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0 0 ALTERNATING AUTOMATA REVISITED

0 Alternating automata revisited

0.0 Ordinary automata and their finiteness conditions

Finite automata for recognizing languages over some alphabet A may be viewed as labeled
transition systems (LTSs) on some set Q of states, equipped with initial and final states. The
LTS’s transition function δ may be formulated in various ways, but from a categorical perspective
a very sensible choice is to map the alphabet A into a suitable monoid:

A δ 〈Q,Q〉set in the total deterministic case
A δ 〈Q,Q+ 1〉set = 〈Q,Q〉prt in the deterministic case
A δ 〈Q,QP 〉set = 〈Q,Q〉rel in the nondeterministic case

Here we observe that both prt , the category of sets and partial functions, as well as rel ,
the category of sets and binary relations (ignoring, for the moment, the 2-cells in both cases)
are isomorphic to the Kleisli-category setE for the exception moand E = 〈− + 1, ηE, µE〉 ,
respectively, setP for the power set monad P = 〈P, {−},

⋃
〉 . This clarifies the monoid structure

of the codomain of δ , we were aiming for, and which is perhaps not immediate when looking at
the hom-sets 〈Q,Q+ 1〉set and 〈Q,QP 〉set .

But careful, these formulations do not express the finiteness requirements usually imposed in
automata theory, namely that there are only finitely many labeled transitions, i.e., the disjoint
union of the sets aδ ⊆ Q×Q , a ∈ A , has to be finite.

In case of total deterministic automata this means that alphabet and state-set are finite,
while in the other two cases only the set of letters to which non-empy relations are assigned has to
be finite. Moreover, the relations that are assigned have to be finite. In case of non-deterministic
automata that suggests replacing the full power-set functor P with F , which maps sets to their
sets of finite subsets.

A δ 〈Q,QF 〉set = 〈Q,Q〉setF in the nondeterministic case

This gives rise to a sub-monad F of P . Notice, however, that while its Kleisli-category setF is
no longer self-dual, i.e., not closed under the reversal (−)op of relations, the constraint of only
allowing finitely many transitions altogether still allows the reversal of automata.

It would be desirable if the initial and final states can also be specified in the same setting
that allowed us to idemtify the monoid structure. Indeed, for initial states one can use a total
function 1 I Q that specifies a single initial state, a partial function 1 F Q that specifies at
most one initial state, and a relation 1 F Q that specifies a set of initial states. In the latter
two cases a dual construction can be used to specify final states: a partial function Q F 1

and a relation Q F 1 both specify a set of final states. Hence the recognized words can be
characterized as those where the composite of I with the transition relations and F results in
the non-empty relation on 1 . In the total deterministic case this is not possible; to specify a
subset I ⊆ Q we need to employ 2 as the codomain of the characteristic function Iχ .
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0.1 Alternating automata 1

This inherent asymmetry may have contributed to the development of coalgebra, which
combines an exponential transpose Q d 〈A,Q〉set of A δ 〈Q,Q〉set with Iχ to obtain a
coalgebra Q D 〈A,Q〉set × 2.

0.1 Alternating automata

The intuition for alternating automata is to complement the aspect of choice provided by functions
Q QF with an aspect of parallelism, or maybe superposition. This can be achieved by replacing
QF by the set QB of positive Boolean combinations of elements of Q .

A δ 〈Q,QB〉set in the alternating case

But what kind of monoid structure can we impose on 〈Q,QB〉set ? Recall that every Boolean
formula has a conjunctive as well as a disjunctive normal form, both can be written as finite sets
of finite sets of literals. In the positive case only atoms occur. Interpreting a finite set of finite
sets of states as a positive DNF, the outer power-set constructor is responsible for choice, and the
inner one for superposition.

This raises the question, whether the monad F can be composed with itself to yield a monad
B . In that case we can identify 〈Q,QB〉set with 〈Q,Q〉setB , which then carries the required
monoid structure. As we have seen before, this would require a distributive law linking F with
itself.

0.2 The monad B

The distributive law in question does in fact express the fact that in Boolean algebra conjunction
distributes over disjunktion, and vice versa. To transform a Boolean formula from CNF into DNF,
form the disjunction of those co-clauses that result from picking one literal from every clause
of the CNF. More formally, form the cartesian product of all co-clauses, and take the images of
the resulting choice-functions as new co-clauses. The same transformations works in the other
direction, since conjunction distributes over disjunction as well.

