Operations on a Symbolic Domain
for Synthesis

Felix Matthias Stutz
April 5th, 2017

Bachelor Thesis
University of Kaiserslautern

Department of Computer Science

First reviewer Prof. Dr. Klaus Schneider
Second reviewer Prof. Dr. Roland Meyer
Supervisor M. Sc. Sebastian Muskalla

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbststandig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe.

Kaiserslautern, den 05. April 2017

FeELIXx M. STUTZ

Zusammenfassung

Procedure Summaries berechnen den Gesamteffekt von Methoden, sodass nicht jeder
Aufruf durch deren Code ersetzt werden muss. Deshalb werden sie haufig bei der
Verifikation rekursiver Programme eingesetzt. In [HMMI16] wurde fiir Synthesepro-
bleme gezeigt, dass Procedure Summaries als positive Boole’sche Formeln iiber dem
Transitionsmonoiden eines nichtdeterministischen, endlichen Automaten formuliert
werden konnen. Synthese dreht sich um die Frage, ob man ein liickenhaftes Programm
so vervollstandigen kann, dass es eine regulare Spezifikation erfiillt. Dieses Problem
kann man durch ein Spiel modellieren, in dem ein Spieler probiert, die Spezifikation
zu erfiillen, und der andere durch Veranderungen der Umgebung versucht, dass der
erste Spieler nicht gewinnen kann. In [HMMI6] wurde eine Methode vorgestellt, mit
der solche Spiele gelost werden konnen. Mithilfe einer Kleene-Iteration berechnen wir
hierfiir einen Fixpunkt tiber diesen positiven Boole’schen Formeln. Um die logische
Aquivalenz zweier aufeinanderfolgender Formeln zu erkennen, bendtigen wir Implika-
tionstests. Wir zeigen, dass diese Tests co-NP-vollstandig sind und préasentieren
einen korrekten und vollstandigen Sequenzenkalkiil, mit dem wir diese symbolisch
handhaben konnen. Wir stellen einen weiteren Ansatz vor, bei dem mithilfe der Mono-
tonie positiver Boole’scher Formeln alle Kandidaten fiir ein Gegenbeispiel, das die
Implikation widerlegen konnte, gesucht und getestet werden. Diesen Ansatz erweitern
wir mithilfe eines Verfeinerungsverfahrens, um auch symbolische Formeln handhaben
zu konnen. Des Weiteren erklaren wir unser Tool, mit dem wir verschiedene Experi-
mente durchgefithrt haben. Mithilfe dieser vergleichen wir die verschiedenen Ansétze
fiir Implikationstests nichtsymbolischer Formeln, indem wir diese Techniken in eine
Fixpunktiteration einbetten. Auflerdem untersuchen wir den Nutzen verschiedener
Vorverarbeitungsmethoden, die wir im Verlauf der Arbeit vorstellen.

Abstract

Procedure summaries are frequently used for verification of recursive programs as they
compute the effect of a method instead of inlining its code. In [HMMI16], it was shown
that positive Boolean formulas over the transition monoid of a non-deterministic finite
automaton correspond to procedure summaries for synthesis problems in which one
wants to find a completion for a partial program so that all executions satisfy a
regular specification. This scenario can be modeled as a two player game in which
one player tries to meet the specification whereas the other player tries to adjust the
environment so that the first one fails to find a strategy to win the game. In [HMMI16],
a procedure to solve these games has been presented. By Kleene iteration, we find a
fixed-point over those formulas for which we use implication checks to decide whether
two succeeding formulas in the iteration are logically equivalent. We prove these checks
to be co-NP-complete and propose a sequent calculus to handle them symbolically and
prove it to be sound and complete. Moreover, we present an approach in which we
exploit the monotonicity of the domain of positive Boolean formulas in order to find
and check candidates for counterexamples that disprove the implication. Extending
this approach with a refinement procedure enhances it to handle symbolic formulas
as well. We explain our tool with which we ran experiments in order to compare
the performance of the different algorithms for non-symbolic formulas by embedding
these techniques in a fixed-point iteration. Furthermore, we analyze the benefits of
different preprocessing procedures which are presented in this thesis.

