Summaries for Context-Free Games

Lukáš Holík ${ }^{1}$, Roland Meyer ${ }^{2}$, and Sebastian Muskalla ${ }^{2}$
Nikolausvorlesung

1 Brno University of Technology, holik@fit.vutbr.cz
2 TU Braunschweig, \{roland.meyer, s.muskalla\}@tu-braunschweig.de

Language-Theoretic Verification

Verification

Verification problem:
Given: Source code of program P and specification φ.
Question: Does runtime behavior of P satisfy φ ?

Verification

Verification problem:
Given: Source code of program P and specification φ.
Question: Does runtime behavior of P satisfy φ ?
Language-theoretic approach:
$\mathcal{L}_{P}=$ possible program executions
$\mathcal{L}_{\varphi}=$ valid executions
Decide: $\mathcal{L}_{P} \subseteq \mathcal{L}_{\varphi}$

Language-theoretic verification

$\mathcal{L}_{P}=$ possible program executions
$\mathcal{L}_{\varphi}=$ valid executions

Language-theoretic verification

$\mathcal{L}_{P}=$ possible program executions
$\mathcal{L}_{\varphi}=$ valid executions

Good: \mathcal{L}_{φ} usually easy (regular)
Bad: \mathcal{L}_{P} usually not even context free

Language-theoretic verification

$\mathcal{L}_{P}=$ possible program executions
$\mathcal{L}_{\varphi}=$ valid executions

Good: \mathcal{L}_{φ} usually easy (regular)
Bad: \mathcal{L}_{P} usually not even context free
\checkmark Problem is undecidable
\checkmark Need to approximate \mathcal{L}_{P}

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}
$$

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{a r}} \mathcal{L}_{x}
$$

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{a r}} \mathcal{L}_{x}
$$

$\mathcal{L}_{C F}$ is context free

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{a r}} \mathcal{L}_{x}
$$

$\mathcal{L}_{C F}$ is context free
$\mathcal{L}_{\text {Data }}$ is anything: Var is infinite and \mathcal{L}_{X} is arbitrary

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{\text {ar }}} \mathcal{L}_{x}
$$

$\mathcal{L}_{C F}$ is context free
$\mathcal{L}_{\text {Data }}$ is anything: Var is infinite and \mathcal{L}_{X} is arbitrary

Lessons in life:
Handle control flow using techniques from automata theory
Handle data using techniques from logic

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{\text {ar }}} \mathcal{L}_{x}
$$

$\mathcal{L}_{C F}$ is context free
$\mathcal{L}_{\text {Data }}$ is anything: Var is infinite and \mathcal{L}_{X} is arbitrary

Lessons in life:
Handle control flow using techniques from automata theory
Handle data using techniques from logic
Need to combine them

Language-theoretic verification

Semantics:

$$
\mathcal{L}_{P}=\mathcal{L}_{C F} \cap \mathcal{L}_{\text {Data }}=\mathcal{L}_{C F} \cap \bigcap_{x \in V_{a r}} \mathcal{L}_{x}
$$

$\mathcal{L}_{C F}$ is context free
$\mathcal{L}_{\text {Data }}$ is anything: Var is infinite and \mathcal{L}_{X} is arbitrary

Lessons in life:
Handle control flow using techniques from automata theory Handle data using techniques from logic

Need to combine them
CEGAR loop [Podelski et al. since 2010]

Counterexample-guided abstraction refinement

$$
\text { Init } \mathcal{L}_{S}:=\mathcal{L}_{\varphi}
$$

Counterexample-guided abstraction refinement

Init $\mathcal{L}_{S}:=\mathcal{L}_{\varphi}$
$\frac{\downarrow}{\mathcal{L}_{\text {CF }} \subseteq \mathcal{L}_{S} \text { ? }}$

Counterexample-guided abstraction refinement

$$
\begin{aligned}
& \text { Init } \mathcal{L}_{S}:=\mathcal{L}_{\varphi} \\
& \qquad \\
& \qquad \begin{array}{l}
\text { L} C F \subseteq \mathcal{L}_{S} ?
\end{array} \text { yes } \text { return } P \models \varphi
\end{aligned}
$$

Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

Counterexample-guided abstraction refinement

Language-Theoretic Synthesis

Synthesis

Synthesis

Synthesis

Synthesis problem:
Given: Program template T and specification φ.
Decide: Is there an instantiation $T @ i$ of T satisfying φ ?