The unit of this monad maps q ∈ Q to singleton { {q}} , while the multiplication is somewhat
messy to describe: interpret an element A ∈ QFFFF as the disjunction of a set of formulae
in CNF, over conjunctions of literals rather than literals. Turning the central CNF into a DNF
results in a disjunction of set of disjunctions of conjunctions of further conjunctions, and hence
another DNF.

Since the EM-algebras of the monad F are either u-or t-semilattices, depending on the
chosen order on subsets, the EM-algeras of B combine both operations in such a way that they
distribute over one another, hence turn out to be distributive lattices (with > and ⊥ , since
the empty set is allowed at both levels). The Kleisli-category setB is known to be equivalent
to the subcategory of free distributive lattices. In the Kleisli category we just keep track of the
generators, which form an anti-chain about which the free distrubutive lattice is symmetric.
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2 0 ALTERNATING AUTOMATA REVISITED

Note that ∅ generates the 2-element chain with ⊥ < > in this fashion, while 1 generates a
3-element chain ⊥ < ∗ < > . To continue the analogy with ordinary automata above, one would
expect setB -morphisms 1 I Q amd Q F 1 to specify a set of initial superpositions, and a
setof final states. Indeed, the corresponding function 1 I QB picks out an element of the free
distributive lattice over Q , while for Q F 1B we can consider the pre-image of > as the set
of final states.

An infinitray version of essentially the same distributive law is available for composing the
power-set monad P with itself; in that case one obtains completely distributive lattices as
EM-algebras.

0.3 Moving to the ordered setting

The distributive laws outlined above make sense in the category ord of antisymetrically ordered
sets, which subsumes the category set , where equality serves as a discrete order. Recall that ord

is a full subcategory of pre , the category of 2-enriched categories, which means reflexive and
transitive relations, 2 being the 2-element chain with 0 < 1 . In particular, any order-relation v
on a set Q can be viewed as an order-preserving function Qop ×Q v 2, the hom-functor for
Q , which among order ideals plays the role of the identity on Q .

In this setting the power-set functor splits into two variants by fixing either of the two slots of
the hom-functor with 2 : the down-set functor D is just 〈(−)op,2〉ord , while the up-set functor
U is (〈−,2〉ord) op .

The ordering has been chosen to be able to embed Q into these ordered sets (Yoneda
embedding); just recall how the principal up- and down-sets reflect x v y . This implies x↓ ⊆ y↓
and x↑ ⊇ y↑ .

Q ↓ QD = 〈Qop,2〉ord resp. Q ↑ QU = (〈Q ,2〉ord) op

The units of the corresponding monads map q ∈ Q to its principal down- respectively up-set ,
while the multiplications maps an up-set of down-sets to its union, and similarly a down-set of
up-sets. EM-algebras of D and U are

⊔
-lattices, resp.,

d
-lattices

These functors obey generalizations of the distributive laws above, and may be composed
with each other in both ways, yielding the same new monad. Its EM-algebras are known as
constructively completely distributive lattices, or CCD-lattices for short. [Literature: Fawcett,
Wood, Rosebrugh, Marmolejo...]

Originally, CCD-lattices were defined in analaogy to continuous lattices by means of a so-
called “way-below” relation. It turns out that a poset Q is a complete lattice, iff the Yoneda
embedding Q ↓ 〈Qop,2〉ord has a left adjoint

∨
, which turns out to be a right-inverse as

well (cf. the notion of EM-algebra). A complete lattice is CCD, if
∨

has a further left adjoint
Q ↓↓ QD that maps q ∈ Q to the smallest down-set with supremum q . Its elements are said
to be “way-below” q . The way-below-function turns out to be automatically left-inverse to

∨
.
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3

If one replaces down-sets by directed down-sets, sometimes called ideals, one obtains a similar
characterization of continuous lattices: every principal down-set is of course directed, and the
existence of a left adjoint (and automatically right-inverse) to the Yoneda embedding into the
ideal-poset is equivalent to directed completeness: every directed set has a supremum. And the
existence of a further left-adjoint left-inverse to

∨
characterizes continuous lattices. (As far as I

know there is no distributive law linking (up-) directed down-sets with down-directed up-sets.)