Contents

(L_Introduction|

[3 Co-NP-Completeness|
[3.1 Complexity and Reductions|
[3.2 Membership inco-NP|.
3.3 Co-NP-Hardness|
[3.4 Special Cases|

[4 Sequent Calculus|
[41 Notation and Semanticsl

b Lattice of Assignment]
[>.1 Basic Algorithm|. 0
[>.2 Refining Compositions|

[6 Exploiting lterations|
[6.1 Checking Changed Parts|
(6.2 Splitting Compositions|

[/ Implementation|

[7.2 Formulas without Compositions|
(7.3 Symbolic Formulas

6 Evaluation|
[8.1 Case Studies about Preprocessing|
(8.2 CNF. Lattice of Assignment and SAT-Solver|

1 Introduction

To start with, we explain synthesis which can be stated as the problem of finding
a completion for a partial program so that it complies with a given specification.
This kind of problems can be encoded with context-free games and we therefore
proceed with those presented in [HMMI16]. We sketch the structure and content of
the remainder of the thesis to conclude the introduction.

1.1 Synthesis

Due to the application of positive Boolean formulas in synthesis, we explore different
operations for these formulas and focus on the most important one: implication
checks like F' = G. We analyze their complexity and present different approaches
to handle them in practice.

Specification

Program Code

Synthesis Algorithm

Template

Figure 1: Synthesis: The goal is to find an instantiation for a given template so that
the resulting program satisfies the given specification.

Terms and Problem We give some more intuition to the terms and concepts
used in Figure [I] that illustrates the idea of synthesis. A template is a fragment
of program code with gaps, i.e. there are missing expressions, so that the code is
actually incomplete. An instantiation of a template is a possible completion in which
all missing expressions are specified. So we state the problem of synthesis as follows:
Synthesis problem Given a program template T" and specification . Is there an
instantiation 7@Q¢ of T satisfying ¢ 7

Advantages By now, the question might raise why it is advantageous to describe
the behaviour of a program by a specification instead of its code. The goal of
synthesis is to minimize the effort of designing low-level components for software- and
hardware-designers [Kre98|. Instead of dealing with low-level concerns, designers
should be able to develop high-level specifications rather including the desired be-
haviour of the product than design details. Thereby, one can use the specification,
instead of the code, for program verification leading to more reliability which is
crucial for the frequent application in safety-critical systems.

From templates to CFG If a template is missing a condition for an if-then-
else-statement, we have to determine an appropriate one so that the specification
is satisfied for any execution. In order to model this behaviour, we explain the

difference between two kinds of non-determinism with the two code examples given
in Figure 2] The uncontrollable non-determinism is also called demonic while

Demonic non-determinism Angelic non-determinism
proc F() proc F()
if(x = 0) if 777
G() G()
else else
H() H()
F — read(x,0)G | read(x,1)H F—-G|H

Figure 2: Demonic non-determinism is uncontrollable while angelic non-determinism
is controllable.

the controllable non-determinism is called angelic. To model these two kinds in
the grammar, every non-terminal is owned by one of two players, i.e. prover or
refuter. As indicated by the names, prover’s goal is to prove that every possible
execution satisfies the specification whereas refuter tries to find an execution which
violates the specification. Intuitively, the controllable non-determinism is handled by
prover since he wants to find a strategy for the program to satisfy the specification.
Refuter deals with the uncontrollable non-determinism as it is sufficient to have one
bad execution to violate the specification. Therefore, non-terminals representing
demonic non-determinism are owned by refuter whereas those representing angelic
non-determinism are dedicated to prover. On the one hand, context-free grammars
are a good approximation to describe the syntax of most programming languages and
therefore we can use them to model the control flow of templates. On the other hand,
we can describe valid executions by a regular specification and therefore queries like
L(C) C L(A), i.e. inclusion of a context-free language in a regular language, are
essential to verification. One could use such queries in an iterative refinement loop
to amend the regular specification in order to learn about the semantics of the
program. This allows us to handle real programs.