Synthesis

Synthesis problem:
Given: Program template T and specification φ.
Decide: Is there an instantiation $T @ i$ of T satisfying φ ?

Approach:
Language-theoretic synthesis
CEGAR loop

Language-theoretic synthesis

Model the control flow of a template as a grammar
Two types of non-determinism

Language-theoretic synthesis

Model the control flow of a template as a grammar
Two types of non-determinism

Demonic / Uncontrollable non-determinism

```
proc F()
    if (x == 0)
        G()
    else
        H()
    F }\quad\operatorname{read}(x,0)
        read(x,1)H
```


Language-theoretic synthesis

Model the control flow of a template as a grammar
Two types of non-determinism

Demonic / Uncontrollable non-determinism

Angelic / Controllable

 non-determinismproc F()
if ???
G()
else
H()
$\begin{array}{ll}F \rightarrow \quad & \operatorname{read}(x, 0) G \\ & \operatorname{read}(x, 1) H\end{array}$
$\begin{array}{ll}F \rightarrow & G \\ & \\ & H\end{array}$

Language-theoretic synthesis

Algorithmically:
Model as a (context-free) two player perfect information game

Language-theoretic synthesis

Algorithmically:
Model as a (context-free) two player perfect information game
Player \bigcirc represents uncontrollable non-determinism

Language-theoretic synthesis

Algorithmically:
Model as a (context-free) two player perfect information game
Player \bigcirc represents uncontrollable non-determinism
Player \square represents controllable non-determinism

Language-theoretic synthesis

Algorithmically:
Model as a (context-free) two player perfect information game

$$
\begin{aligned}
& \text { Player } \bigcirc \text { represents uncontrollable non-determinism } \\
& \text { Player } \square \text { represents controllable non-determinism }
\end{aligned}
$$

Is there a strategy s for player \square to resolve the controllable non-determinism so that

$$
\mathcal{L}(G @ s) \subseteq \mathcal{L}(A) ?
$$

Language-theoretic synthesis

Algorithmically:
Model as a (context-free) two player perfect information game

$$
\begin{aligned}
& \text { Player } \bigcirc \text { represents uncontrollable non-determinism } \\
& \text { Player } \square \text { represents controllable non-determinism }
\end{aligned}
$$

Is there a strategy s for player \square to resolve the controllable non-determinism so that

$$
\mathcal{L}(G @ s) \subseteq \mathcal{L}(A) ?
$$

From language-theoretic verification to synthesis:
Replace the inclusion check $\mathcal{L}(G) \subseteq \mathcal{L}(A)$ in the CEGAR loop by a strategy synthesis

Language-theoretic synthesis

Context-Free Games

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the non-terminals

$$
\begin{array}{ll}
X_{\bigcirc} \rightarrow a Y & \mid \\
Y_{\square} \rightarrow b X &
\end{array}
$$

Context-free games - Input

Input:

Context-free grammar with ownership partitioning of the non-terminals

$$
\begin{array}{ll}
X_{\bigcirc} \rightarrow a Y & \mid \quad \varepsilon \\
Y_{\square} \rightarrow b X &
\end{array}
$$

Finite automaton over terminals T_{G}

Context-free games - Game arena

Game arena:

Context-free games - Game arena

Game arena:

Vertices: Sentential forms $\vartheta=\left(N_{G} \cup T_{G}\right)^{*}$

Context-free games - Game arena

Game arena:

Vertices: Sentential forms $\vartheta=\left(N_{G} \cup T_{G}\right)^{*}$
Arcs: Left derivations $w X \gamma \Rightarrow_{L} w \eta \gamma$ if $X \rightarrow \eta \in P_{G}$

Context-free games - Game arena

Game arena:

Vertices: Sentential forms $\vartheta=\left(N_{G} \cup T_{G}\right)^{*}$
Arcs: Left derivations $w X \gamma \Rightarrow_{L} w \eta \gamma$ if $X \rightarrow \eta \in P_{G}$
Ownership: Owner of $w X \gamma$ is the owner of X

Context-free games - Winning conditions

Winning conditions:

Inclusion game:
Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation
\llcorner Safety Game

Context-free games - Winning conditions

Winning conditions:

Inclusion game:
Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation
4 Safety Game
Non-Inclusion game:
Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps
\longrightarrow Reachability game

Context-free games - Winning conditions

Winning conditions:
Inclusion game:
Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation
\llcorner Safety Game