1 Categorical Aspects of the typed λ-calculus

1.0 A problem with the untyped λ-calculus

The untyped λ-calculus (Alonso Church) can be seen as an attempt by logicians to treat functions
as first-class citicens.

The idea seems to be to turn “rules” into functions, which results in an “intensional” theory of
functions, as opposed to the “extensional” one that results from interpreting functions as special
relations, hence ultimately as sets (often called “graphs”). In the latter case two functions are
equal, if the corresponding graphs are equal as sets. The situation is more subtle in the λ-calculus.
An additional complication arises from the fact that the term “intensional” is used differerntly by
mathematicians and by philosophers, see, e.g., Stanford Encyclopedia of Philosophy.

In the untyped λ-calculus one can define e.g., Boolean truth-values and junctors including n ,
Church-numerals and pairs with projections. In fact, the untyped λ-Calculus is Turing-complete.

Unfortunately, in 1935 Church and Rossner discovered a paradox: Defining

r = λx.(¬(xx))

seems innocent enough, but when applied to itself results in

rr = λx.(¬(xx)r = ¬(rr)

For logicians this was a major problem and prompted Church to define the simply typed λ-
calculus that avoided self-reference (this had been successful in solving the Russel-Whitehead
paradox in set-theory. [consider also Chapter 6 of “The Lambda Calculus”, in the Stanford
Encyclopedia of Philosophy].

From a computer scientists point of view the apparent paradox is just a non-terminating
computation, and as such not life-threatening.

1.1 The simply typed λ-calculus

Besides avoiding self-reference, the simply typed λ-calculus had another advantage over its
untyped cousin: it was strongly normalizing, so every expression is guaranteed to terminate.
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4 1 CATEGORICAL ASPECTS OF THE TYPED λ -CALCULUS

This, of course, comes at a price: the loss of Turing-completeness. Otherwise one could e.g.
disprove Goldbach’s conjecture that every even integer is the sum of two primes: just write a
program that looks for even intergers not having this property and halting then. Without even
running this program, it would be guaranteed to halt.

The simply typed λ-calculus Λ→ is a 2-sorted theory based on types and terms or expressions .
Starting from a set B of base types, the BNF for types is given by

τ ::= τ → τ |T ∈ B

Often just a single gound type o is used, i.e., B = {o} , while in other cases one has ground
types Bool and Nat , etc.. Strangely, there is no 0-ary application of → .

To reduce parentheses, the operator → is supposed to associate to the right, i.e., σ → τ → χ

means σ → (τ → χ) .

Terms come in four varieties: variables, abstractions, applications and constants from a given
set C :

e ::= x |λx : τ.e | ee | c ∈ C

Again, to reduce parenthesis, application (written as concatenation) associates to the left, i.e.,
xyz means (xy)z .

Here x : τ means “ x is of type τ ”. In fact, every expression is assigned a unique type, either
in advance for the constants (e.g., 0 of type Nat or s of type Nat → Nat , or recursively
according to the following typing rules. Typing assignments are typically written in a notation
resembling Gentzen’s sequent calculus, where capital greek letters Γ , ∆ . . . represents the
environment of known type assignments up to this point.

x : σ ∈ Γ
Γ ` x : σ

c ∈ C of type T
Γ ` c : T

Γ, x : σ ` e : τ

Γ ` (λx : σ.e) : (σ → τ)

Γ ` e0 : (σ → τ) Γ ` e1 : σ

Γ ` e0e1 : τ

Terms that can be assigned types in the empty context are called combinators.

. For every type τ the identity combinator Iτ is given by the term

(λx : τ.x)(τ → τ)

. For any types σ, τ the combinator Kσ,τ is given by the term

(λx : σ.λy : τ.x) : (σ → τ)

. For any types σ , τ and χ , the combinator Sσ,τ,χ is given by the term

λx : (σ → τ → χ).λy : (σ → τ).λz : σ.xz(yz) : ((σ → τ → χ)→ (σ → τ)→ σ → χ)
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1.2 The simply typed λ -calculus with products 5

Notice that similarity of the typing of Kσ,τ and of Sσ,τ,χ with the axioms (Ax1) and (Ax2) of the
Hilbert-style deductive system F0 ! In fact, Iτ is derivable from these, since the corresponding
proof in F0 does not use (Ax3).

