn coverability tree into finite automaton

Turn coverability tree into finite automaton

Silent transitions to smaller nodes

Turn coverability tree into finite automaton

- Silent transitions to smaller nodes
- Accept when final marking dominated

Turn coverability tree into finite automaton

- Silent transitions to smaller nodes
- Accept when final marking dominated

Lemma

$$C_h(N, M_0, M_f) \downarrow = \mathcal{L}(FA) \downarrow$$

Tree of strongly connected components

$$\begin{array}{c} (0,1,0,0,0) \xleftarrow{t_1} (1,0,\overset{\,\,{}^{\,}}{0},0,0) \xrightarrow{t_3} (0,0,0,1,0) \\ t_2 \downarrow \uparrow & \uparrow \downarrow t_4 \\ ((0,1,\omega,0,0))_f & (0,0,0,1,\omega) \end{array}$$

Tree of strongly connected components

Tree of strongly connected components

Compute expression recursively

$$\phi_{\mathcal{C}} = T_{\mathcal{C}}^*.($$

Tree of strongly connected components

Compute expression recursively

$$\phi_C = T_C^*.(\tau_C)$$

$$ullet$$
 $au_{\mathcal{C}} = \epsilon$ (final) or $au_{\mathcal{C}} = \emptyset$ (not final)

Tree of strongly connected components

Compute expression recursively

$$\phi_{C} = T_{C}^{*}.(\tau_{C} + \Sigma_{C'} \gamma_{C,C'}.\phi_{C'})$$

- $\tau_C = \epsilon$ (final) or $\tau_C = \emptyset$ (not final)
- $\gamma_{C,C'} = t + \epsilon$ (edge) or $\gamma_{C,C'} = \emptyset$ (no edge)

Tree of strongly connected components

Compute expression recursively

$$\phi_{C} = T_{C}^{*}.(\tau_{C} + \Sigma_{C'} \gamma_{C,C'}.\phi_{C'})$$

- $\tau_C = \epsilon$ (final) or $\tau_C = \emptyset$ (not final)
- $\gamma_{C,C'} = t + \epsilon$ (edge) or $\gamma_{C,C'} = \emptyset$ (no edge)

Tree of strongly connected components

Compute expression recursively

$$\phi_{\mathcal{C}} = T_{\mathcal{C}}^*.(\tau_{\mathcal{C}} + \Sigma_{\mathcal{C}'} \gamma_{\mathcal{C},\mathcal{C}'}.\phi_{\mathcal{C}'})$$

- $\tau_C = \epsilon$ (final) or $\tau_C = \emptyset$ (not final)
- $\gamma_{C,C'} = t + \epsilon$ (edge) or $\gamma_{C,C'} = \emptyset$ (no edge)

Definition (Algebraic languages over K)

• K-grammar is (V, Σ, P, S) with productions P of form

$$A \to \mathcal{L} \in K$$
 $\mathcal{L} \subseteq V^*$

Definition (Algebraic languages over K)

• K-grammar is (V, Σ, P, S) with productions P of form

$$A \to \mathcal{L} \in K$$
 $\mathcal{L} \subseteq V^*$

ullet L algebraic over K if generated by a K-grammar

Definition (Algebraic languages over K)

• K-grammar is (V, Σ, P, S) with productions P of form

$$A \to \mathcal{L} \in K$$
 $\mathcal{L} \subseteq V^*$

- ullet L algebraic over K if generated by a K-grammar
- K^{∇} class of all algebraic languages over K

Definition (Algebraic languages over K)

• K-grammar is (V, Σ, P, S) with productions P of form

$$A \to \mathcal{L} \in K$$
 $\mathcal{L} \subseteq V^*$

- ullet L algebraic over K if generated by a K-grammar
- K^{∇} class of all algebraic languages over K

Example (Context-free languages)

$$REG^{\nabla} = CF$$

Definition (Algebraic languages over K)

• K-grammar is (V, Σ, P, S) with productions P of form

$$A \to \mathcal{L} \in K$$
 $\mathcal{L} \subseteq V^*$

- \mathcal{L} algebraic over K if generated by a K-grammar
- K^{∇} class of all algebraic languages over K

