
Summaries for Context-Free Games

Lukáš Hoĺık1, Roland Meyer2, and Sebastian Muskalla2

Nikolausvorlesung

1 Brno University of Technology, holik@fit.vutbr.cz

2 TU Braunschweig, {roland.meyer, s.muskalla}@tu-braunschweig.de

Language-Theoretic Verification

Verification

Verification problem:

Given: Source code of program P and specification ϕ .

Question: Does runtime behavior of P satisfy ϕ ?

Language-theoretic approach:

LP = possible program executions

Lϕ = valid executions

Decide: LP ⊆ Lϕ

1

Verification

Verification problem:

Given: Source code of program P and specification ϕ .

Question: Does runtime behavior of P satisfy ϕ ?

Language-theoretic approach:

LP = possible program executions

Lϕ = valid executions

Decide: LP ⊆ Lϕ

1

Language-theoretic verification

LP = possible program executions

Lϕ = valid executions

Good: Lϕ usually easy (regular)

Bad: LP usually not even context free

�

Problem is undecidable

�

Need to approximate LP

2

Language-theoretic verification

LP = possible program executions

Lϕ = valid executions

Good: Lϕ usually easy (regular)

Bad: LP usually not even context free

�

Problem is undecidable

�

Need to approximate LP

2

Language-theoretic verification

LP = possible program executions

Lϕ = valid executions

Good: Lϕ usually easy (regular)

Bad: LP usually not even context free

�

Problem is undecidable

�

Need to approximate LP

2

Language-theoretic verification

Semantics:

LP = LCF ∩ LData

= LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Language-theoretic verification

Semantics:

LP = LCF ∩ LData = LCF ∩
⋂

x∈Var
Lx

LCF is context free

LData is anything: Var is infinite and Lx is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory

Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

3

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Algorithmic challenges

1. Inclusion LCF ⊆ LS�

Automata theory

2. Membership w ∈ LP�

Hoare logic

3. Extrapolation w Lw

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Algorithmic challenges

1. Inclusion LCF ⊆ LS�

Automata theory

2. Membership w ∈ LP�

Hoare logic

3. Extrapolation w Lw

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Algorithmic challenges

1. Inclusion LCF ⊆ LS�

Automata theory

2. Membership w ∈ LP�

Hoare logic

3. Extrapolation w Lw

Counterexample-guided abstraction refinement

Init LS := Lϕ

LCF ⊆ LS ?LCF ⊆ LS ?LCF ⊆ LS ? return P |= ϕ

w ∈ LP ?w ∈ LP ?w ∈ LP ?w Lw ,Lw ∩ LP = ∅w Lw ,Lw ∩ LP = ∅

return P 6|= ϕ

LS := LS ∪ Lw
yes

no, w ∈ LCF \ LS

no

yes

4

Algorithmic challenges

1. Inclusion LCF ⊆ LS�

Automata theory

2. Membership w ∈ LP�

Hoare logic

3. Extrapolation w Lw

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Counterexample-guided abstraction refinement

LP

LCF

Lϕ

w1

Lw1

w2

Lw2

w3

Lw3

5

Language-Theoretic Synthesis

Synthesis

6

Synthesis

6

Synthesis

Synthesis problem:

Given: Program template T and specification ϕ .

Decide: Is there an instantiation T@i of T satisfying ϕ ?

Approach:

Language-theoretic synthesis

CEGAR loop

7

Synthesis

Synthesis problem:

Given: Program template T and specification ϕ .

Decide: Is there an instantiation T@i of T satisfying ϕ ?

Approach:

Language-theoretic synthesis

CEGAR loop

7

Language-theoretic synthesis

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable

non-determinism

proc F()

if (x == 0)

G()

else

H()

F → read(x,0)G

| read(x,1)H

Angelic / Controllable

non-determinism

proc F()

if ???

G()

else

H()

F → G

| H

8

Language-theoretic synthesis

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable

non-determinism

proc F()

if (x == 0)

G()

else

H()

F → read(x,0)G

| read(x,1)H

Angelic / Controllable

non-determinism

proc F()

if ???