The whole concept of controllable and uncontrollable non-determinism is not re-
stricted to software but can also be used for hardware circuits. As before, the input
is divided into a controllable and an uncontrollable part and the output has to meet
a regular specification. As the controllable part can depend on the uncontrollable
one, it does not suffice to check any combinatorial combination. So overall, the
framework is similar.

Next, we give a brief introduction to the summary technique for context-free games
from [HMMTI6].

1.2 Summary Technique for Context-free Games

Context-free Games When we move from queries like £(C) C L(A) to context-
free games, we convert this inclusion query to a strategy synthesis for an inclusion
game. If the inclusion holds, prover has a winning strategy as he can force any
play to be either infinite or end in a word in the regular language. The partition
of non-terminals we mentioned before is given by an ownership partitioning of the
non-terminals in the grammar whereas the regular language is represented by a
non-deterministic finite automaton. For the derivation of words in the context-free
grammar, we assume that only rules for the leftmost non-terminal in a sentential
form are applied. This is called left-derivation and basically coincides to executing
the program sequentially. So the decision which rule to apply is given by the strategy
of the owner of the leftmost non-terminal. Overall, this induces a game arena of
sentential forms in which the owner of the leftmost non-terminal takes turn. In
general, inclusion in the regular language is the winning condition. To be precise,
prover wants to prove that every derivable word is included in the regular language
whereupon refuter wants to disprove the inclusion by finding a derivable word which
is not included in the regular language.

From Plays to Formulas All plays starting in a non-terminal yield a (typically
infinite) tree where inner nodes with their logical connectives represent the behaviour
of the two players. The goal is to represent these plays finitely by positive Boolean
formulas. We play the game from refuter’s perspective and it suffices for refuter to
have one good move for every possible rule application of prover. This observation
is modelled by logical operators, as V is true if one of its parts is true and therefore
represents one good move, while A only evaluates to true if all parts are true and
thus corresponds to every possible application of prover. To represent a play, the
propositions of such formulas would be the set of terminal words. Because of the
infiniteness of this domain, we only consider the state changes in the NFA that are
induced by a terminal word to have a finite domain. Hence, these relations are the
atomic propositions of our formulas.

Fixed Point Iteration To compute all plays starting in a non-terminal X, we use
a fixed point iteration on the system of equations given by the production rules of
the grammar. Actually, we compute the fixed-point on any non-terminal as these
are needed to compute the plays starting in X. This system comprises all possible
actions of both players and therefore the shape of the tree. Considering the iteration,
we start with false for any non-terminal since false represents a strategy of prover to
enforce an infinite derivation. During the computation, we get the resulting formula
for a sentential form af by composing the two formulas for o and 3 appropriately.
With the left-derivation, every play in the resulting formula is given by a maximal
play in « followed by a play in 3. For the Kleene iteration, we use implication as
partial order so that it will not be harder to satisfy a newly created formula compared
to its predecessor for the same non-terminal. By Kleene’s fixed-point theorem, we
reach the least fixed point of the given systems of equation as we started with the

bottom false of the domain. Then, we check whether the final formula for the start
symbol of the grammar is rejected by the automaton. Therefore, boxes are mapped
to truth values accordingly and we evaluate the formula.

Implication Checks Furthermore, formulas are used up to logical equivalence.
This is sufficient for termination because of the finiteness of this domain. So every
time we compute a new formula, we know that the former one implies the new one by
the Kleene iteration. Therefore, it suffices to check whether the new one implies the
old one as well. These are exactly the implication checks we analyze in this thesis.
We show i.a. that checking entailment is co-NP-complete even if satisfiability is
trivial for positive Boolean formulas. Intuitively, it is harder than the satisfiability
problem as implications introduce negations to our formulas.

1.3 Outline

The remainder of this thesis is structured as follows. In Chapter [2 we present
the different concepts from the introduction formally. After the definition of non-
deterministic finite automata, boxes and context-free grammars, we proceed with
the positive Boolean formulas and present some of their properties like monotonicity.
During the explanation of the summary technique for context-free games from
[HMM16], we lift relational composition to our formulas and explore its behaviour.