Example (Context-free languages)

$$REG^{\nabla} = CF$$

Theorem (Van Leeuwen's Theorem 4.5 [vL78])

 \mathcal{L} effectively computable for all $\mathcal{L} \in K^{\nabla}$ iff so for all $\mathcal{L} \in K$

Consequences

Consequence of van Leeuwen's work and our results

 $\mathcal{L}\downarrow$ effectively computable for \mathcal{L} in PN^{∇} , TPN^{∇} , and CPN^{∇}

Consequences

Consequence of van Leeuwen's work and our results

 $\mathcal{L}\downarrow$ effectively computable for \mathcal{L} in PN^{∇} , TPN^{∇} , and CPN^{∇}

Corollary

Emptiness decidable for languages in PN^{∇} , TPN^{∇} , and CPN^{∇}

Consequences

Consequence of van Leeuwen's work and our results

 $\mathcal{L}\downarrow$ effectively computable for \mathcal{L} in PN^{∇} , TPN^{∇} , and CPN^{∇}

Corollary

Emptiness decidable for languages in PN^{∇} , TPN^{∇} , and CPN^{∇}

Example (Language in PN^{∇})

$$\underbrace{u_1.u_1^R\ldots u_n.u_n^R}_{\sim A^n}. \underbrace{v_1.v_1^R\ldots v_n.v_n^R}_{\sim B^n}. \underbrace{w_1.w_1^R\ldots w_n.w_n^R}_{\sim C^n}$$

18 / 22

Downward-closure of all Petri net languages computable

Ordinary languages

Downward-closure of all Petri net languages computable

 Ordinary languages via mgts and Lambert's pumping lemma for reachability

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result
- Covering languages

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result
- Covering languages from coverability tree

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result
- Covering languages from coverability tree
- Algebraic languages over Petri nets

Downward-closure of all Petri net languages computable

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result
- Covering languages from coverability tree
- Algebraic languages over Petri nets

Applications

Stability analysis computes tolerable intrusions

Downward-closure of all Petri net languages computable

- Ordinary languages via mgts and Lambert's pumping lemma for reachability
- Terminal languages by reduction from partial languages to ordinary languages and previous result
- Covering languages from coverability tree
- Algebraic languages over Petri nets

Applications

- Stability analysis computes tolerable intrusions
- Compositional verification

Related Work

• Upward/Downward-closure of context-free languages [vL78]

Related Work

• Upward/Downward-closure of context-free languages [vL78]

 \mathcal{L} † effectively computable for \mathcal{L} in $\mathit{PN}^{\nabla}, \mathit{TPN}^{\nabla}, \mathit{CPN}^{\nabla}$

Related Work

Upward/Downward-closure of context-free languages [vL78]

effectively computable for \mathcal{L} in PN^{∇} , TPN^{∇} , CPN^{∇}

Size of automata representation [GHK07, GHK09]

References I

H. Gruber, M. Holzer, and M. Kutrib.

The size of higman-haines sets.

Theor. Comp. Sci., 387(2):167-176, 2007.

H. Gruber, M. Holzer, and M. Kutrib.

More on the size of higman-haines sets: Effective constructions.

Fundam, Inf., 91(1):105-121, 2009.

M. Hack.

Decidability questions for Petri nets.

Technical report, Cambridge, MA, USA, 1976.

G. Higman.

Ordering by divisibility in abstract algebras.

Proc. London Math. Soc. (3), 2(7):326-336, 1952.

R. M. Karp and R. E. Miller.

Parallel program schemata. J. Comput. Syst. Sci., 3(2):147-195, 1969.

J. L. Lambert.

Finding a partial solution to a linear system of equations in positive integers.

Comput. Math. Applic., 15(3):209-212, 1988.

References II

J. L. Lambert.

A structure to decide reachability in Petri nets.

Theor. Comp. Sci., 99(1):79-104, 1992.

J. van Leeuwen.

Effective constructions in well-partially-ordered free monoids.

Discrete Mathematics, 21(3):237-252, 1978.