G()

else

H()

F → G

| H

8

Language-theoretic synthesis

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable

non-determinism

proc F()

if (x == 0)

G()

else

H()

F → read(x,0)G

| read(x,1)H

Angelic / Controllable

non-determinism

proc F()

if ???

G()

else

H()

F → G

| H
8

Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9

Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9

Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9

Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9

Language-theoretic synthesis

Algorithmically:

Model as a (context-free) two player perfect information game

Player © represents uncontrollable non-determinism

Player � represents controllable non-determinism

Is there a strategy s for player � to resolve the controllable

non-determinism so that

L(G@s) ⊆ L(A) ?

From language-theoretic verification to synthesis:

Replace the inclusion check L(G) ⊆ L(A) in the CEGAR loop

by a strategy synthesis

9

Language-theoretic synthesis

Init LS := Lϕ

∃s : L(CF@s) ⊆ LS ? return P@s |= ϕ

w ∈ LP ?w Lw ,Lw ∩ LP = ∅

return ∀s : P@s 6|= ϕ

LS := LS ∪ Lw
yes

no, ∃sopp : w ∈ L(CF@sopp) \ LS

no

yes

10

Algorithmic challenges

1. Solve game:

∃s : L(CF@s) ⊆ LS ?

2. Membership w ∈ LP
3. Extrapolation w Lw

Context-Free Games

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the

non-terminals

X© → aY | ε

Y� → bX

Finite automaton over terminals TG

q0 q1

a

b

11

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the

non-terminals

X© → aY | ε

Y� → bX

Finite automaton over terminals TG

q0 q1

a

b

11

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12

Context-free games - Game arena

Game arena:

X© → aY | ε
Y� → bX

Y

bX

baY b

Vertices: Sentential forms ϑ = (NG ∪ TG)∗

Arcs: Left derivations wXγ ⇒L wηγ if X → η ∈ PG

Ownership: Owner of wXγ is the owner of X

12

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

13

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

13

Context-free games - Winning conditions

Winning conditions:

Inclusion game:

Derive a terminal word w ∈ L(A) or infinite derivation�

Safety Game

Non-Inclusion game:

Derive a terminal word w 6∈ L(A) after finitely many steps�

Reachability game

Here:

Consider inclusion game for player prover �

Consider non-inclusion game for player refuter ©

13

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis:

No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis:

No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis:

No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis:

No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification

[BEM97] [FWW97]

[SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis

[C02] [MSS05] [HO09]

14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09] 14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09] ??? 14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation

Stack content not represented

Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

Problem \ Algorithm Saturation Summarization

Verification [BEM97] [FWW97] [SP78] [RHS95]

Synthesis [C02] [MSS05] [HO09] ??? Next 14

Summaries for context-free games

How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

Now:

1. Explain & define domain

2. Explain fixed-point iteration

15

Formulas over the

Transition Monoid

The tree of plays

How to decide whether refuter can win from a given position?

Consider the tree of plays! X© → aY | ε
Y� → bX

Y

bX

baY

...

b

Refuter wins non-inclusion in (ab)∗ by picking X → ε

Y is a winning position for refuter ©

16

The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

17

The tree of plays - Example

X© → aY | ε
Y� → bX

X

aY

abX

abaY

ababX

... abab

ab

ε

17

Picking X → ε results in word in (ab)∗�

refuter © loses non-inclusion

Always picking X → aY results in infinite play�

© loses by definition

X is a winning position for prover �

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨

 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Only ownership is important

 Replace inner nodes of refuter by ∨
 Replace inner nodes of prover by ∧

Understand tree as (infinite) positive Boolean formula over words

18

Formulas - Example

∨

∧

∨

∧

∨

... abab

ab

ε

19

Formulas

Remaining problems:

1. Formulas are still infinite

2. Even the set of atomic propositions TG
∗ is infinite

�

Tackle 2. first

20

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff

∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q :

q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Equivalence relation

Observation 2:

The words are not important — only the state changes matter

Define equivalence relation ∼A such that

words are equivalent iff they induce the same state changes on A

w ∼A v

iff ∀q, q′ ∈ Q : q
w→ q′ iff q

v→ q′

MA is the set of all equivalence classes [w] of ∼A

TG
∗ is partitioned into equivalence classes of ∼A

21

Transition monoid

Represent equivalence classes by boxes:

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}
∈ P(Q × Q)

Boxes correspond to procedure summaries for programs

(in a precise sense)

22

Transition monoid

Represent equivalence classes by boxes:

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}
∈ P(Q × Q)

Boxes correspond to procedure summaries for programs

(in a precise sense)

22

Transition monoid - Example

box(w) =
{

(q, q′) ∈ Q × Q
∣∣∣ q w→ q′

}

q0 q1

a

b

id = [ε] [a] [b] [ab] [ba] [aa] = [bb]

All other boxes represent empty equivalence classes

23

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

24

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

24

Relational composition of boxes

Boxes can be composed using relational composition ;

[a]

;

[b]

=

[ab]

Monoids are isomorphic:(
MA, . , [ε]

) ∼= (
box(TG

∗)︸ ︷︷ ︸
⊆P(Q×Q)

, ; , box(ε)
)

�

Up to |MA| ≤ 2|Q|
2

equivalence classes

24

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25

Back to games

Previously: (Infinite) positive Boolean formulas over words

Now: (Infinite) positive Boolean formulas over MA

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

25

Formulas - Example

∨

∧

∨

∧

∨

... [abab]

[ab]

[ε]

26

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}

All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}

All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

Domain:

Finite positive Boolean formulas over MA (up to ⇔)

Least element: false

Partial order: Implication ⇒

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

From infinite to finite formulas

Observation 3:

Every infinite formula over MA is logically equivalent (under suitable

evaluation semantics) to some finite formula

Infinite formulas define functions F : 2MA → {0, 1}
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over MA

In the example:

Infinite formula: [ε] ∨
(
[ab] ∨ ([abab] ∨ . . .)

)
Note: [ab] = [abab] = [ababab] = . . .

Finite formula: [ε] ∨ [ab]

How to compute these finite formulas in general?

27

Fixed-Point Iteration

Fixed point iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations

Solve using Kleene iteration

28

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Fixed-point iteration - Example

Grammar

X© → aY | ε

Y� → bX

System of equations

FX = [a];FY ∨ [ε]

FY = [b];FX

Iteration:

Nr. FX FY

0 false false

1 [ε] false

2 [ε] [b] = [b]; [ε]

3 [ab] ∨ [ε] [b]

4 [ab] ∨ [ε] [b]; ([ab] ∨ [ε])

= [bab] ∨ [b]

⇔ [b]

29

Winning Regions

Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

30

Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w]) = 1 iff w 6∈ L(A)

iff [w] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

30

Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

30

Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

30

Rejecting

Define the evaluation ϕ by

ϕ : MA → {0, 1}

[w] 7→

{
1 (q0, qf) 6∈ box(w) for all qf ∈ Qf

0 else

ϕ([w]) = 1 iff w 6∈ L(A) iff [w] ⊆ L(A)

ϕ([ε]) = 0 ϕ([b]) = 1 ϕ([ab]) = 0

Sentential form α ∈ ϑ is called rejecting if ϕ(Fα) = 1

30

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 1

⇒ L(A) ∩W⊆ = ∅

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W⊆ suffices.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of prover

Theorem

The set of non-rejecting positions

W⊆ = {α ∈ ϑ | ϕ(Fα) = 0}

is the winning region of prover � for the inclusion game.

In the example, starting from X :

Both [ab], [ε] contain (q0, q0)

�

ϕ([ab]) = 0, ϕ([ε]) = 0

�

ϕ(FX) = ϕ([ab] ∨ [ε]) = 0

�

X is non-rejecting

Indeed, prover wins inclusion from X

31

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

Proof

Position w ∈ L(A) has formula Fw = [w] with ϕ([w]) = 0

⇒ L(A) ∩W 6⊆ = ∅

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance

to L(A) in every step.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Winning region of refuter

Theorem

The set of rejecting positions

W 6⊆ = {α ∈ ϑ | ϕ(Fα) = 1}

is the winning region of refuter © for the non-inclusion game.

In the example, starting from Y :

[b] does not contain (q0, q0)

�

ϕ(FY) = ϕ([b]) = 1

�

Y is rejecting

Indeed, refuter wins non-inclusion from Y

32

Composition

Composition

How to define the composition operator ; that replaces

concatenation . in the system of equations?