Chapter |3| analyzes the complexity of entailment checking. We show the problem
to be co-NP-complete, i.e. it is in co-NP and co-NP-hard. For the reduction, we
present a way to transform any 3SAT instance with non-mixed clauses to checking
non-entailment of two positive Boolean formulas. There are some special cases for
formulas in CNF or DNF for which the implication checks are polynomial and hence
we present these algorithms and prove their correctness.

In Chapter [and [5| we introduce two kinds of algorithms to solve the implication
checks of positive Boolean formulas with and without compositions.

Chapter (4] introduces a sequent calculus with some common inference rules handling
conjunctions and disjunctions as well as inference rules for composition which are
used to handle the relational compositions in formulas. We prove the presented
calculus to be sound and complete and show a bound on the number of applications
of inference rules for conjunction and disjunction to prove a sequent to be a tautology.

In Chapter 5 we present an algorithm in which we exploit the monotonicity of
positive Boolean formulas. First, we only consider formulas without compositions.
Afterwards, we propose an extension to handle compositions symbolically and refine
them if necessary.

Chapter [6] discusses possibilities to exploit the process of iterations. At first, we
show that unchanged parts in the left formula can be omitted if both formulas are

disjunctions whereas those in the right formula can be omitted if both formulas are
conjunctions. Then, we show that we cannot easily split compositions and handle
them seperately, even if we exploit the monotonicity of the Kleene iteration.

We have implemented the summary technique for context-free games from [HMMI16]
and explain the structure of our tool in Chapter [7} Moreover, we describe how the
theory about formulas without compositions is realised in practice and point to the
challenges for versions with compositions.

Consequently, Chapter [§| gives insights to our benchmarking results. First, we
explore the benefits of different preprocessing procedures that have been proposed
in previous chapters. Second, we compare the approaches for formulas without

compositions by embedding these techniques in a fixed-point iteration.

Finally, Chapter [9] concludes the thesis and reveals possibilities for future work.

10

2 Preliminaries

2.1 Notation and Definitions

At first, the common concepts like nondeterministic finite automata and context-free
grammars which are used in the summary approach in [HMMI6] are introduced.
Then, we present the domain of positive Boolean formulas and prove some of its
properties. Furthermore, we explain the summary technique with its fixed-point
iteration and extend established definitions according to the given requirements.

Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a tuple A = (T, Q, qo, Qr, —) with a
finite alphabet T, a finite set of states (), an initial state ¢y € () and the transition
relation — C @ x T x @ for which we adopt the notation of ¢ % ¢ for (¢,a,q) € —.
Abbreviating the notation for several state changes induced by a word w € T*
leads to the following extension: ¢ — ¢’. This means that there is a sequence of
states q, ..., q for which transitions labelled by the corresponding terminal between
consecutive states exist so that the sequence of terminals build w. The language
L(A) represented by an NFA is the set of all words w for which ¢ = qr for some
¢r € Qp exists. In general, any language £(A) for some NFA A is regular, i.e. it
is definable by a regular expression as defined in [HU79]. The complement of L£(A)
is the set of all words for which such a transition sequence does not exist, denoted
by L(A) = T*\ L(A). From now on and without further mentioning, A denotes
an NFA and T is a set of terminals. Furthermore, let a,b € T be terminals while
w,v € T denote words over T'.

As seen before, terminals can induce several state changes in an NFA. These
changes for w can be represented by a relation p, = {(¢,¢") | ¢ = ¢'} called box.
The box of a word zy € T* can be constructed by composing the relations for
the two shorter words: p,, = p, © p,. As the relational composition is associative
and p. = {(¢,q) | ¢ € Q} is the neutral element respective to composition, we call
TM(A) = ({pw | we T*},0) the transition monoid of A. To distinguish boxes of
words w € L(A) and w’ € L(A), we call a box p,, rejecting iff there is no path from
the initial state to any final state, i.e. (qo,qr) ¢ puw for any q; € Qp. Considering
this property, the NFA induces a mapping from boxes to { false, true}, i.e. p, — true
iff p,, is rejecting.