Non-Inclusion game:

Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps
\longrightarrow Reachability game

Here:
Consider inclusion game for player prover \square
Consider non-inclusion game for player refuter \bigcirc

Context-free games - Algorithms

State-of-the-art in verification:

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis:

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \backslash Algorithm	Saturation	Summarization
Verification		
Synthesis		14

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \backslash Algorithm	Saturation	Summarization
Verification		$[$ SP78] [RHS95]

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \Algorithm	Saturation	Summarization
Verification	$[$ BEM97] [FWW97]	$[$ SP78] [RHS95]
Synthesis		

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \Algorithm	Saturation	Summarization
Verification	$[$ BEM97] [FWW97]	$[$ SP78] [RHS95]
Synthesis	$[\mathrm{CO2}][\mathrm{MSS05}][\mathrm{HO} 09]$	

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \Algorithm	Saturation	Summarization
Verification	$[$ BEM97] [FWW97]	$[$ SP78] [RHS95]
Synthesis	$[\mathrm{C} 02][\mathrm{MSS05}][\mathrm{HO} 09]$	$? ? ?$

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown
Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation
Stack content not represented
Used more often in SVComp
State-of-the-art in synthesis: No summaries for games

Problem \Algorithm	Saturation	Summarization
Verification	$[$ BEM97] [FWW97]	$[$ SP78] [RHS95]
Synthesis	$[\mathrm{CO2}][\mathrm{MSS05]}[\mathrm{HO} 09]$??? Next

Summaries for context-free games

How to decide which player wins the game?
Fixed-point iteration over a suitable summary domain

Now:

1. Explain \& define domain
2. Explain fixed-point iteration

Formulas over the Transition Monoid

The tree of plays

How to decide whether refuter can win from a given position?
Consider the tree of plays!

Refuter wins non-inclusion in (ab)* by picking $X \rightarrow \varepsilon$ Y is a winning position for refuter \bigcirc

The tree of plays - Example

The tree of plays - Example

Formulas

Problem:

Tree is usually infinite

Formulas

Problem:
Tree is usually infinite
Observation 1:
Labels of inner nodes do not matter for inclusion

Formulas

Problem:
Tree is usually infinite
Observation 1:
Labels of inner nodes do not matter for inclusion
Only ownership is important

Formulas

Problem:
Tree is usually infinite
Observation 1:
Labels of inner nodes do not matter for inclusion
Only ownership is important
\rightsquigarrow Replace inner nodes of refuter by

Formulas

Problem:
Tree is usually infinite
Observation 1:
Labels of inner nodes do not matter for inclusion
Only ownership is important
\rightsquigarrow Replace inner nodes of refuter by
\rightsquigarrow Replace inner nodes of prover by

Formulas

Problem:
Tree is usually infinite
Observation 1:
Labels of inner nodes do not matter for inclusion
Only ownership is important
\rightsquigarrow Replace inner nodes of refuter by
\rightsquigarrow Replace inner nodes of prover by

Understand tree as (infinite) positive Boolean formula over words

Formulas - Example

Formulas

Remaining problems:

1. Formulas are still infinite
2. Even the set of atomic propositions $T_{G}{ }^{*}$ is infinite

4 Tackle 2. first

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Define equivalence relation \sim_{A} such that words are equivalent iff they induce the same state changes on A

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Define equivalence relation \sim_{A} such that words are equivalent iff they induce the same state changes on A

$$
w \sim_{A} v
$$

iff

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Define equivalence relation \sim_{A} such that words are equivalent iff they induce the same state changes on A

$$
\begin{gathered}
w \sim_{A} v \\
\text { iff } \quad \forall q, q^{\prime} \in Q:
\end{gathered}
$$

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Define equivalence relation \sim_{A} such that words are equivalent iff they induce the same state changes on A

$$
\begin{aligned}
& \quad w \sim_{A} \vee \\
& \text { iff } \quad \forall q, q^{\prime} \in Q: \quad q \xrightarrow{w} q^{\prime} \quad \text { iff } \quad q \xrightarrow{v} q^{\prime}
\end{aligned}
$$

Equivalence relation

Observation 2:
The words are not important - only the state changes matter

Define equivalence relation \sim_{A} such that words are equivalent iff they induce the same state changes on A

$$
\begin{array}{ll}
& w \sim_{A} v \\
\text { iff } & \forall q, q^{\prime} \in Q: \quad q \xrightarrow{w} q^{\prime} \quad \text { iff } \quad q \xrightarrow{v} q^{\prime}
\end{array}
$$

