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Goal

Determine influences N can tolerate without reaching MB from M0
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N

ENV
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a
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MB

Approximate environmental behaviour Lh(N,M0,MB)

Scattered embedding [Hig52] forgets letters

Lh(N,M0,MB) ⊆ Lh(N,M0,MB)↓
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Contribution

Result

Downward-closure of Petri net languages computable

Language types

Ordinary Lh(N,M0,Mf ) accept by markings (PN)

Terminal Th(N,M0) accept by deadlocks (TPN)

Covering Ch(N,M0,Mf ) accept by upward-closed sets (CPN)

Further applications

Analysis of asynchronous systems

Compositional verification

Regular approximation
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Petri Nets and Coverability Graphs

Petri net

p1

t1

p2

t2

p3

Its coverability graph [KM69]

(1, 0, 0)

(0, 1, 0) (0, 1, ω)(0, 1, ω)
t1 t2 t2
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Main Result

Definition (Ordinary Petri net language in PN)

Lh(N,M0,Mf ) := {h(σ) | M0[σ〉Mf }

Theorem (Representation)

A regular expression φ is computable with

Lh(N,M0,Mf )↓ = φ
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Lambert’s Marked Graph Transition Sequences [Lam92]

Marked graph transition sequence G = C1.t1.C2.t2.C3

m1,in

C1
M1

m1,out
t1

m2,in

C2
M2

m2,out
t2

m3,in

C3
M3

m3,out

Properties

C strongly connected coverability graph

M initial marking

, min input marking , mout output marking

Input and output less abstract �ω than initial marking

min �ω M if min(p) = M(p) or M(p) = ω
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Marked graph transition sequence G = C1.t1.C2.t2.C3

m1,in

C1
M1

m1,out
t1

m2,in

C2
M2

m2,out
t2

m3,in

C3
M3

m3,out

Solutions L(G )

Transition sequence σ through G = C1.t1.C2.t2.C3

Start in m1,in

, fire transitions in C1, reach m1,out

Fire t1 to reach m2,in, etc.

Concrete values must be reached exactly!
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MGTS and Reachability

Reachability problem RP = (N,M0,Mf )

Is Mf reachable from M0 in N?

Corresponding mgts GRP

M0
~ω

t f.a. t ∈ T

Mf

RP holds iff L(GRP) 6= ∅

Even more

L(N,M0,Mf ) = {σ | M0[σ〉Mf } = L(GRP)
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Characteristic Equation

Characteristic equation for mgts

Encode firing in G = C1.t1.C2.t2.C3 into Ax = b

Variables x(min(p))

, x(mout(p)), x(t)

Find non-negative solutions

They are computable! [Lam88]

Relationship

L(G ) 6= ∅ ⇒ Ax = b solvable

⇐ does not hold

. . . in general
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Perfect MGTS

Perfect mgts G = C1.t1.C2.t2.C3

Edge variables x(t) unbounded in solution space of Ax = b

Marking variables x(min/out(p)) unbounded for ω-entries

Property

L(G) 6= ∅ ⇔ Ax = b solvable

(later)

Theorem (Lambert’s decomposition theorem [Lam92])

G can be effectively decomposed into a finite set ΓG of perfect
mgts with

L(G ) =
⋃

G∈ΓG
L(G)
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Solving Reachability

Where are we?

RP = (N,M0,Mf ) holds

L(G) 6= ∅ ⇔ Ax = b solvable

Goal

Compute σ ∈ L(G) from solution to Ax = b
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Solving Reachability

Perfect mgts

m1,in

C1
M1

m1,out
t1

m2,in

C2
M2

m2,out
t2

m3,in

C3
M3

m3,out

Pumping tokens

Sequence u leads from min to M

u adds tokens to p with M(p) = ω > min(p)

u does not change tokens on p with M(p) = min(p) = k ∈ N
Sequence v leads from M to mout
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Pumping tokens

Sequence u leads from min to M

u adds tokens to p with M(p) = ω > min(p)

u does not change tokens on p with M(p) = min(p) = k ∈ N

u is computable! [Lam92]