Example 1. The automaton in Figure [3]is the first part of our running example and
will be used for explanations consistently. It accepts all words inducing a run ending
in state ¢y, i.e. all words in the regular language L£(a*ab*). Generally speaking, the
boxes are the induced relations. For instance, the neutral element p. is the box
with horizontal arrows only. We can observe that any relation does not change by
concatenating p. and in general, we can find the result by linking up the boxes and
collect all possible ways to get from one state to any other. Consider p,;, for instance.
Initially, we can use the arrow from ¢q to ¢; and proceed with the only one in py.
Following the arrow from ¢y to gg does not lead to an arrow in the result since there

11

are no connections between gy and any other state in p,. Thus, there is only one
arrow in pgp since there is only one possible state change induced by the terminal
word ab.

a b

]

a] L . L
—> d = Pe Pa Pb Pab Pba

Figure 3: NFA A with two states that accepts L£(a*ab*) with its corresponding boxes.

Context-free Grammar

Just like regular languages can be modeled by NFAs, there is a common way
to represent context-free languages. A context-free grammar (CFG) is a tuple
C' = (N,T,P), where N is a finite set of non-terminals and 7" is a finite set of
terminals such that NNT = (). In order to define the production rules P, we call all
combinations of non-terminals and terminals the set of sentential forms 9 = (NUT)*.
P C N x v is a finite set of production rules mapping every non-terminal to at
least one sentential form and we adopt the notation of writing X — 7 instead of
(X,n) € P here as well. In general, grammars can also be used to model languages
different from the context-free ones. To represent regular languages, we restrict the
productions to be P C N x {aM | a € T,M € N} whereas for context-sensitive
languages, we could have terminals on the left side of a production as well.
Considering an ownership partitioning N = No U Ny of the set of non-terminals,
each X € Ny is dedicated to player O and conversely Y € Ny to player L. In the
following example, we demonstrate how words can be produced by a context-free
grammar.

Example 2. Consider the following context-free grammar:
C = (N,T, P) with N ={X0,Yn},T = {a,b}, and
P= {XO — XOYD | g, Yo — Xob | a}.

We show a left-derivation from X where we omit the symbols indicating the
ownership and ¢’s after one step:

X = XY - XYY - YY — XbY — &by — bXb— bXYb— beYb — bab.

Positive Boolean Formulas

One of the crucial points of the summary technique from [HMMI16] is the usage of
Boolean formulas for the sentential forms generated by the CFG with ownership
partitioning. We only explain the intuition behind the construction, but we will
explore it in more detail when we explain the summary technique in the next section.

12

One can construct a (typically infinite) tree where conjunctions in inner nodes are
used to express the options of prover whereas disjunctions represent the options of
refuter. As there often occur multiple right sides for the same non-terminal in a
CFG and the same part can reoccur after a step of the iteration, it is advantageous
to adjust the typical binary representation of operators to a representation with
sets. After the explanation of the summary technique, we will also give some more
reasoning to emphasize the advantages of this representation.

Definition 1. The set PBF, of Positive Boolean Formulas over the transition
monoid of A consists of true, false and all formulas defined by the following EBNF:

Fu=p,| \ I\ FE

1<i<n 1<i<n

where w € T is some word and 1 < n € N in every case so that operations
actually do matter as they could be omitted otherwise. The unsatisfiable formula is
represented by false whereas true represents the formula which is satisfied by any
assignment as there is no way to construct these by the EBNF.

To include false and true in conjunctions and disjunctions, we handle them on a
syntactic level as follows:

/\ F; = false if 30 : F; = false

1<i<n
\/ F, = true if 3¢ : F; = true.
1<i<n
A= A E
1<i<n 1<i<nAF;#true
Vr= '\ &
1<i<n 1<i<nAF;#false

So verbally, if there is false in a conjunction, the whole conjunction is false and
analogously if there is true in a disjunction, the whole disjunction is true. In a
conjunction, true can be ommited whereas false can be omitted in disjunctions.

