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Language-Theoretic Verification



Verification

Verification problem:

Given: Source code of program P and specification ϕ .

Question: Does runtime behavior of P satisfy ϕ ?

Language-theoretic approach:

LP = possible program executions

Lϕ = valid executions

Decide: LP ⊆ Lϕ
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Language-theoretic verification

LP = possible program executions

Lϕ = valid executions

Good: Lϕ usually easy (regular)

Bad: LP usually not even context free

�

Problem is undecidable

�

Need to approximate LP
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Language-theoretic verification

Semantics:

LP = LCF ∩ LData

= LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]
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Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w  Lw ,Lw ∩ LP = ∅w  Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4
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Algorithmic challenges

1. Inclusion LCF ⊆ LS�

Automata theory

2. Membership w ∈ LP�

Hoare logic

3. Extrapolation w  Lw
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Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3
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Language-Theoretic Synthesis



Synthesis
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Synthesis

Synthesis problem:

Given: Program template T and specification ϕ .

Decide: Is there an instantiation T@i of T satisfying ϕ ?

Approach:

Language-theoretic synthesis

CEGAR loop

7
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Language-theoretic synthesis

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable

non-determinism

proc F()

if (x == 0)

G()

else

H()

F → read(x,0)G

| read(x,1)H

Angelic / Controllable

non-determinism

proc F()

if ???

G()

else

H()

F → G

| H

8
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Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G ) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9
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Language-theoretic synthesis

Init LS := Lϕ

∃s : L(CF@s) ⊆ LS ? return P@s |= ϕ

w ∈ LP ?w  Lw ,Lw ∩ LP = ∅

return ∀s : P@s 6|= ϕ

LS := LS ∪ Lw
yes

no, ∃sopp : w ∈ L(CF@sopp) \ LS

no

yes

10

Algorithmic challenges

1. Solve game:

∃s : L(CF@s) ⊆ LS ?

2. Membership w ∈ LP
3. Extrapolation w  Lw



Context-Free Games



Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the

non-terminals

X© → aY | ε

Y� → bX

Finite automaton over terminals TG

q0 q1

a

b

11
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Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG )∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12



Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG )∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12



Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG )∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12



Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG )∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12



Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

13
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Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis:

No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14
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Summaries for context-free games

How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

Now:

1. Explain & define domain

2. Explain fixed-point iteration

15



Formulas over the

Transition Monoid



The tree of plays

How to decide whether refuter can win from a given position?

Consider the tree of plays! X© → aY | ε
Y� → bX

Y

bX

baY

...

b

Refuter wins non-inclusion in (ab)∗ by picking X → ε

Y is a winning position for refuter ©

16



The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

17



The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

17

Picking X → ε results in word in (ab)∗�

refuter © loses non-inclusion

Always picking X → aY results in infinite play�

© loses by definition

X is a winning position for prover �



Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18
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Formulas - Example

∨

∧

∨

∧

∨

... abab

ab

ε

19



Formulas

Remaining problems:

1. Formulas are still infinite

2. Even the set of atomic propositions TG
∗ is infinite

�

Tackle 2. first

20



Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w ] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21
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Transition monoid

Represent equivalence classes by boxes:

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}
∈ P(Q × Q)

Boxes correspond to procedure summaries for programs

(in a precise sense)

22
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Transition monoid - Example

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}

q0 q1

a

b

id = [ε] [a] [b] [ab] [ba] [aa] = [bb]

All other boxes represent empty equivalence classes

23



Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes
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Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25



Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25



Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25



Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25



Formulas - Example

∨

∧

∨

∧

∨

... [abab]

[ab]

[ε]
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From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}

All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?
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Fixed-Point Iteration



Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration

28



Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]
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Winning Regions



Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w ] 7→

{
1 (q0, qf ) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w ]) = 1 iff w 6∈ L(A) iff [w ] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1
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Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX ) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X
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Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY ) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y
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Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY ) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y
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Composition



Composition

How to define the composition operator ; that replaces

concatenation . in the system of equations?
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Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y )

play from Y

(with prefix w/w ′)
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Composition

F

[w ] [w ′]...

;

G

[v ] [v ′]...

=

F ;G

[w ];G [w ′];G...

[w ]; [v ′][w ]; [v ] [w ′]; [v ′][w ′]; [v ]

(F ∗ F ′);G = F ;G ∗ F ′;G

[w ]; (G ∗ G ′) = [w ];G ∗ [w ];G ′
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Complexity & Performance



Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F )

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α
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Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space.
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Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38
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Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem
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Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over
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Performance

Comparison of 2EXPTIME algorithms:

Input Computation

Our algorithm

System of equations P Fixed-point iteration 2EXP

Reduction to Cachat [C02]

Determinized automaton EXP Saturation EXP

Idea of Walukiewicz [W01]

Finite reachability game 2EXP Saturation P

︸ ︷︷ ︸
guaranteed blow-up

︸ ︷︷ ︸
may be lucky
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Performance

We have implemented and compared:

Our algorithm with naive Kleene iteration

Our algorithm with worklist-based Kleene iteration

Reduction to Cachat’s pushdown games

Problems with Cachat’s algorithm:

Automaton A needs to be determinized�

Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, ...) not suitable for the

instances generated by the reduction
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Performance

naive Kleene worklist Kleene Cachat

|Q|/|N|/|T | avg. time % timeout avg. time % timeout avg. time % timeout

5/ 5/ 5 65.2 2 0.8 0 94.7 0

5/ 5/10 5.4 4 7.4 0 701.7 0

5/10/ 5 13.9 0 0.3 0 375.7 0

5/ 5/15 6.0 0 1.1 0 1618.6 0

5/10/10 32.0 2 122.1 0 2214.4 0

5/15/ 5 44.5 0 0.2 0 620.7 0

5/ 5/20 3.4 0 1.4 0 3434.6 4

5/10/15 217.7 0 7.4 0 5263.0 16

10/ 5/ 5 8.8 2 0.6 0 2737.8 2

10/ 5/10 9.0 6 69.8 0 6484.9 66

15/ 5/ 5 30.7 0 0.2 0 5442.4 52

10/10/ 5 9.7 0 0.2 0 7702.1 92

10/15/15 252.3 0 1.9 0 n/a 100

10/15/20 12.9 0 1.8 0 n/a 100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds
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Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)
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Questions?
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