M_{A} is the set of all equivalence classes [w] of \sim_{A}
$T_{G}{ }^{*}$ is partitioned into equivalence classes of \sim_{A}

Transition monoid

Represent equivalence classes by boxes:

$$
\operatorname{box}(w)=\left\{\left(q, q^{\prime}\right) \in Q \times Q \mid q \xrightarrow{w} q^{\prime}\right\} \in \mathcal{P}(Q \times Q)
$$

Transition monoid

Represent equivalence classes by boxes:

$$
\operatorname{box}(w)=\left\{\left(q, q^{\prime}\right) \in Q \times Q \mid q \xrightarrow{w} q^{\prime}\right\} \in \mathcal{P}(Q \times Q)
$$

Boxes correspond to procedure summaries for programs (in a precise sense)

Transition monoid - Example

$$
\operatorname{box}(w)=\left\{\left(q, q^{\prime}\right) \in Q \times Q \mid q \xrightarrow{w} q^{\prime}\right\}
$$

All other boxes represent empty equivalence classes

Relational composition of boxes

Boxes can be composed using relational composition ;

Relational composition of boxes

Boxes can be composed using relational composition ;

Monoids are isomorphic:

$$
\left(M_{A}, .,[\varepsilon]\right) \cong(\underbrace{\operatorname{box}\left(T_{G}^{*}\right)}_{\subseteq \mathcal{P}(Q \times Q)}, ;, \operatorname{box}(\varepsilon))
$$

Relational composition of boxes

Boxes can be composed using relational composition ;

Monoids are isomorphic:

$$
\left(M_{A}, .,[\varepsilon]\right) \cong(\underbrace{\operatorname{box}\left(T_{G}^{*}\right)}_{\subseteq \mathcal{P}(Q \times Q)}, ;, \operatorname{box}(\varepsilon))
$$

$\left\llcorner\right.$ Up to $\left|M_{A}\right| \leq 2^{|Q|^{2}}$ equivalence classes

Back to games

Previously: (Infinite) positive Boolean formulas over words

Back to games

Previously: (Infinite) positive Boolean formulas over words
Now: (Infinite) positive Boolean formulas over M_{A}

Back to games

Previously: (Infinite) positive Boolean formulas over words
Now: (Infinite) positive Boolean formulas over M_{A}

Down to finitely many atomic propositions

Back to games

Previously: (Infinite) positive Boolean formulas over words
Now: (Infinite) positive Boolean formulas over M_{A}

Down to finitely many atomic propositions

Remaining problem:
Formulas themselves are infinite

Formulas - Example

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$
All such functions can be represented by finite formulas

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$
All such functions can be represented by finite formulas
Restrict to finite positive Boolean formulas over M_{A}

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_{A}

Domain:

Finite positive Boolean formulas over M_{A} (up to \Leftrightarrow)
Least element: false
Partial order: Implication \Rightarrow

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$
All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_{A}

In the example:
Infinite formula: $[\varepsilon] \vee([a b] \vee([a b a b] \vee \ldots))$
Note: $[a b]=[a b a b]=[a b a b a b]=\ldots$
Finite formula: $[\varepsilon] \vee[a b]$

From infinite to finite formulas

Observation 3:
Every infinite formula over M_{A} is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_{A}} \rightarrow\{0,1\}$
All such functions can be represented by finite formulas
Restrict to finite positive Boolean formulas over M_{A}
In the example:
Infinite formula: $[\varepsilon] \vee([a b] \vee([a b a b] \vee \ldots))$
Note: $[a b]=[a b a b]=[a b a b a b]=\ldots$
Finite formula: $[\varepsilon] \vee[a b]$
How to compute these finite formulas in general?