Sequence v leads from M to mout

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN Languages↓ (Rennes, June 2010) 11 / 22



Stability Analysis
Ordinary Languages
Terminal Languages
Covering Languages
Algebraic Languages

Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving Reachability
Computing the Downward-Closure

Solving Reachability

Perfect mgts

m1,in

C1
M1

m1,out
t1

m2,in

C2
M2

m2,out
t2

m3,in

C3
M3

m3,out

Pumping tokens

Sequence u leads from min to M

u adds tokens to p with M(p) = ω > min(p)

u does not change tokens on p with M(p) = min(p) = k ∈ N
Sequence v leads from M to mout

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN Languages↓ (Rennes, June 2010) 11 / 22



Stability Analysis
Ordinary Languages
Terminal Languages
Covering Languages
Algebraic Languages

Marked Graph Transition Sequences
Characteristic Equation and Perfectness
Solving Reachability
Computing the Downward-Closure

Solving Reachability

Perfect mgts

m1,in

C1
M1

m1,out
t1

m2,in

C2
M2

m2,out
t2

m3,in
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Theorem (Lambert’s pumping lemma)

Let Ax = b have solution. Then σk ∈ L(G) for every k > k0 with

σk = (uk
1 .β1.α

k
1 .v

k
1 ).t1.(uk

2 .β2.α
k
2 .v

k
2 ) . . . tn−1.(uk

n .βn.α
k
n .v

k
n )
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Computing the Downward-Closure

Computing the downward-closure

L(N,M0,Mf )

= L(GRP) =
⋃

G∈ΓGRP
L(G)

Theorem (Downward-closure of mgts)

Let G = C1.t1.C2 . . . tn−1.Cn have solution. Then

L(G)↓ = T ∗1 .(t1 + ε).T ∗2 . . . (tn−1 + ε).T ∗n
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Let G = C1.t1.C2 . . . tn−1.Cn have solution. Then

L(G)↓ = T ∗1 .(t1 + ε).T ∗2 . . . (tn−1 + ε).T ∗n

⊇: Choose u with all transitions T in C

Apply Lambert’s pumping lemma
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Theorem (Downward-closure of mgts)

Let G = C1.t1.C2 . . . tn−1.Cn have solution. Then

L(G)↓ = T ∗1 .(t1 + ε).T ∗2 . . . (tn−1 + ε).T ∗n

⊇: Choose u with all transitions T in C

Apply Lambert’s pumping lemma
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Computing the downward-closure

L(N,M0,Mf )↓ = L(GRP)↓ =
⋃

G∈ΓGRP
L(G)↓

Theorem (Downward-closure of mgts)

Let G = C1.t1.C2 . . . tn−1.Cn have solution. Then

L(G)↓ = T ∗1 .(t1 + ε).T ∗2 . . . (tn−1 + ε).T ∗n

Construction of u

Take ua by Lambert

Take ub with all transitions T in C (strongly connected)

u := um+1
a .ub

m = maximal negative effect of ub
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Terminal Languages

Definition (Terminal language in TPN)

Th(N,M0) = {h(σ) | M0[σ〉M and ¬M[t〉 f.a. t ∈ T}

Idea

Deadlocks given by finite set P of partial markings MP , P ⊆ P ′

Th(N,M0) =
⋃

MP∈PLh(N,M0,MP)

Compute downward-closure of partial languages

Lh(N,M0,MP)↓ = φMP

Theorem (Representation)

Th(N,M0)↓ = ΣMP∈P φMP
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Partial Languages and their Representation

Partial languages: acceptance by corresponding markings

Lh(N,M0,MP) =
⋃

M|P=MP
Lh(N,M0,M)

From infinite union to ordinary language [Hac76]

. . . P . . .

