WS 2017/2018 06.12.2017

Übungen zur Vorlesung Programmanalyse Blatt 7

Prof. Dr. Roland Meyer, M. Sc. Sebastian Wolff M. Sc. Elisabeth Neumann

Abgabe bis 13.12.2017 um 12 Uhr

Aufgabe 7.1 (Verification Conditions)

Betrachten Sie folgendes (annotiertes) Programm p.

1:
$$\{A\} = \{a \ge 0 \land c = 0 \land x = a\}$$

2: **while** $(a > 0)$ **do**
3: $\{I_1\} = \{c = \sum_{i=a+1}^{x} i \land a \ge 0 \land x \ge 0\}$
4: $[b := 0]$
5: **while** $(a \ne b)$ **do**
6: $\{I_2\} = \{c = b + \sum_{i=a+1}^{x} i \land a > 0 \land x \ge 0\}$
7: $[c := c + 1]$
8: $[b := b + 1]$
9: $[a := a - 1]$
10: $\{B\} = \{c = \frac{(x+1)*x}{2}\}$

Zeigen Sie dass $\models \{A\} \ p \ \{B\}$ indem Sie zeigen dass $\models vc(\{A\} \ p \ \{B\})$ gilt.

Aufgabe 7.2 (Verification Conditions)

Zeigen Sie den Satz Soundness/Korrektheit aus dem Skript.

$$\models vc(\{A\} \ c \ \{B\}) \text{ impliziert } \models \{A\} \ c \ \{B\}$$

Aufgabe 7.3 (Galois-Verbindungen)

Geben Sie im Folgenden jeweils an, ob das Paar (α, γ) eine Galoisverbindung ist. Bei den Paaren, die keine Galoisverbindungen sind, geben Sie jeweils ein Gegenargument bzw. Gegenbeispiel an.

	L	M	α	γ
a)	$(\mathbb{Z}_{\pm\infty},\leq)$	$\left(\mathbb{P}\left(\mathbb{Z} ight) ,\subseteq ight)$	$z\mapsto \{z\}, -\infty\mapsto$	$m \mapsto \bigsqcup\{z \mid z \in m\}$
			$\emptyset,\infty\mapsto\mathbb{Z}$	
b)	$\left(\mathbb{P}\left(\mathbb{Z} ight) ,\subseteq ight)$	$(\mathbb{Z}_{\pm\infty},\leq)$	$l \mapsto \bigsqcup\{z \mid z \in l\}$	$z\mapsto\{z\},-\infty\mapsto$
				$\emptyset, \infty \mapsto \mathbb{Z}$
c)	$(\mathbb{Z} \cup \{\bot, \top\}, \sqsubseteq)$	$(\mathbb{P}\left(\mathbb{Z} ight),\subseteq)$	$z \mapsto \{z\}, \top \mapsto \mathbb{Z}, \bot \mapsto$	$m \mapsto \bigsqcup \{a \mid a \in m\}$
			Ø	
d)	$(\mathbb{Z}_{\pm\infty},\leq)$	$\left(\mathbb{Z}^2_{\pm\infty},\leq^2\right)$	$l \mapsto (l, l)$	$(l_1, l_2) \mapsto l_1$
e)	$\left(\mathbb{P}\left(\mathbb{R}^{2} ight),\subseteq ight)$	$\left(\operatorname{conv}\mathbb{R}^2,\subseteq\right)$	$l \mapsto \operatorname{conv}(l)$	$m \mapsto m$

Dabei sind

- $z \in \mathbb{Z}, l \in L, m \in M$
- $\mathbb{Z}_{\pm\infty} := \mathbb{Z} \cup \{-\infty, +\infty\}, -\infty \le +\infty$ und für alle $z \in \mathbb{Z}$ gilt $-\infty \le z, z \le +\infty$.
- $z_1 \sqsubseteq z_2$ gdw. $z_1 = \bot \lor z_2 = \top$
- $(l_1, l_2) \leq^2 (l_3, l_4)$ wenn $l_1 \leq l_3$ und $l_2 \leq l_4$ für $l_1, l_2, l_3, l_4 \in \mathbb{Z}_{\pm \infty}$.
- conv \mathbb{R}^2 die konvexen Mengen über \mathbb{R}^2 bzw. conv (l) die konvexe Hülle von l. Eine Teilmenge $m \subseteq \mathbb{R}^2$ heißt konvex, wenn jede Verbindungsstrecke zwischen zwei Punkten in m selbst vollständig in m liegt. Die konvexe Hülle conv (l) is die kleinste konvexe Menge m, die l enthält.

Abgabe bis 13.12.2017 um 12 Uhr im Kasten neben Raum IZ 343