Fixed-Point Iteration

Fixed point iteration

Problem:
How to compute the formulas?
Fixed-point iteration:
Translate the grammar into a system of equations
Solve using Kleene iteration

Fixed-point iteration - Example

System of equations
$F_{X}=[a] ; F_{Y} \vee[\varepsilon]$
$F_{Y}=[b] ; F_{X}$

Fixed-point iteration - Example

Iteration:

Nr.	F_{X}	F_{Y}

Grammar

$$
\begin{array}{lll}
X_{\bigcirc} \rightarrow a Y & \varepsilon \\
Y_{\square} \rightarrow b X &
\end{array}
$$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar

Nr.	F_{X}	F_{Y}
0	false	false

$$
\begin{array}{lll}
X_{\bigcirc} \rightarrow a Y & \varepsilon \\
Y_{\square} \rightarrow & b X &
\end{array}
$$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar
$X_{\bigcirc} \rightarrow a Y \quad \mid \varepsilon$
$Y_{\square} \rightarrow b X$

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar

$$
\begin{array}{lll}
X_{\bigcirc} \rightarrow a Y & \varepsilon \\
Y_{\square} \rightarrow b X &
\end{array}
$$

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b]=[b] ;[\varepsilon]$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar

$$
\begin{array}{lll}
X_{\bigcirc} \rightarrow a Y & \varepsilon \\
Y_{\square} \rightarrow & b X &
\end{array}
$$

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b]=[b] ;[\varepsilon]$
3	$[a b] \vee[\varepsilon]$	$[b]$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar
$X_{\bigcirc} \rightarrow a Y \quad \mid \varepsilon$
$Y_{\square} \rightarrow b X$

System of equations

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b]=[b] ;[\varepsilon]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Fixed-point iteration - Example

Iteration:

Grammar
$X_{\bigcirc} \rightarrow a Y \quad \mid \varepsilon$
$Y_{\square} \rightarrow b X$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b]=[b] ;[\varepsilon]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$ $=[b a b] \vee[b]$

Fixed-point iteration - Example

Iteration:

Grammar
$X_{\bigcirc} \rightarrow a Y \quad \mid \varepsilon$
$Y_{\square} \rightarrow b X$

System of equations

$$
\begin{aligned}
& F_{X}=[a] ; F_{Y} \vee[\varepsilon] \\
& F_{Y}=[b] ; F_{X}
\end{aligned}
$$

Nr.	F_{X}	F_{Y}
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b]=[b] ;[\varepsilon]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$ $=[b a b] \vee[b]$
	e	

Winning Regions

Rejecting

Define the evaluation φ by

$$
\begin{aligned}
\varphi: M_{A} & \rightarrow\{0,1\} \\
{[w] } & \mapsto \begin{cases}1 & \left(q_{0}, q_{f}\right) \notin \operatorname{box}(w) \text { for all } q_{f} \in Q_{f} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

Rejecting

Define the evaluation φ by

$$
\begin{aligned}
& \varphi: M_{A} \rightarrow\{0,1\} \\
& {[w] } \mapsto \begin{cases}1 & \left(q_{0}, q_{f}\right) \notin \operatorname{box}(w) \text { for all } q_{f} \in Q_{f} \\
0 & \text { else }\end{cases} \\
& \varphi([w])=1 \quad \text { iff } \quad w \notin \mathcal{L}(A)
\end{aligned}
$$

Rejecting

Define the evaluation φ by

$$
\begin{aligned}
\varphi: M_{A} & \rightarrow\{0,1\} \\
{[w] } & \mapsto \begin{cases}1 & \left(q_{0}, q_{f}\right) \notin \operatorname{box}(w) \text { for all } q_{f} \in Q_{f} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

$\varphi([w])=1 \quad$ iff $\quad w \notin \mathcal{L}(A) \quad$ iff $\quad[w] \subseteq \overline{\mathcal{L}(A)}$

Rejecting

Define the evaluation φ by

$$
\begin{aligned}
\varphi: M_{A} & \rightarrow\{0,1\} \\
{[w] } & \mapsto \begin{cases}1 & \left(q_{0}, q_{f}\right) \notin \operatorname{box}(w) \text { for all } q_{f} \in Q_{f} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

$\varphi([w])=1 \quad$ iff $\quad w \notin \mathcal{L}(A) \quad$ iff $\quad[w] \subseteq \overline{\mathcal{L}(A)}$

$\varphi([b])=1 \quad \varphi([a b])=0$

Rejecting

Define the evaluation φ by

$$
\begin{aligned}
\varphi: M_{A} & \rightarrow\{0,1\} \\
{[w] } & \mapsto \begin{cases}1 & \left(q_{0}, q_{f}\right) \notin \operatorname{box}(w) \text { for all } q_{f} \in Q_{f} \\
0 & \text { else }\end{cases}
\end{aligned}
$$

