Petruchio: From Dynamic Networks to Nets*

Roland Meyer!' and Tim Strazny?

L LIAFA & CNRS and ? University of Oldenburg

Abstract. We introduce PETRUCHIO, a tool for computing Petri net
translations of dynamic networks. To cater for unbounded architectures
beyond the capabilities of existing implementations, the principle fixed-
point engine runs interleaved with coverability queries. We discuss algo-
rithmic enhancements and provide experimental evidence that PETRU-
CHIO copes with models of reasonable size.

1 Introduction

PETRUCHIO computes Petri net representations of dynamic networks, as they are
the basis to automatic-verification efforts [19]. As opposed to static networks
where the topology is fixed, in dynamic networks the number of components
as well as connections changes at runtime. Whereas earlier tools covered only
finite state models [6,23,9], PETRUCHIO features the unbounded interconnec-
tion topologies needed when tackling software. Theoretically, the implementa-
tion rests upon recent insights on the relationship between dynamic networks and
Petri nets [15, 14]. Practically, the heart of our algorithm is an unconventional
fixed-point computation interleaved with coverability queries.

Run on a series of benchmarks, we routinely translate systems of two hundred
lines of m-calculus code into Petri nets of around 1k places within seconds. The
computability threshold lies around 90k transitions, which is in turn beyond
the capabilities of latest net verification tools [13]. A concurrency bug found
in an automated manufacturing system and automatic verification of the gsm
benchmark underline the practicability of our tool [16].

Related Work There has been recent interest in translation-based network
verification [4,3,16], PETRUCHIO puts these efforts into practice. Besides, the
well-structured transition system framework [2, 5, 8,1, 24] as well as abstraction-
based verification techniques [21, 20, 11, 22] have been applied.

2 Foundations behind Petruchio

Online banking services are typical dynamic networks where failures have severe
consequences and thus verification is required. We model this example in the
m-calculus and for simplicity explain the implementation of the Petri net trans-
lation from [14]. Based on similar algorithmic ideas, the fixed-point engine in
PETRUCHIO also handles the more involved translations from [3, 15].

* The first author was supported by the French ANR projects Averiss and Veridyc.
Appeared in Proc. of CAV, volume 6174 of LNCS, pages 175-179. Springer, 2010.

S(url) = url(y).(y(bal) | S(url))
C(url) = vip.url{ip).ip(dat).C (url)

S
Py url Py

Fig. 1. w-calculus model Bnk of an online banking service (top left) and a reachable
state represented as interconnection topology (bottom left). The structural semantics
Ns[Bnk] is depicted to the right, CON abbreviates vip.(ip(dat).C (url) | ip(bal)).

The overall functionality of the banking system Bnk is a login of the client,
which spawns a new thread that displays the account balance. We detail the
m-calculus model in Figure 1. The bank server S(url) is located at some url
and ready to receive the ip-address of a customer, url(y). Upon reception, a new
thread is spawned (parallel composition |). It transmits the balance, g(bal), and
terminates. The server itself is immediately ready for new requests. To guarantee
proper interaction, the client sends its private (indicated by a vip quantifier) ip-
address url{ip) and waits on this channel for data. We assume an environment
E(url) that generates further customers.

Translation Although the banking service exhibits an unbounded number of
connection topologies, there exists a finite basis of connection fragments they
are built from. Fragments are maximal subgraphs induced by private channels
and can be determined in linear time by minimising the scopes of the quanti-
fiers. For instance, a private connection between client and thread is fragment
vip.(ip(dat).C(url) | ip(bal)). It is present twice in the example state in Figure 1.

For verification purposes, the structural semantics translates dynamic net-
works into Petri nets. Every reachable fragment yields a place, communications
inside and between fragments determine the transitions, and the initial state
is the decomposition of the system’s initial state into fragments. The running
example is represented by the Petri net Ng[Bnk] in Figure 1.

An isomorphism between the transition systems, Sys =5, Ns[Sys], proves
the net representation suitable for model checking purposes. In fact, it is a lower
bound on the information required for verifying topological properties. This fol-
lows from a full abstraction result wrt. syntactic equivalence, Sys = Sys’ iff
Ns[Sys] = Ns[Sys'], and the descriptive power of topological logics [7].

3 Algorithmic Aspects

The declarative definition of the structural semantics leaves the problem of its
computability open. Taking a classical view from denotational semantics, we un-
derstand it as an unconventional least fixed-point on a particular set of nets. A

dynamic network Sys gives rise to a function ¢g,s on nets. As an example, con-
sider the subnet N shown in the box in Figure 1. An application ¢ g, (V) extends
it by the communication between client and server (dark). The least fixed-point
of such a ¢gys is in fact the structural semantics, Ns[Sys] = Ifp(¢sys). Thanks
to continuity, we can compute it by iterating the function on the empty net,
Up(psys) = L{d%,s(Np) 1+ n € N}. The algorithm terminates precisely on sys-
tems with a finite structural semantics. They are completely characterised by
the existence of a finite basis of fragments [14].

Leading yardstick to a practical implementation is the efficient computation
of extensions and the quick insertion of places.

