
Exercises to the lecture Semantics Sheet 1

Prof. Dr. Roland Meyer, Sören van der Wall

Delivery until — at —

Exercise 1.1 (Higher Order Recursion Schemes) Construct a Higher Order Recursion Scheme that creates a tree

Hint: Remember the HORS from the lecture

Exercise 1.2 (Closures of APTAs) We show the closure of APTAs under $\cup, \cap, \overline{-}$.

1.2.1 Show that APTAs are closed under union.

1.2.2 To show that APTAs are closed under complement, we take several steps. Let $\mathcal{A} = (\Sigma, Q, \delta, q_0, \Omega)$ be APTA and $t \neq \Sigma$ labelled tree.

1. Show that there is a parity game $\mathcal{G}(\mathcal{A}, t) = (V_0, V_1, E, \Omega_{\mathcal{G}})$ with positions

$$V_0 = dom(t) \times Q, \qquad V_1 = dom(t) \times 2^{\{1,\dots,m\} \times Q}$$

such that Eve (Player 0) has a winning strategy iff $t \in L(\mathcal{A})$.

- 2. Construct an APTA $\overline{\mathcal{A}}$ with a game $\mathcal{G}(\overline{\mathcal{A}}, t) = (V_0, V_1, E', \Omega'_{\mathcal{G}})$ such that Eve wins $\mathcal{G}(\overline{\mathcal{A}}, t)$ iff Ana wins $\mathcal{G}(\mathcal{A}, t)$.
- **1.2.3** Conclude that APTAs are closed under intersection.