$\varphi([w])=1 \quad$ iff $\quad w \notin \mathcal{L}(A) \quad$ iff $\quad[w] \subseteq \overline{\mathcal{L}(A)}$

$\varphi([\varepsilon])=0 \quad \varphi([b])=1 \quad \varphi([a b])=0$

Sentential form $\alpha \in \vartheta$ is called rejecting if $\varphi\left(F_{\alpha}\right)=1$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

$$
\Rightarrow \overline{\mathcal{L}(A)} \cap W \subseteq=\emptyset
$$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

$$
\Rightarrow \overline{\mathcal{L}(A)} \cap W \subseteq=\emptyset
$$

Show: If the current position is non-rejecting and it is the turn of

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

$$
\Rightarrow \overline{\mathcal{L}(A)} \cap W \subseteq=\emptyset
$$

Show: If the current position is non-rejecting and it is the turn of
(1) Prover: There is a move to a non-rejecting position,

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

$$
\Rightarrow \overline{\mathcal{L}(A)} \cap W \subseteq=\emptyset
$$

Show: If the current position is non-rejecting and it is the turn of
(1) Prover: There is a move to a non-rejecting position,
(2) Refuter: All moves go to non-rejecting positions.

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_{w}=[w]$ with $\varphi([w])=1$

$$
\Rightarrow \overline{\mathcal{L}(A)} \cap W \subseteq=\emptyset
$$

Show: If the current position is non-rejecting and it is the turn of
(1) Prover: There is a move to a non-rejecting position,
(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in $W \subseteq$ suffices.

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.

In the example, starting from X :
Both [ab], $[\varepsilon]$ contain $\left(q_{0}, q_{0}\right)$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.
In the example, starting from X :

$$
\begin{gathered}
\text { Both [ab], [} \varepsilon \text {] contain }\left(q_{0}, q_{0}\right) \\
\qquad \varphi([a b])=0, \varphi([\varepsilon])=0
\end{gathered}
$$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.
In the example, starting from X :

$$
\begin{aligned}
& \text { Both }[a b],[\varepsilon] \text { contain }\left(q_{0}, q_{0}\right) \\
& \qquad \varphi([a b])=0, \varphi([\varepsilon])=0 \\
& \qquad \varphi\left(F_{X}\right)=\varphi([a b] \vee[\varepsilon])=0
\end{aligned}
$$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.
In the example, starting from X :

$$
\begin{aligned}
& \text { Both [ab], [} \varepsilon \text {] contain }\left(q_{0}, q_{0}\right) \\
& \qquad \varphi([a b])=0, \varphi([\varepsilon])=0 \\
& \leftrightarrows \varphi\left(F_{X}\right)=\varphi([a b] \vee[\varepsilon])=0 \\
& \leftrightarrows X \text { is non-rejecting }
\end{aligned}
$$

Winning region of prover

Theorem

The set of non-rejecting positions

$$
W \subseteq=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=0\right\}
$$

is the winning region of prover \square for the inclusion game.
In the example, starting from X :
Both [ab], [ε] contain (q_{0}, q_{0})
$\bigsqcup^{4} \varphi([a b])=0, \varphi([\varepsilon])=0$
$\rightarrow \varphi\left(F_{X}\right)=\varphi([a b] \vee[\varepsilon])=0$
$\bigsqcup X$ is non-rejecting
Indeed, prover wins inclusion from X

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\not \subset}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\mathbb{E}}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$
$\Rightarrow \mathcal{L}(A) \cap W \notin=\emptyset$

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$

$$
\Rightarrow \mathcal{L}(A) \cap W^{\notin}=\emptyset
$$

Show: If the current position is rejecting and it is the turn of

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$

$$
\Rightarrow \mathcal{L}(A) \cap W \notin=\emptyset
$$

Show: If the current position is rejecting and it is the turn of
(1) Refuter: There is a move to a rejecting position,

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$

$$
\Rightarrow \mathcal{L}(A) \cap W \notin=\emptyset
$$

Show: If the current position is rejecting and it is the turn of
(1) Refuter: There is a move to a rejecting position,
(2) Prover: All moves go to rejecting positions.

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_{w}=[w]$ with $\varphi([w])=0$

$$
\Rightarrow \mathcal{L}(A) \cap W \notin=\emptyset
$$

Show: If the current position is rejecting and it is the turn of
(1) Refuter: There is a move to a rejecting position, (2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance to $\overline{\mathcal{L}(A)}$ in every step.