33

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

34

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

34

Composition

Plays from XY decompose:

XY

wY w ′Y...

wv ′wv w ′v ′w ′v

play from X

(with suffix Y)

play from Y

(with prefix w/w ′)

34

Composition

F

[w] [w ′]...

;

G

[v] [v ′]...

=

F ;G

[w];G [w ′];G...

[w]; [v ′][w]; [v] [w ′]; [v ′][w ′]; [v]

(F ∗ F ′);G = F ;G ∗ F ′;G

[w]; (G ∗ G ′) = [w];G ∗ [w];G ′

35

Complexity & Performance

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Algorithm

Given: Game G ,A and initial position α

Algorithm for solving non-inclusion:

(1) Set FX = false for all X ∈ N

(2) Do until F old
X ⇔ F new

X for all X ∈ N:

F = rhs(F)

(3) Compute Fα, and return true iff ϕ(Fα) = 1

Compose solutions FX for non-terminals to obtain the solutions for

all sentential forms α = α1 . . . αk ∈ ϑ: Fα = Fα1 ; . . . ;Fαk

Solve system once and decide game for any position α

36

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space.

37

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space.

37

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

2. The algorithm solves non-inclusion games in

O
(
|G |2 · 22|Q|c1

+ |α| · 22|Q|c2
)

where c1, c2 ∈ N are constants.

3. Hardness by reduction from acceptance in alternating Turing

machines with exponential space.

37

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of

control states

Can one player enforce a configuration such that the stack

content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

�

Our game can be reduced to Cachat

38

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Walukiewicz [W96/01]:

Consider pushdown system with ownership partitioning and

priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

�

Similar technique can be applied to our problem

39

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced

Other player picks rule

Can one player enforce a sentential form in a regular language

over NG ∪ TG?

Undecidable

2EXPTIME for left-to-right strategies

Similar to our game

Hardness proof carries over

40

Performance

Comparison of 2EXPTIME algorithms:

Input Computation

Our algorithm

System of equations P Fixed-point iteration 2EXP

Reduction to Cachat [C02]

Determinized automaton EXP Saturation EXP

Idea of Walukiewicz [W01]

Finite reachability game 2EXP Saturation P

︸ ︷︷ ︸
guaranteed blow-up

︸ ︷︷ ︸
may be lucky

41

Performance

We have implemented and compared:

Our algorithm with naive Kleene iteration

Our algorithm with worklist-based Kleene iteration

Reduction to Cachat’s pushdown games

Problems with Cachat’s algorithm:

Automaton A needs to be determinized�

Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, ...) not suitable for the

instances generated by the reduction

42

Performance

naive Kleene worklist Kleene Cachat

|Q|/|N|/|T | avg. time % timeout avg. time % timeout avg. time % timeout

5/ 5/ 5 65.2 2 0.8 0 94.7 0

5/ 5/10 5.4 4 7.4 0 701.7 0

5/10/ 5 13.9 0 0.3 0 375.7 0

5/ 5/15 6.0 0 1.1 0 1618.6 0

5/10/10 32.0 2 122.1 0 2214.4 0

5/15/ 5 44.5 0 0.2 0 620.7 0

5/ 5/20 3.4 0 1.4 0 3434.6 4

5/10/15 217.7 0 7.4 0 5263.0 16

10/ 5/ 5 8.8 2 0.6 0 2737.8 2

10/ 5/10 9.0 6 69.8 0 6484.9 66

15/ 5/ 5 30.7 0 0.2 0 5442.4 52

10/10/ 5 9.7 0 0.2 0 7702.1 92

10/15/15 252.3 0 1.9 0 n/a 100

10/15/20 12.9 0 1.8 0 n/a 100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds

43

Future Work

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)

44

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)

44

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)

44

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)

44

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Applications in hardware synthesis

Solver technology for systems of equations (Newton iteration)

44

Questions?

44

	Language-Theoretic Verification
	Language-Theoretic Synthesis
	Context-Free Games
	Formulas over theTransition Monoid
	Fixed-Point Iteration
	Winning Regions
	Composition
	Complexity & Performance
	Future Work

