WS 2018/2019 16.01.2018

Übungen zur Vorlesung Programmanalyse Blatt 11

Prof. Dr. Roland Meyer, M. Sc. Sebastian Wolff, M. Sc. Peter Chini

Abgabe bis 23.01.2019 um 12 Uhr

Aufgabe 11.1 (Abstraktionsverfeinerung)

Betrachten Sie das folgende Programm. Dieses berechnet für $x,y\in\mathbb{N}$ das Produkt $z=x\cdot y$. Zeigen Sie mittels CEGAR-loop, dass Block 8 nicht erreichbar ist.

```
\begin{split} [z := 0]^1 \\ & \text{if } [x > 0]^2 \text{ then} \\ & \text{if } [y > 0]^3 \text{ then} \\ & \text{while } [x > 0]^4 \text{ do} \\ & [z := z + y]^5 \\ & [x := x - 1]^6 \\ & \text{if } [z = 0]^7 \text{ then} \\ & [\text{skip}]^8 \\ & \text{else} \\ & [\text{skip}]^9 \\ & \text{else} \\ & [\text{skip}]^{10} \\ & \text{else} \\ & [\text{skip}]^{11} \end{split}
```

Aufgabe 11.2 (Echte Gegenbeispiele)

Beweisen Sie folgendes Lemma aus der Vorlesung:

Sei $c = (c_0, q_0) \Rightarrow \cdots \Rightarrow (c_k, q_k)$ ein Gegenbeispiel, wobei $q_0 \models true$. Ferner sei $r = r_1; \ldots; r_k$ der zu c assoziierte Ablauf. Dann gilt:

Gegenbeispiel c ist unecht genau dann, wenn $\models \{true\}\ r\ \{false\}.$

Gehen Sie dazu wie folgt vor.

a) Zeigen Sie zuerst die Richtung " \Leftarrow " per Kontraposition: Wenn c echt ist, dann ist das Hoare Tripel $\models \{true\}\ r\ \{false\}$ nicht gültig. Sie dürfen dabei annehmen, dass folgende Aussage gilt.

Wenn
$$(c_0, \sigma_0) \to \cdots \to (c_k, \sigma_k)$$
, dann $(r_1; \ldots; r_k, \sigma_0) \to \cdots \to (r_k, \sigma_{k-1}) \to \sigma_k$.

b) Zeigen Sie nun die Richtung " \Rightarrow " per Kontraposition: Wenn $\not\models \{true\}\ r\ \{false\}$, dann ist c echt. Dafür zeigen Sie zuerst (unter Annahme $\not\models \{true\}\ r\ \{false\}$), dass $\sigma_0, \sigma_1, \ldots, \sigma_k \in State$ existieren mit $\sigma_0 \models true$ und $\sigma_k \not\models false$, so dass

$$(r_1; \ldots; r_k, \sigma_0) \to \cdots \to (r_k, \sigma_{k-1}) \to \sigma_k$$

eine valide Ableitung in Small-Step Semantik ist.

c) Um den Beweis abzuschließen, zeigen Sie per Induktion, dass $\sigma_i \models q_i$. Nutzen Sie folgende Einsicht: Es gilt $(r_{i+1}, \sigma_i) \to \sigma_{i+1}$, falls $(r_{i+1}; \ldots; r_k, \sigma_i) \to (r_{i+2}; \ldots; r_k, \sigma_{i+1})$ und r ein Ablauf ist.