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y :
[b] does not contain $\left(q_{0}, q_{0}\right)$

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y :

$$
\begin{gathered}
{[b] \text { does not contain }\left(q_{0}, q_{0}\right)} \\
\zeta \varphi\left(F_{Y}\right)=\varphi([b])=1
\end{gathered}
$$

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y :
[b] does not contain $\left(q_{0}, q_{0}\right)$
$\iota^{\varphi}\left(F_{Y}\right)=\varphi([b])=1$
$\rightarrow Y$ is rejecting

Winning region of refuter

Theorem

The set of rejecting positions

$$
W^{\notin}=\left\{\alpha \in \vartheta \mid \varphi\left(F_{\alpha}\right)=1\right\}
$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y :
[b] does not contain $\left(q_{0}, q_{0}\right)$
$\iota \varphi\left(F_{Y}\right)=\varphi([b])=1$
$\rightarrow Y$ is rejecting
Indeed, refuter wins non-inclusion from Y

Composition

Composition

How to define the composition operator ; that replaces concatenation. in the system of equations?

Composition

Plays from XY decompose:

Composition

Plays from XY decompose:

Composition

Plays from $X Y$ decompose:

Composition

Complexity \& Performance

Algorithm

Given: Game G, A and initial position α
Algorithm for solving non-inclusion:

Algorithm

Given: Game G, A and initial position α Algorithm for solving non-inclusion:
(1) Set $F_{X}=$ false for all $X \in N$

Algorithm

Given: Game G, A and initial position α Algorithm for solving non-inclusion:
(1) Set $F_{X}=$ false for all $X \in N$
(2) Do until $F_{X}^{\text {old }} \Leftrightarrow F_{X}^{\text {new }}$ for all $X \in N$:

$$
F=\operatorname{rhs}(F)
$$

Algorithm

Given: Game G, A and initial position α Algorithm for solving non-inclusion:
(1) Set $F_{X}=$ false for all $X \in N$
(2) Do until $F_{X}^{\text {old }} \Leftrightarrow F_{X}^{\text {new }}$ for all $X \in N$:

$$
F=\operatorname{rhs}(F)
$$

(3) Compute F_{α}, and return true iff $\varphi\left(F_{\alpha}\right)=1$

Algorithm

Given: Game G, A and initial position α
Algorithm for solving non-inclusion:
(1) Set $F_{X}=$ false for all $X \in N$
(2) Do until $F_{X}^{\text {old }} \Leftrightarrow F_{X}^{\text {new }}$ for all $X \in N$:

$$
F=\operatorname{rhs}(F)
$$

(3) Compute F_{α}, and return true iff $\varphi\left(F_{\alpha}\right)=1$

Compose solutions F_{X} for non-terminals to obtain the solutions for all sentential forms $\alpha=\alpha_{1} \ldots \alpha_{k} \in \vartheta: F_{\alpha}=F_{\alpha_{1}} ; \ldots ; F_{\alpha_{k}}$

Algorithm

Given: Game G, A and initial position α
Algorithm for solving non-inclusion:
(1) Set $F_{X}=$ false for all $X \in N$
(2) Do until $F_{X}^{\text {old }} \Leftrightarrow F_{X}^{\text {new }}$ for all $X \in N$:

$$
F=\operatorname{rhs}(F)
$$

(3) Compute F_{α}, and return true iff $\varphi\left(F_{\alpha}\right)=1$

Compose solutions F_{X} for non-terminals to obtain the solutions for all sentential forms $\alpha=\alpha_{1} \ldots \alpha_{k} \in \vartheta: F_{\alpha}=F_{\alpha_{1}} ; \ldots ; F_{\alpha_{k}}$

Solve system once and decide game for any position α

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.
2. The algorithm solves non-inclusion games in

$$
\mathcal{O}\left(|G|^{2} \cdot 2^{2^{|Q|^{c_{1}}}}+|\alpha| \cdot 2^{2^{|Q|^{C_{2}}}}\right)
$$

where $c_{1}, c_{2} \in \mathbb{N}$ are constants.

Complexity

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.
2. The algorithm solves non-inclusion games in

$$
\mathcal{O}\left(|G|^{2} \cdot 2^{2^{|Q|^{c_{1}}}}+|\alpha| \cdot 2^{2^{|Q|^{C_{2}}}}\right)
$$

where $c_{1}, c_{2} \in \mathbb{N}$ are constants.
3. Hardness by reduction from acceptance in alternating Turing machines with exponential space.