Evaluation We are able to evaluate formulas F' € PBF4 for the assignment induced
by A, which was defined by the property of rejecting, but we are actually not missing
much to evaluate arbitrary assignments as well. In order to know the variables
of F' which have to be assigned, the set of ground symbols GS(F) is defined as
any p,, occuring in F'. As mentioned only superficially before, an assignment ¢ C
GS(F) for F is the set of ground symbols assigned to true. It is also common
to denote an assignment as a mapping {p, | w € T*} — {true, false}. The former
version simplifies the definition of monotonicity whereas the latter is preferable for
different definitions and lemmata. Hence, we use the two versions interchangeably.
We also use the more convenient notation ¢(p,) for ¢(p,) = true and —¢(p,) for
©(py) = false. Furthermore, the conversion from Boolean values true and false to

13

1 respectively 0 is widely adopted and hence we will use this implicit conversion to
simplify statements.
Given an assignment ¢, the evaluation of F' € PBFy is defined as follows:

d @(Algign Fy) = mini<i<a(p(F5))

i 80<V1§i§n Fy) = mazi<i<n(o(F;))

Considering the time complexity of the evaluation process, one can observe that the
time and space requirements are linear in the size of the formula. For this lemma,
the well-known O—notation for complexity is used as defined in [Sip05].

Lemma 1. Given an assignment ¢ and a formula F' € PBF4 of size n, computing
the evaluation @(F') is in O(n) regarding time and space complexity.

Proof. The formula can be represented by a finitely branching syntax tree labelled by
ground symbols and logical connectives. Such a tree can be traversed by postorder,
i.e. visit all children of a vertex and then itself. During the traversal, there are some
additional steps needed to get the result:

A subtree of the syntax tree is a subformula and we represent its evaluation result
in its root. Therefore, the vertices are additionally labelled by a unique index to
store those intermediate results of any subformula in a Boolean array A. If a vertex
is visited by the traversal, apply the following method. Given a vertex v indexed by
7, there are several cases:

e v is a ground symbol: set A[i] to p(G),

e v is a logical connective, i.e. either A or V. As the tree is traversed in postorder,
all children of v have been visited before and their evaluation results are stored
in A. Let C be the indices of all children of v.

If v is labelled by A, A[i] = min{Al[i] | i € C}.
If v is labelled by Vv, A[i] = maz{A[i] |i e C}.

Returning A[index(F')] gives the desired result.

The space and time complexity of postorder is O(n). The Boolean array A has one
entry for every vertex in the tree so the space complexity remains linear. As we
compute the minimum respectively maximum for every vertex at most once, the
time complexity of the extra steps is also linear. Altogether, this yields linear time
and space complexity. O

Consequences of the Absence of Negation Succeeding the definition of syntax
and semantics of PBF, we explore the effects of the absence of negation. These
observations do not rely on the fact that the ground symbols are boxes of A but
apply to any domain of positive Boolean formulas. Firstly, checking satisfiability
of formula F', i.e. whether there is an assignment for which F' is evaluated to true,
is trivial since it is admissible to check the assignment ¢ = GS(F'). Secondly, if
a formula F' € PBFj is satisfied by an assignment ¢, i.e. it is evaluated to true,
F will be satisfied by any other assignment ¢’ O . Analogously, the inverse also

14

holds. If some formula is not satisfied by an assignment, it will not be satisfied by
any smaller assignment which is a subset of the former one. These observations are
stated formally in the second lemma.

Lemma 2 (Monotonicity of Positive Boolean Formulas).
For any F € PBFy and ¢ C ¢’ CGS(F), p(F) < ¢'(F).

Proof. The proof is by an easy case analysis. Let ¢ C GIS(F') be any assignment.
If =p(F), the property holds for any ¢’ O ¢ trivially.

