
Semantics

Roland Meyer

TU Braunschweig

Roland Meyer (TU BS) Semantics (WiSe 2019) 1 / 18

Table of Contents I

1 Type-based Algorithm due to Kobayashi and Ong
KO Types
KO Type Environment and Type Judgements

Roland Meyer (TU BS) Semantics (WiSe 2019) 2 / 18

Part C Higher-Order Model
Checking

Roland Meyer (TU BS) Semantics (WiSe 2019) 3 / 18

1. Type-based Algorithm due to Kobayashi and Ong

Roland Meyer (TU BS) Semantics (WiSe 2019) 4 / 18

Type-based Algorithm

Goal

Give a type-based algorithm for solving HOMC.

Given APTA A, construct type system TA.

Want following equivalence, for every scheme G :

G type checks in TA iff [[G]] is accepted by A .

Background

Result due to Kobayashi and Ong, LICS’09.

Roland Meyer (TU BS) Semantics (WiSe 2019) 5 / 18

Type-based Algorithm

Advantages of Kobayashi and Ong’09 over Ong’06

Simplicity

Correctness follows from two arguments:

Correctness of the type system.

Correctness of the type-checking algorithm.

Complexity

If the automaton is fixed and

the size of types is bounded by a constant

then the algorithm runs in time linear in the size of the scheme.

Ong’06 still needs n-EXPTIME

Flexibility

Algorithm can be modified to deal with extensions of schemes:

Polymorphism (o → o) ∧ ((o → o)→ (o → o))

Finite data domains

Roland Meyer (TU BS) Semantics (WiSe 2019) 6 / 18

Type-based Algorithm

Technology

From type-theoretic point of view,

type system has interesting new features:

Flags and priorities express when a variable can be used.

Type check amounts to determining the winner in a parity game.

Roland Meyer (TU BS) Semantics (WiSe 2019) 7 / 18

1.1. KO Types

Roland Meyer (TU BS) Semantics (WiSe 2019) 8 / 18

KO Types

Definition

Let A = (Q,Σ, δ, qinit ,Ω).

The set of atomic types θ and the set of types τ

are defined by simultaneous induction:

θ ::= q p τ︸︷︷︸
type

→ θ

τ ::=
∧
{(θ1︸︷︷︸

atomic type

,m1), . . . , (θk ,mk)} .

Here, q ∈ Q and m1, . . . ,mk ∈ range(Ω).

Roland Meyer (TU BS) Semantics (WiSe 2019) 9 / 18

KO Types

Notation

Write
∧
{(θ1,m1), . . . , (θk ,mk)} as

(θ1,m1) ∧ . . . ∧ (θk ,mk) or
k∧

i=1

(θi ,mi) .

Write > for
∧
∅.

Currently have priorities only for states.

Extend this to all atomic types:

Ω(τ → θ) := Ω(θ) .

Roland Meyer (TU BS) Semantics (WiSe 2019) 10 / 18

KO Types

Intuition

Type (q1,m1) ∧ . . . ∧ (qk ,mk)→ q describes a function that

takes a tree accepted from q1 and from q2 and . . . from qk and

returns a tree that is accepted from q.

Priority mi describes the maximal priority on the path

from the root of the output tree (of type q)

to the root of the input tree (of type qi).

Consequence

The input tree can be used as a tree of type qi only

after visiting a state of priority mi and

before visiting a state of priority > mi .

Roland Meyer (TU BS) Semantics (WiSe 2019) 11 / 18

KO Types

Illustration

Roland Meyer (TU BS) Semantics (WiSe 2019) 12 / 18

KO Types

So far, types are not related to kinds.

Define well-formed types via two relations:

τ :: k = τ is a type of kind k

θ ::a k = θ is an atomic type of kind k .

Definition

The relations :: and ::a are the least relations

satisfying the following rules:

q ::a o

τ :: k1 θ ::a k2
τ → θ ::a k1 → k2

θi ::a k for all 1 ≤ i ≤ l∧
{(θ1,m1), . . . , (θl ,ml)} :: k

.

Roland Meyer (TU BS) Semantics (WiSe 2019) 13 / 18

KO Types
Definition

A type τ and an atomic type θ are well-formed, if

(1) τ :: k resp. θ ::a k for some kind k and

(2) for each subexpression
∧l

i=1(θi ,mi)→ θ′ we have

mi ≥ max{Ω(θi),Ω(θ′)} for all 1 ≤ i ≤ l .

Example

- q1 ∧ ((q2, 1)→ q3) is not well-formed.

It combines types of different kinds, and hence (1) fails.

- (q1,m1) ∧ (q2,m2)→ q) is well-formed, provided

m1 ≥ max{Ω(q1),Ω(q)} and m2 ≥ max{Ω(q2),Ω(q)} .

This reflects the fact that m1 and m2 are the largest priorities

on the above paths, including the root and the leaves.

From now on, only consider well-formed types.

Roland Meyer (TU BS) Semantics (WiSe 2019) 14 / 18

1.2. KO Type Environment and Type Judgements

Roland Meyer (TU BS) Semantics (WiSe 2019) 15 / 18

KO Type Environment and Type Judgements

Definition

A flagged type is an expression (θ,m)b with b ∈ B = {true, false}.
We use σ for flagged types.

A type environment Γ is a set of bindings x : σ.

With this definition, type judgements will have the form

Γ ` t : θ .

Here, t will be a term.

We will treat its non-terminals as variables that are bound by Γ.

Note that Γ uses flagged types.

Term t, however, receives a normal (well-typed) atomic type.

Roland Meyer (TU BS) Semantics (WiSe 2019) 16 / 18

KO Type Environment and Type Judgements

Explanation

- Γ may contain several bindings for the same variable.

- Each atomic type of a variable is annotated by a flag.

The flag indicates when the variable can be used

as a value of that type:

1. x : (θ,m)true ∈ Γ

means x can only be used

before visiting a state of priority > m.

2. x : (θ,m)false ∈ Γ

means x can only be used

before visiting a state of priority > m and

after visiting a state of priority = m.

Hence, if x : (θ,m)false ∈ Γ, then the largest priority

on the path from the current node to the node where x is used, equals m.

Roland Meyer (TU BS) Semantics (WiSe 2019) 17 / 18

KO Type Environment and Type Judgements

We have not yet defined the set of type judgements

(that we consider valid).

The following examples (on the board) are meant to give some intuition

to which type judgements should be valid.

Roland Meyer (TU BS) Semantics (WiSe 2019) 18 / 18

	Type-based Algorithm due to Kobayashi and Ong
	KO Types
	KO Type Environment and Type Judgements

