
Functional programming in Haskell
First exercise sheet TU Braunschweig

Sebastian Muskalla Summer term 2018

Out: May 30

The exercises will be discussed during the exercise class on Thursday, May 31, 9:45 in IZ 305.

The code snippets from Exercise 1 are available as .hs file on the lecture page.

Exercise 1: Types

a) For each of the following expressions, determine the most general type.

1 [True]
2 []
3 \x → x
4 \x y → (y, x)
5 \x y → [y, x]
6 \x → (if x == [] then x else x)
7 head
8 \xs → tail xs
9 f x y z = if x then y else z

10 \xs → tail (tail xs)
11 g x y z = if x == y then y else z

b) For each of the functions h to m, determine the most general type.

1 data Tree a = Leaf ∣ Node [a] (Tree a) (Tree a)
2 h Leaf = "c"
3 h (Node "x" l r) = "x"
4 h (Node x l r) = x
5 i (Node x l r) = id
6 j (Node [] l r) = l
7 k Nothing = Nothing
8 l (Node a b c) = a
9 m (Node x l r) = Node [length x] (m l) (m r)



Exercise 2: Permute and sort

a) Write a function permutations :: [Integer] -> [[Integer]] that, given a list, com-
putes a list containing all its permutations.

What is the most general type of your function?

b) Write a function idiotic_sort :: [Integer] -> [Integer] that takes a list and sorts
it by computing all permutations and returning the first one that is sorted.

Note: idiotic_sort is a non-randomized version of Bogosort.

Exercise 3: Higher order functions
Write a function ...

a) flatmap :: (a -> [b]) -> [a] -> [b] that maps a function of type a -> [b] over
a list and flattens the result.

b) partition' :: (a -> Bool) -> [a] -> ([a],[a]) that partitions a list into the ele-
ments that satisfy a given predicate and the ones that do not satisfy the predicate.

c) length' :: [a] -> Int that computes the length of a list using foldl.

d) minimum_wrt :: (a -> Integer) -> [a] -> a that computes the minimum of a
given list with respect to a given evaluation function. What is the most general type of your
function?

e) sort_wrt :: (a -> a -> Bool) -> [a] -> [a] that sorts a list with respect to a
given comparison operator. Which properties should the operator satisfy such that its usage
makes sense?



Exercise 4: Davis Putnam
We want to implement the Davis Putnam algorithm for checking satisfiability in propositional
logic.

a) A formula (in conjunctive normal form) is a set of clauses. A clause is a set of literals. A literal
is either either a positive or a negative occurrence of a variable. The variables are taken from
a countable set.

The negation ¬L of a literal L is the literal for the same variable with the opposite polarity.

Design appropriate data types in Haskell. (How are the special formulas true and false repre-
sented?)

b) If φ is some formula and L is a literal, then the formula φ[L] is obtained as follows:

• Replace all occurrences of L by true

• Replace all occurrences of ¬L by false

• Remove all occurrences of false from a clause

• Remove all clauses containing an occurrence of true

(What happens if a clause / the formula becomes empty?)

Design a function assign :: Formula -> Literal -> Formula that implements this.

c) The Davis Putnam algorithm applies the following rules to a formula until one either finds a
satisfying assignment or has proven the formula to be unsatisfiable.

• Unit: If a formula φ contains a clause consisting of a single literal L, φ is satisfiable if and
only if φ[L] is satisfiable.
Design a function unit :: Formula -> Maybe Literal that returns a unit literal if
one exists.

• Pure: If a formula φ contain only one type of literal L for some variable (i.e. the variable
only occurs with one polarity), then φ is satisfiable if and only if φ[L] is satisfiable.
Design a function pure :: Formula -> Maybe Literal that returns a pure literal
if one exists.

• Split: A formula φ is satisfiable if φ[L] or φ[¬L] is satisfiable for some literal L.

d) Design a function sat :: Formula -> Bool that checks whether a formula is satisfiable
by using the Davis Putnam rules recursively.

Advanced version: Write a function sat :: Formula -> Maybe [Literal] that checks
whether a formula is satisfiable and if it is, also returns a satisfying assignment.