If p(F), it is straightforward to check by structural induction on the different logical
connectives that ¢(G) < ¢'(G) holds for any subformula of F. O

Implication Since implication checks play a major rule in the overall approach, we
recap the common definition of implication. For F,G € PBF,, F implies GG, denoted
by F' = G, iff Vo C GS(F)UGS(G) : if o(F), then ¢(G). We certainly could in-
clude implication as a syntactic construct, but this secretly introduce negations to
our formulas as they can be transformed in the following way: F = G = —~F v G[]
However, since we only need them when we check entailment, we refrain from doing
this. Hence, these single implications will be displayed explicitly. To clarify this,
the terms implication and entailment are equivalent in this context and therefore
used interchangeably.

2.2 Summary Technique for Context-Free Games

Thinking of the synthesis of recursive programs again, we would like to run the
execution sequentially, i.e. at first the effect of a called method is computed and
afterwards we continue with the remainder of the program. Therefore, we use
left-derivation = (applying a rule for the leftmost non-terminal) to model this
behaviour. It is worth mentioning that the usage of left-deriviation is not restrictive
in any way, i.e. for any derivation, there is a left-derivation leading to the same
terminal word [HU79).

For instance, consider XY, we do not look at Y before any non-terminal on
its left side has disappeared by the application of production rules. Thus, for a
sentential form 1, the ownership depends on the leftmost non-terminal in 9, i.e.
XoYp is owned by O. So the set of all sentential forms can be split into the ones
owned by player O and the ones dedicated to player [: ¥ = o Un.

Definition 2. Let G = (No WU Np, T, P) be a CFG with ownership partitioning.
The arena induced by G is the directed graph (VoW dn, =1).

A play p = pop1 ... is a finite or infinite path in the arena where p; = p;1 for
all positions. If it is finite, the path ends in a vertex denoted pis € 9. A path
corresponds to a sequence of left-derivations, where for each leftmost non-terminal
the owning player selects the rule that should be applied. A play is called maximal

'H is the bidirectional consequence operator, i.e. both sides evaluate to the same value for every
assignment.

15

if its path has infinite length or if the last position is a terminal word, i.e. there are
no derivations to apply anymore. The goal is to decide whether refuter can force a
(maximal) play to end in a terminal word rejected by A. We define this intuition as
follows:

Definition 3. The inclusion game and the non-inclusion game with respect to A on
the arena induced by G are defined by the following winning conditions. A maximal
play p satisfies the inclusion winning condition if it is either infinite or we have
Plast € L(A). A maximal play satisfies the non-inclusion winning condition if it is

finite and pjs; € L(A).

These two games are complementary, i.e. for every maximal play exactly one of
the winning conditions holds. From now on, the symbol O indicates player refuter
trying to produce a terminal word rejected by A, which is a reachability condition. In
contrast, player [tries to prove inclusion and does not have to enforce termination
of the play, which represents a safety condition. Prover only has to remain in his
winning region whereas refuter has to enforce termination and hence his strategy is
harder. We therefore explain the succeeding construction from refuter’s view.

Relational Compositions for Formulas

We would like to represent all plays from a non-terminal by a formula. So far, PBF4
is not powerful enough as we are not able to handle the concatenation of formulas
occuring during the application of production rules of the grammar. We therefore
extend the set of formulas by introducing relational composition for formulas which
we only defined for boxes so far. At first, we define the syntactic set of composed
formulas and then explore the behaviour of the new operator. Similarly to the set
representation of disjunctions and conjunctions, we use lists for the compositions of
formulas.

Definition 4. The set CPBF, of Composed Positive Boolean Formulas over the
transition monoid of A consists of true, false and all formulas defined by the following
EBNEF:
F = py, | /\ F; | \/ F,| Fy;...; F,
1<i<n 1<i<n

where w € T is some word and 1 < n € N in every case so that operations actually
do matter as they could be omitted otherwise. Analogously to the definition of
PBFy, false represents the unsatisfiable formula whereas true the formula which is
satisfied by any assignment. To handle them, the same rules as in PBF4 apply.

Remark 1. We included true in our sets of formulas for the sake of completeness.
Nevertheless, true will not appear in our computation which we explain in the next
section. Though it is possible to adapt this technique in order to use true, this does
not change the result or the method profoundly. However, in this case false never
appears and generally speaking, false and true never occur simultaneously.