Finally, there are rewriting-rules:

Interpeting the types as objects and the equivalence classes of terms as morphisms, one
should obtain a category L with extra structure in form of a functor Lop × L . L subject to
certain axioms (see below). There is an obvious notational problem as the type-building operator
→ may clash with the categorical arrow for arrows (although in TEX@ we can use different
types of arrows, on the blackbord or in handwritten notes this can be a serious problem.)

1.2 The simply typed λ-calculus with products

Often the simply typed λ-calculus is enhanced by additional type-bilding operators, most
importantly (cartesian) products and the corresponding projections.

While in the untyped λ-calculus pairs and projections can be derived, this does not seem
to work in the simply typed λ-calculus, see here for an interesting discussion and a fallacy
concerning coporoducts, i.e., disjoint unions.

Adding products also forces consideration of the empty product, called unit type, which was
somehow missing above.

1.2.1 The unit type

τ ::= τ → τ |Unit |T ∈ B

e ::= x |λx : τ.e | ee | () | c ∈ C

Γ ` () : Unit
Γ ` e0 : σ Γ ` e1 : Unit

Γ ` e0e1 : σ

1.2.2 Pairs, the product type

τ ::= τ → τ |Unit |σ × τ |T ∈ B

e ::= x |λx : τ.e | ee | (e, e) | fst e | snd e | () | c ∈ C
Γ ` e0 : σ Γ ` e1 : τ

Γ ` (e0, e1) : σ × τ
Γ ` e : σ × τ
Γ ` fst e : σ

Γ ` e : σ × τ
Γ ` snd e : τ

1.3 Monoidal categories

Category theory can be viewed as the mathematicians attempt to turn functions into first-class
citicens. Initally, category was based on the category set of sets and functions. This provided
hom-sets for other categories. But often hom-sets carried structure of their own, so the question
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6 1 CATEGORICAL ASPECTS OF THE TYPED λ -CALCULUS

arose as to which structure on a category V was necessary in order for V to be a viable
replacement for set . This lead to “enriched category theory”. A very simple example of the
usefulness arises by interpreting pre-ordered sets (eqipped with a refelxive and transitive relation)
as categories enriched in 2 , the 2-element chain with 0 < 1 .

Since the original hom-set-driven definition of categories made essential use of the cartesian
product × in set and its neutral object 1 , an obvious strategy was to abstract thier properties
that were essential for defining categories.

This leads to the consideration of so-called monoidal categories (cf. AAT-notes). For com-
pleteness and concistend notation we recall the relevant definitions.

1.3.00 Definition. A monoidal category 〈V,⊗, I〉 is a category V equipped with

. a functor V× V
⊗

V, called tensor product ;

. a so-called unit object I ∈ V ;

. a natural isomorphism α from V3 ⊗× V
V2 ⊗

V to V3 V×⊗
V2 ⊗

V, as of recently
named the associator ;

. natural isomorphisms I ⊗ V
λ

V and V⊗ I ρ
V, nowadays called the left and right

unitor , respectively;

subject to two coherence conditions:

• the triangle identity

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

〈A, I,B〉α

Aρ⊗B A⊗Bλ

• the the pentagon identity

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

〈A⊗B,C,D〉α 〈A,B,C ⊗D〉α

〈A,B,C〉α⊗D

〈A,B ⊗ C,D〉α

A⊗ 〈B,C,D〉α
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1.3 Monoidal categories 7

A monoidal category 〈V,⊗, I〉 is called braided , if in addition there is a natural isomorphism
A⊗B 〈A,B〉β B ⊗A, the braiding , subject to the following hexagon identities

(A⊗B)⊗ C

A⊗ (B ⊗ C) (B ⊗ C)⊗A

B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (C ⊗A)

〈A,B,C〉α

〈A,B ⊗ C〉β

〈B,C,A〉α

〈A,B〉β ⊗ C

〈B,A.C〉α

B ⊗ 〈A,C〉β

, (A⊗B)⊗ C

A⊗ (B ⊗ C) (B ⊗ C)⊗A

B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (C ⊗A)

〈A,B,C〉α−1

〈B ⊗ C,A〉β

〈B,C,A〉α−1

〈B,A〉β ⊗ C

〈B,A.C〉α−1

B ⊗ 〈C,A〉β

Finally, 〈V,⊗, I〉 is called symmetric, if in addition 〈B,A〉β = 〈A,B〉β−1 ; in that case one of
the hexagons suffices.

