WS 2019/2020

08.01.2020

Exercises to the lecture Semantics Sheet 5

Prof. Dr. Roland Meyer, Sören van der Wall

Delivery until — at —

Exercise 5.1 (Böhm trees)

For the following λY terms over the signature

 $\Sigma = \{ \texttt{if} : o \to o \to o, \texttt{or}, +, -: o \to o \to o, \texttt{iszero}, \texttt{a} : o \to o \},\$

create their Böhm trees up to depth 4, note their type and describe what they compute in the data domain \mathbb{N} . Interprete Y as the greatest fixed point.

- $Y\lambda x^o.x^o$
- $Y\lambda x^o.ax^o$
- $Y\lambda x^o. + x^o y^o$
- $Y\lambda F^{o \to o}\lambda a^{o}$. if (or (iszero $(-a^{o} 1)$) (iszero a^{o})) 1 $(+ (F^{o \to o} (-a^{o} 1) (F^{o \to o} (-a^{o} 2))))$

Exercise 5.2 (GFP-models for λ Y terms) Proof the following Lemma from the lecture:

If $M =_{\beta\delta} N$, then for all GFP-models S and variable assignments ν , $[\![M]\!]_S^{\nu} = [\![N]\!]_S^{\nu}$.

Exercise 5.3 (TAC automata) The definition for trees was $t : \{1, 2\}^* \to \Sigma \cup \{\Omega\}$, such that

- 1. If $uv \in dom(t)$ then $u \in dom(t)$
- 2. If $u \in \text{dom}(t)$ and $t(u) \in \Sigma_2$, then $u.1, u.2 \in \text{dom}(t)$
- 3. If $u \in \text{dom}(t)$ and $t(u) \in \Sigma_0 \cup \{\Omega\}$, then u is leaf.

A top-down tree automaton has the same syntactical definition as insightful TAC automata. However, its language is only defined for finite trees. When we interpret a given top-down tree automaton, we can find a pumping lemma. For this, we need to define for $u \in \text{dom}(t)$:

- $t_u \coloneqq$ the subtree rooted in u
- t-u := the tree t', such that $dom(t') = dom(t) u \cdot \{1, 2\}^+$ and for each $u' \in dom(t')$, t'(u') = t(u').
- $t +_u t'$, where $t(u) = t'(\varepsilon)$ is defined by t(v) for $v \in \text{dom}(t-u)$ and by t'(v) for u.v with $v \in \text{dom}(t')$.

• if
$$t(\varepsilon) = t(u)$$
, $t^{n,u} = \underbrace{t +_u (t +_u (t +_u (\dots)))}_{n \text{ times}}$ and $t^{*,u} = \bigcup_{n \in \mathbb{N}} \{t^{n,u}\}$

Lemma. Given a top-down tree automaton with n states and a tree $t \in L(A)$ with depth > n, there are vertices $u, u.v \in \text{dom}(t)$ such that $t = ((t-u) +_u ((t_u - v) +_v t_{uv}))$ and for each $n \in \mathbb{N}$, $((t-u) +_u ((t_u - v)^{n,v} +_{v^n} t_{uv})) \in L(A)$.

Given a top-down tree automaton with n states accepting a language L(A). What is the language of the same automaton interpreted as insightful TAC automaton?