Computing Extensions An application of function ¢g,s determines the set
of transitions the net has to be extended with. Transitions between fragments
rely on pairs (F,G) of potential communication partners. Hashing the leading
communication channels, they can be determined in constant time. Each such
pair then needs a semantic confirmation of F and Gs simultaneous reachability.
We reduce it to a coverability problem in the Petri net built so far and implement
strategies to avoid unnecessary queries and speed-up coverability checks.

To reduce the number of checks, PETRUCHIO augments the breadth-first
fixed-point computation with dedicated depth-first searches. Whenever frag-
ments F and G are found simultaneously markable, we build their internal
closure cl(F). It consists of all fragments reachable from F with internal commu-
nications. By definition, containment in the internal closure is a semantic con-
firmation for all potential communication partners F’ € cl(F) and G’ € cl(G).
Their transitions can be added without further coverability queries.

Despite the advantage of incremental computability [12], Karp and Miller
graphs turned out impractical for coverability checks due to their size. Instead,
we perform independent backwards searches [2] that we prune with knowledge
about place bounds. These bounds are derived from place invariants, and we
currently use an incomplete cubic time algorithm. Our experiments show that
already non-optimal bounds dramatically speed-up the backwards search.

Inserting Places Every newly discovered fragment F' in ¢g,s(N) has to be
compared for syntactic equivalence = with the places in the original net N.
Since these checks F' = G are graph isomorphism complete [10], we implemented
a technique in PETRUCHIO to minimise their number.

We abstract fragments to so-called signatures sig(F'). As equality of these
signatures is necessary for syntactic equivalence, they allow us to quickly refute
non-equivalent pairs F # (. Technically, the theory rests upon functions «
that are invariant under syntactic equivalence, F' = G implies a(F) = a(G). A
signature is a combination of these indicator values, sig(F') := a(F).8(F) ... We
use ten values, ranging from number of free names to sequences of input and
output actions. All of them are computable in linear time.

As all indicator values stem from totally ordered domains, the lexicographic
order on signatures is total. When a new fragment is inserted, we can thus rely

on a (logarithmic) binary search for candidates sig(F') = sig(G) that need to be
checked for syntactic equivalence. The check itself is implemented in PETRUCHIO
and we provide the option to hand over larger instances to a graph isomorphism
solver that we integrated in black-box fashion [10,17].

Experimental Evaluation The implementation encapsulates coverability
checker and fixed-point engine into separate’Model‘LOCH P | |T|| E| Ht[SH

threads that run loosely coupled. We demon-
strate its efficiency on the gsm handover
procedure [18] and an automatic manufacturing
system [16]. Note that HT'Sp with a parametric

GSM | 84| 131| 263| 526/|1.55
HTSp|194|] 903|1103| 3482|/3.24
HTS¢|195||1912|3515[11881(|15.7

number of transport vehicles yields a smaller net than the concrete model HTS¢~
with six of them, underpinning the need for unbounded verification techniques.
For each model, we give loc, Petri net size (places, transitions, edges), and
compile-time on an AMD Athlon 64 X2 Dual Core with 2.5 GHz.

References

1.

10.

11.

12.

13.
14.

P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic
abstraction for programs with dynamic memory heaps. In CAV, volume 5123 of
LNCS, pages 341-354. Springer, 2008.

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Inf Comp, 160(1-2):109-127, 2000.

N. Busi and R. Gorrieri. Distributed semantics for the m-calculus based on Petri
nets with inhibitor arcs. JLAP, 78(1):138-162, 2009.

R. Devillers, H. Klaudel, and M. Koutny. A compositional Petri net translation of
general m-calculus terms. For Asp Comp, 20(4-5):429-450, 2008.

A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
TCS, 256(1-2):63-92, 2001.

HAL. http://fmt.isti.cnr.it:8080/hal/.

D. Hirschkoff. An extensional spatial logic for mobile processes. In CONCUR,
volume 3170 of LNCS, pages 325-339. Springer, 2004.

S. Joshi and B. Konig. Applying the graph minor theorem to the verification of
graph transformation systems. In CAV, volume 5123 of LNCS, pages 214-226.
Springer, 2008.

V. Khomenko, M. Koutny, and A. Niaouris. Applying Petri net unfoldings for
verification of mobile systems. In MOCA, Bericht FBI-HH-B-267/06, pages 161
178. University of Hamburg, 2006.

V. Khomenko and R. Meyer. Checking m-calculus structural congruence is graph
isomorphism complete. In ACSD, pages 70-79. IEEE, 2009.

B. Konig and V. Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In TACAS, volume 3920 of LNCS, pages
197-211. Springer, 2006.

B. Koénig and V. Kozioura. Incremental construction of coverability graphs. IPL,
103(5):203—-209, 2007.

MoODEL CHECKING KIT. http://www.fmi.uni-stuttgart.de/szs/tools/mckit/.

R. Meyer. A theory of structural stationarity in the m-calculus. Acta Inf, 46(2):87—
137, 2009.

15

16.

17.
18.

19.
20.

21.

22.

23.
24.