To save space and enhance readability we will often just write α , λ or ρ without the
arguments, when those can easily be recovered from the context.

1.3.01 Definition. Given a monoidal category 〈V,⊗, I〉 , a V-category C consists of

. a class C0 of objects;

. a family 〈a, b〉C of V-objects, called hom-objects;

. a family of V-morphisms I aC 〈a, a〉C;

. a family of V-morphisms 〈a, b〉C ⊗ 〈b, c〉C 〈a, b, c〉C 〈a, c〉C

subject to the obvious unit and associativity conditions (note that the number of arguments to C
distinguishes between identities, hom-sets and composition morphisms):

I ⊗ 〈b, c〉C 〈b, b〉C ⊗ 〈b, c〉C

〈b, c〉C

bC ⊗ 〈b, c〉C

〈b, c〉Cλ 〈b, b, c〉C

and

〈a, b〉C⊗I 〈a, b〉C ⊗ 〈b, b〉C

〈a, b〉C

〈a, b〉C ⊗ bC

〈a, b〉Cρ 〈a, b, b〉C
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8 1 CATEGORICAL ASPECTS OF THE TYPED λ -CALCULUS

〈a, b〉C ⊗ 〈b, d〉C

〈a, d〉C

〈a, c〉C ⊗ 〈c, d〉C

〈a, b〉C⊗(〈b, c〉C ⊗ 〈c, d〉C)(〈a, b〉C ⊗ 〈b, c〉C)⊗〈c, d〉C

〈a, b, d〉C〈a, c, d〉C

〈a, b〉C ⊗ 〈b, c, d〉C

α

〈a, b, c〉C ⊗ 〈c, d〉C

Note that a monoidal category 〈V,⊗, I〉 need not be “self-enriched”, i.e., it need not be a
V-category itself.

But if V has internal homs, say A . B , we at least expect them to relate to the external
homs 〈A,B〉V via

〈I, A . B〉V ∼= 〈A,B〉V

Since I is the unit for ⊗ , one furthermore should expect

〈I, A . B . C〉V ∼= 〈A,B . C〉V ∼= 〈B ⊗A,C〉V

This amounts to 〈V,⊗, I being “post-closed”, i.e., each functor V B ⊗−
V has a right adjoint

V
B .−

V. In particular, if the tensor ⊗ is the categorical product × , which in particular is
symmetric, we arrive at the notion of “cartesian closedness”.

Careful: in the literature often the functor − ⊗ B is considered as well; the choice of
composition order may come into play here!

Recall from AAT: monoidal categories are 1-object bicategories, and for those we have notions
of pre- and post-closeness.

1.4 Closed categories

There is a different path to self-enrichment via closed categories, due to [Eilenberg, Kelly 1965].

1.4.00 Definition. pre-closed category : Vop ⊗ V
.

V with neutral I ; post-closed category :
V⊗ Vop /

V with neutral J ; symmetry : A . B . C ∼= B . A . C

We cannot express pre/post-closed categories as bicategories with certain properties, as in
bicategories we automatically have a composition operation for 1-cells. [Maybe on graphs one
can define other binary operations on arrows with comon domain or common codomain instead
of the usual composition of arrows???]
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1.5 Monoidal closed categories 9

1.5 Monoidal closed categories

Work out the connection between the functors V× V
⊗

V and Vop × V
.

V. Whenever
B⊗− has a right adjoint B .− for ecah B , one can construct . from ⊗ , and whenever B .−
has a left adjoint B ⊗− for ecah B , one can construct ⊗ from . . Thie make essential use of
the Australian “mate calculus”.

Which conditions do we need on a pre-closed structure 〈., I〉 and a post-closed structure
〈/, I〉 to ensure that both yield the same tensor 〈⊗, I〉 ?

1.6 Why cartesian closedness?

The simply typed λ-calculus would seem to freely generate a pre-closed category. Why ist
this symmetric? Need to find λ-terms between σ → τ → χ and τ → σ → χ such that both
composites are equivalent to the respective identitites.

2 Monads revisited

2.0 Extension systems

Monads in category theory are usually seen as monoids in the endo-hom-category of some object
in a 2-category. But in case of the prototypical 2-category Cat , where the notion originated
[God58], the iteration of the underlying endo-functor C T C required to even formulate the
multiplication TT µ T may be an “expensive” operation.