. . . P ′/P . . .h(t1)

. . .
h(tn)N

ε ε

εrun ε

Lemma

Lh(N,M0,MP) = Lh∪hg (N,M run
0 ,Mempty

P )
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Covering Languages

Definition (Covering language in CPN)

Ch(N,M0,Mf ) = {h(σ) | M0[σ〉M and M ≥ Mf }

Turn coverability tree into finite automaton

Silent transitions to smaller nodes

Accept when final marking dominated
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Covering Languages

Turn coverability tree into finite automaton

Silent transitions to smaller nodes

Accept when final marking dominated

Example

p1

t1

p2

t2

p3

t3

p4

t4

p5

(1, 0, 0, 0, 0)(0, 1, 0, 0, 0)

(0, 1, ω, 0, 0)

(0, 0, 0, 1, 0)

(0, 0, 0, 1, ω)

t1

t2

t3

t4
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Covering Languages

Turn coverability tree into finite automaton

Silent transitions to smaller nodes

Accept when final marking dominated

Lemma

Ch(N,M0,Mf )↓ = L(FA)↓
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Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

φC = T ∗C .(

τC + ΣC ′ γC ,C ′ .φC ′

)

τC = ε (final) or τC = ∅ (not final)

γC ,C ′ = t + ε (edge) or γC ,C ′ = ∅ (no edge)

Example

(1, 0, 0, 0, 0)(0, 1, 0, 0, 0)

((0, 1, ω, 0, 0))f

(0, 0, 0, 1, 0)

(0, 0, 0, 1, ω)

t1

t2

t3

t4

φC0 = (t1 + ε).t∗2
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Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

φC = T ∗C .(τC + ΣC ′ γC ,C ′ .φC ′)

τC = ε (final) or τC = ∅ (not final)

γC ,C ′ = t + ε (edge) or γC ,C ′ = ∅ (no edge)

Example

t2 t4t1 t3

φC0 = (t1 + ε).t∗2 + (t3 + ε).t∗4 .∅

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN Languages↓ (Rennes, June 2010) 16 / 22



Stability Analysis
Ordinary Languages
Terminal Languages
Covering Languages
Algebraic Languages

Downward-closure of the Automaton

Tree of strongly connected components

Compute expression recursively

φC = T ∗C .(τC + ΣC ′ γC ,C ′ .φC ′)

τC = ε (final) or τC = ∅ (not final)

γC ,C ′ = t + ε (edge) or γC ,C ′ = ∅ (no edge)

Example

t2 t4t1 t3

φC0 = (t1 + ε).t∗2

Habermehl, Meyer, Wimmel (LIAFA and University of Rostock) PN Languages↓ (Rennes, June 2010) 16 / 22



Stability Analysis
Ordinary Languages
Terminal Languages
Covering Languages
Algebraic Languages

Van Leeuwen’s Algebraic Languages

Definition (Algebraic languages over K )

K -grammar is (V ,Σ,P,S) with productions P of form

A→ L ∈ K L ⊆ V ∗

L algebraic over K if generated by a K -grammar

K∇ class of all algebraic languages over K

Example (Context-free languages)

REG∇ = CF

Theorem (Van Leeuwen’s Theorem 4.5 [vL78])

L↓ effectively computable for all L ∈ K∇ iff so for all L ∈ K
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Consequences

Consequence of van Leeuwen’s work and our results

L↓ effectively computable for L in PN∇, TPN∇, and CPN∇

Corollary

Emptiness decidable for languages in PN∇, TPN∇, and CPN∇

Example (Language in PN∇)

u1.u
R
1 . . . un.u

R
n︸ ︷︷ ︸

∼An

. v1.v
R
1 . . . vn.v

R
n︸ ︷︷ ︸

∼Bn

. w1.w
R
1 . . .wn.w

R
n︸ ︷︷ ︸

∼Cn
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Covering Languages
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Conclusion

Downward-closure of all Petri net languages computable

Ordinary languages

via mgts and Lambert’s pumping lemma
for reachability

Terminal languages

by reduction from partial languages to
ordinary languages and previous result

Covering languages

from coverability tree

Algebraic languages over Petri nets

Applications

Stability analysis

computes tolerable intrusions

Compositional verification
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