Related Work

Cachat [C02]:

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA
Saturated AFA accepts the winning region

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA
Saturated AFA accepts the winning region
EXPTIME

Related Work

Cachat [C02]:
Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA
Saturated AFA accepts the winning region

EXPTIME

4 Our game can be reduced to Cachat

Related Work

Walukiewicz [W96/01]:

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game
Reduce to a parity game on a finite graph

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game
Reduce to a parity game on a finite graph
On push, one player guesses the effect of the push

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game
Reduce to a parity game on a finite graph
On push, one player guesses the effect of the push Other player decides to verify the guess or skip it

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game
Reduce to a parity game on a finite graph
On push, one player guesses the effect of the push Other player decides to verify the guess or skip it

EXPTIME

Related Work

Walukiewicz [W96/01]:
Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game
Reduce to a parity game on a finite graph
On push, one player guesses the effect of the push Other player decides to verify the guess or skip it

EXPTIME

\hookrightarrow Similar technique can be applied to our problem

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:
Consider context-free grammar

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:
Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_{G} \cup T_{G}$?

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_{G} \cup T_{G}$?

Undecidable

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_{G} \cup T_{G}$?

Undecidable
2EXPTIME for left-to-right strategies

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_{G} \cup T_{G}$?

Undecidable
2EXPTIME for left-to-right strategies
Similar to our game

Related Work

Muscholl, Schwentick, Segoufin [MSS05]:
Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_{G} \cup T_{G}$?

Undecidable
2EXPTIME for left-to-right strategies
Similar to our game
Hardness proof carries over

Performance

Comparison of 2EXPTIME algorithms:

Input	Computation

Our algorithm

System of equations	P	Fixed-point iteration	2EXP

Reduction to Cachat [C02]

Determinized automaton	EXP	Saturation	EXP
Idea of Walukiewicz [W01]			
Finite reachability game	2 EXP	Saturation	P

guaranteed blow-up
may be lucky

Performance

We have implemented and compared:
Our algorithm with naive Kleene iteration
Our algorithm with worklist-based Kleene iteration
Reduction to Cachat's pushdown games

Problems with Cachat's algorithm:
Automaton A needs to be determinized
\rightarrow Guaranteed blow-up
Algorithmic tricks for Cachat (worklist, ...) not suitable for the instances generated by the reduction

Performance

	naive Kleene		worklist Kleene		Cachat	
$\|Q\| /\|N\| /\|T\|$	avg. time	\% timeout	avg. time	\% timeout	avg. time	\% timeout
$5 / 5 / 5$	65.2	2	0.8	0	94.7	0
$5 / 5 / 10$	5.4	4	7.4	0	701.7	0
$5 / 10 / 5$	13.9	0	0.3	0	375.7	0
$5 / 5 / 15$	6.0	0	1.1	0	1618.6	0
$5 / 10 / 10$	32.0	2	122.1	0	2214.4	0
$5 / 15 / 5$	44.5	0	0.2	0	620.7	0
$5 / 5 / 20$	3.4	0	1.4	0	3434.6	4
$5 / 10 / 15$	217.7	0	7.4	0	5263.0	16
$10 / 5 / 5$	8.8	2	0.6	0	2737.8	2
$10 / 5 / 10$	9.0	6	69.8	0	6484.9	66
$15 / 5 / 5$	30.7	0	0.2	0	5442.4	52
$10 / 10 / 5$	9.7	0	0.2	0	7702.1	92
$10 / 15 / 15$	252.3	0	1.9	0	n / a	100
$10 / 15 / 20$	12.9	0	1.8	0	n / a	100

Experiments executed on $77-6700 \mathrm{~K}, 4 \mathrm{GHz}$, times in milliseconds, timeout 10 seconds

Future Work

Future work

Liveness synthesis (infinite words)

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Future work

Liveness synthesis (infinite words)
Synthesis for systems with branching behavior (trees)
Games on higher-order systems

Future work

Liveness synthesis (infinite words)
Synthesis for systems with branching behavior (trees)
Games on higher-order systems

Applications in hardware synthesis

Liveness synthesis (infinite words)
Synthesis for systems with branching behavior (trees)
Games on higher-order systems

Applications in hardware synthesis
Solver technology for systems of equations (Newton iteration)

Questions?