For this reason an alternative description of monads has been developed, which as of 2010
goes by the name "extension system” [MW10], but which occurs in Manes’ 1976 book [Man76] as
“algebraic theory”, and in R. F. C. Walters thesis [Wal70] as “full device”.

2.0.00 Definition. An extension system T = 〈T, η, (−)T 〉 on a category C consists of

. a family of distinguished C -morphisms A Aη AT called Kleisli-units; C -morphisms
with codomain of the form AT will be called Kleisli-morphisms, while in computer science
objects of the Forme AT are often referred to as computations of type A ;

. for every Kleisli-morphism A f BT an extension AT fT BT subject to the following
axioms:

(ES-0) every Kleisli-unit A Aη AT extends to the C -identitity on AT

(Aη)T = idAT
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10 2 MONADS REVISITED

(ES-1) every Kleisli-morphism A f BT can be recovered from its extension by pre-composition
with the Kleisli-unit on A

A AT

BT

Aη

fT
f

(ES-2) extensions of Kleisli-morphisms are closed under composition in C

AT BT

CT

fT

gT

(f ; gT )T

2.0.01 Theorem. Extension systems on C are in bijective correspondence with monads on
C .

Proof. Starting with an extension system T = 〈T, η, ()T 〉 , we first extend the function T on
objects to a functor. Simultaneously we establish that the C -morphisms Aη , A ∈ C comprise
a natural transformation.

For A f B define AT fT BT as the extension (f ; Bη)T . Condition (ES-0) guarantees
the preservation of units. To establish the preservation of composition, consider the following
diagram for A f B g C:

A

B

C

AT

BT

CT

Aη

Bη

Cη

f

g

f ; g

fT

gT

(f ; g)T

The left triangle commutes by default, while the trapezoids and the outer rectangle commute
by definition of fT , gT , and (f ; g)T , respectively. In order to show that the right triangle
commutes, we observe that fT ; gT as the composition of two extensions (f ; Bη)T and (g ; Cη)T

by (ES-2) is the extension of

f ; Bη ; (g ; Cη)T = f ; Bη ; gT = f ; g ; Cη

copyright: Jürgen Koslowski, TU Braunschweig, 2018-06-25



2.0 Extension systems 11

and hence by (ES-1) coincides with (f ; g)T . The naturality of η is also given by the trapezoids
above.

We now define the multiplocation ATT Aµ AT to be the extension of the identity on AT .
Concerning the unit axioms, the left triangle of

AT ATT AT

AT

ATη AηT

(AT )T

AT AT

commutes by (ES-1). For the right triangle observe that AηT is the extension of Aη ; ATη .
Hence the composition with Aµ = (AT )T is the extension of Aη ; ATη ; (AT )T = (Aη)T = AT .

The naturality condition for µ and its associativity follow the same pattern. Establishing

ATT BTT

AT BT

fTT

Aµ Bµ

fT

resp.

ATTT ATT

ATT AT

AµT

ATµ Aµ

Aµ

requires expressing all four morphisms as Kleisli-extensions and then using (ES-2) to identify
both composites as the extension of the same Kleisli-morphism. On the left we obtain

fTT ; Bµ =
(
fT ; BTη ; Bµ

)T
= (fT )T =

(
AT ; (f ; Bη)T

)T
= Aµ ; fT

while on the right we have

AµT ; Aµ =
(
Aµ ; ATη ; Aµ

)T
= (Aµ)T =

(
ATT ; (AT )T

)T
= ATµ ; Aµ

Conversely, starting from a monad T = 〈T, η, µ〉 , we just need to define the extensions
of Kleisli-morphisms to obtain a candidate for an extension system. Given A f BT , define
AT fT BT to be the composite AT fT BTT Bµ BT . Condition (ES-0) then immediately
follows from one of the unit requirements of a monad, while (ES-1) is an easy consequence of the
naturality of η and the other unit requirement. In order to establish (ES-2), for Kleisli-morphisms
A f BT und B g CT consider the following diagrams:
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AT BTT BT

CTTT CTT

CTT CT

fT Bµ

gTT gT

CTµ

CµT

Cµ

Cµ

(f ; gT )T

The squares commute by naturality and associativity of µ , while the triangle is the T -image
of the definition of f ; gT . Hence the resulting morphism from AT to CT by definition is
(f ; gT )T , as required by (ES-2).