R. Meyer and R. Gorrieri. On the relationship between m-calculus and finite
place/transition Petri nets. In CONCUR, volume 5710 of LNCS, pages 463-480.
Springer, 2009.

R. Meyer, V. Khomenko, and T. Strazny. A practical approach to verification of
mobile systems using net unfoldings. Fund Inf, 94(3—-4):439-471, 2009.

NAUTY. http://cs.anu.edu.au/ bdm/nauty/.

F. Orava and J. Parrow. An algebraic verification of a mobile network. For Asp
Comp, 4(6):497-543, 1992.

PETRUCHIO. http://petruchio.informatik.uni-oldenburg.de.

A. Rensink. Canonical graph shapes. In ESOP, volume 2986 of LNCS, pages
401-415. Springer, 2004.

S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM TOPLAS, 24(3):217-298, 2002.

M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification
of ad hoc routing protocols. In TACAS, volume 4963 of LNCS, pages 18-32.
Springer, 2008.

SPATIAL Locic MODEL CHECKER. http://ctp.di.fct.unl.pt/SLMC/.

T. Wies, D. Zuffrey, and T. A. Henzinger. Forward analysis of depth-bounded
processes. In FoSSaCS, volume 6014 of LNCS, pages 94-108. Springer, 2010.

A Details on the Algorithms

We provide more details on the fixed-point computation and the internal closure.

Fixed-Point Algorithm Fragments are particular w-calculus processes F, G, H
from a set of fragments F [14]. The definition of the structural semantics relies
on Petri nets over fragments, formalised as pairs N = (S, T) from an overall set
PN £. Unlike standard ones, these nets have fragments as places, S C F, and two
kinds of transitions, T' = T7 UTs. Transitions in T are pairs (F, Q). They model
an internal communication within F', which results in state Q). Transitions of the
second form are triples (Fy, Fy, Q) that reflect interactions between Fy and Fy.!
Arcs between places and transitions are determined by their names, e.g. there is
one arc from place F' to (F, Q).

Petri nets over fragments N = (S,7) and N’ = (S',T") are ordered by
inclusion, N C N' if § C 8" and T C T". This turns PN into a complete
partial-order (PN £, C). The minimal element is the empty net, Ny = (0, 0), and
the least upper bound of a directed set of nets A is their union, UA = Jyc4 N,
with NUN' = (SU S, TUT’).

S(url) . S(url) O
E(url) . E(url) O::.—>.

BNy (N Curl)

s(urt) @_B—@ con S(url) (P CON
E(url) O/_s g) E(url) O/_\A ‘<_.

(N Clurl) L) Curl)

Fig. 2. Kleene iteration computing the structural semantics of the online banking ser-
vice. Dark parts have been added in the last application of ¢pn.

In the structural semantics Ns[Sys] = (S,T), the places are the fragments
reachable in Sys and the transitions are their communications. We imitate the
translation by a continuous function ¢g,s : PNz — PNz on nets over frag-
ments. Given a net, the function adds the decomposition of the initial system
state to properly start the Kleene iteration below. Then, for every fragment
F that evolves to @ a transition (F, Q) is added. Similarly, a communication
between F; and F yields a transition (Fi, F», @), provided the fragments are

! There are side conditions that avoid symmetric transitions but they are not impor-
tant for the development here.

simultaneously markable from the decomposition of the initial state. Since ¢gys
is continuous, Kleene’s theorem shows its least fixed-point to be the least upper
bound of the sequence

No bsysNp) bsys(Dsys(Np)) = d%,s(Np)

It is not difficult to show that this fixed-point is the structural semantics. Fig-
ure 2 illustrates the computation on the banking service. Initially, the server
and the environment are present. They are added by an application of ¢pni
to the empty net. The second application of ¢p, lets the environment gener-
ate a new client, which gives transition t;. The server has no internal commu-
nication. In ¢%, , (Np), client and server are potential communication partners
(C(url), S(url)). A coverability check confirms they are simultaneously markable
with one token on the environment and one on the server place. Their interaction
is reflected by t5. Then the thread inside CON = vip.(ip(dat).C (url) | ip{bal))
sends the balance to the client, t3. Further applications of ¢z, do not change
the net, ¢pni (05, (Np)) = @B (Np). The fixed point is found.

Internal Closure The internal closure avoids coverability checks by depth-first
accelerations of the fixed-point computation. Formally, cI(F') contains all places
reachable from fragment F' by internal communication, i.e., by transitions of the
form (F’, Q). In Figure 3, the closures of F' and G are depicted light and dark,
respectively. Place H happens to be in both sets.

Fig. 3. Illustration of the internal closure acceleration.

If fragment F' is reachable, all fragments in its internal closure are reachable
and have to be added to the net. Furthermore, if F' and G are simultaneously
markable in the net N, then so are all fragment F’ € cl(F) and G’ € cl(G).
Hence, communicating transitions between F’ and G’ can be added without
further coverability queries. In Figure 3, they are drawn dashed and their postsets
are omitted for simplicity. Note that from H there is an arc weighted two to
a new transition (H, H, Q) that represents a communication between identical
fragments. Since H is in two closures, it can in fact be covered by two tokens.