It remains to show that the transitions from extension systems to monads and back are
mutually inverse. This is clear on the level of T and η . Given an extension system T =

〈T, η, (−)T 〉 and the resulting monad T = 〈T, η, µ〉 , consider the extension system T ′ =

〈T, η, (−)◦〉 . The new extension of a Kleisli-morphism A f BT by (ES-2) of the original
extension system is given by

fT ; Bµ = (f ; Bη)T ; (BT )T = (f ; Bη ; Bµ)T = fT

and hence coincides with the original extension.

Conversely, for a monad T = 〈T, η, µ〉 and the resulting extension system T = 〈T, η, (−)T 〉 ,
consider the new monad T ′ = 〈 T, η, µ′〉 derived from this. The new multiplication satisfies

Aµ′ = (AT )T = ATT ; Aµ = Aµ

and hence coincides with the original one.

As our terminology suggests, the Kleisli-category of a monad T = 〈T, η, µ〉 has a particularly
simple description in terms of the corresponding extension system T = 〈T, η, (−)T 〉 :

2.0.02 Definition. The Kleisli-category CT has

. the same objects as C ;

. the Kleisli-morphisms into AT as morphisms into A

〈B,A〉CT = 〈B,AT 〉C

. a composition by means of the C -composition with the extension of the second argument,
cf. axiom (ES-2):

〈C,BT 〉C × 〈B,AT 〉C 〈C,B,A〉CT 〈C,AT 〉C

maps 〈C g BT,B f AT 〉 to C g BT fT AT .
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On the other hand, the Eilenberg-Moore category of a monad T has a rather more complicated
description in these terms.

2.0.03 Definition. A T -algebra consists of

. a C -object B ;

. for every C -morphism X h B a distinguished extension XT hB B called structure-
morphism subject to

(TA-0) h can be recovered from hB by pre-composition with Xη

X XT

B

Xη

hB
h

(TA-1) structure-morphisms are stable under pre-composition with extended Kleisli-morphisms:

Y T XT

B

kT

hB

(k ; hB)B

A T -homomorphism B f A between T -algebras has to commute with all structure morphisms:

X

B A

h k

f

implies

X

BT AT

hB kA

(f ; Aη)T

2.0.04 Remark. Unfortunately, depending on the size of C , a T -algebra my be specified by a
proper class of structure morphisms, which certainly is undesirable. As will be shown below, a
single structure morphism, namely (idB)B , suffices to specify the algebra structure. But then
the notion of T -morphism will require adjustment.

Mikołaj Bojaǹczyk in his treatment of monoids and formal languages does use epimorphic
structure morphisms of the form XT h BT to turn a set B into a monoid..
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2.0.05 Proposition. There is a bijective correspondence between T -algabras and Eilenberg-
Moore algebras for the monad T .

Proof. First notice that by the distinguished extensions hB for X h B are determined by
pre-composing hT with BT BB

B:

XT BT

B

hT

BB

hB

(2.0-00)

By definition, hT := (h ; Bη)T , hence by (TA-1) the diagonal morphism is (h ; Bη ; BB)B ,
which by (TA-0) reduces to hB .

In order to estblish 〈B,BB〉 as an EM-algebra, we only need to show (EM-1), since by (TA-0)
we already know that BB is right inverse to Bη . In fact, we show a bit more than (EM-1),
namely for X h B we have

XTT BT

XT B

hBT

Xµ BB

hB

(2.0-01)

Utilizing (TA-1) for both composites we obtain

hBT ; BB =
(
hB ; Bη

)
T ; BB =

(
hB ; Bη ; BB

)
T

=
(
hB
)
T =

(
XT ; hB

)
T = (XT )T ; hB = Xµ ; hB

Conversely, if 〈B, ξ〉 is an EM-algebra, setting BB := ξ and defining hB by Diagram 2.0-00
condition (TA-0) for X h B follows from

Xη ; hB = Xη ; hT ; BB

= Xη ; (h ; Bη)T ; BB = h ; Bη ; BB = h

On the other hand, for Y k XT Condition (TA-1) is a consequence of

kT ; hB = kT ; Xµ ; hB = kT ; hBT ; BB = (k ; hB)T ; BB =
(
k ; hB

)
B
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