16

Therefore, we only show how to handle false on a syntactic level for compositions
and take over the handling we introduced for conjunctions and disjunctions:

Fi;.. . F, = false if 3i : F; = false.

Consequently, we explore how to lift the behaviour of relational compositions to
formulas. Consider a maximal play a8 which can be split into two phases. Because
of the left-derivation the sentential form representing the state of the game is wf
at some point. As there are no more derivations in w, the remaining play wp is
determined by the sentential forms of the second play [prefixed by w.

Initially, let p,, denote the box for w and G some formula representing all plays
starting in 5. As described before, all boxes in GG are prefixed by w to get a formula
for the whole sentential form. Thus for each p, in G, (pw; py) is computed using A
and the results are logically connected by the operator of G again.

Finally, let F' be a formula representing all plays starting in a. All plays in F' are
represented by boxes p,. As any play starting in 3, represented by G, succeeds
any play represented in F', we append the plays from S to any box p, in F: p,;G.
Similarly, these results are connected by the logical operator of F. Then, (p,; G) is
handled as described before.

When we deal with compositions, we combine syntactically different formulas that
only differ the number of compositions that have been removed. As the process
of dealing with compositions combines syntactically different formulas that only
differ in the number of removed compositions, we define a congruence relation = on
CPBF 4. Prior to its definition, we present a short example for the process itself.

Example 3. We show how to remove all compositions in [(pg A pp) V pel; (pa A pb)-

[(0a A o) V pel; (Pa I\ p1)

(split 1st formula)
Il

[(Pa A po); (Pa A o)V [ps; (pa A b))
(split in front term & exploit pe; p = p)

= [(Pas; (Pa A pb)) A (i (Pa A p6))] V [Pa A po]

(split both 2nd formulas in front term)

I

[paa A Pab A Pba A Pbb] \% [pa A Pb]

(Pvb = Pb)

[paa A Pab A Poa A Pb] \ [pa A Pb]

Definition 5. The Relational Composition over CPBF 4 is defined by the congruence
relation = which is the smallest congruence satisfying the following rules.
For n,m € N, v,w € T* and ¢ € {V,A}:

® v Pws F1 oo B = pows P15
® Dy, (<>1§z‘§mGi); Fi.. o F = <>1§i§m<pv; G Fuy .. Fn)
o (Cr<icmGi)i Frs. o By = O1<icm (G Frs .3 F)

For all rules, the remainder Fi, ..., [, is untouched and it is empty for n = 0.

17

With this congruence relation, we can use two congruent formulas G and G’ inter-

changeably. E.g. we can subsitute one by another in a bigger context: For some
formula F, if G =2 G', then FAG =2 F NG

Because of the list representation for compositions, we could actually combine the
second and the third rule, but we refrained from doing this in order to illustrate
the analogy between these rules and the behaviour we explained for plays before.
The first rule states that two boxes can be composed whereas the second shows that
boxes can be shifted into the next formula. This process coincides with the plays
where each play in the second formula is prefixed by the terminal word. In the last
rule, the first formula is split and this coincides with the step where every play of
the first formula is appended by the remainder of the composition.

By those rules, the domain CPBF4 can be split into disjoint congruence classes
which can be represented by a canonical representative. For the sake of uniqueness,
we define this to be the only formula without compositions in this class. It exists
as we can handle any occurrence of compositions by one of the rules above. It is
unique as at most one of the rules can be applied to a formula. Hence, we can find
a congruent formula in PBF for any formula in CPBF,.

Fixed Point Iteration

We are able to represent all plays from a non-terminal with the extended set of
formulas CPBF4 where boxes are propositions. As the game is played from one
player’s perspective, his goal is to have at least one good move, i.e. a rule application
so that he remains in his winning region, for every possible sentential form owned
by him. Those are also built by the opponent’s choices so that the mentioned goal
includes the requirement of having a good answer to any move by the opponent.
So for a procedure summary, one can construct a (typically infinite) tree where
conjunctions in inner nodes are used to express the options of prover whereas
disjunctions represent the options of refuter. The idea is to iterate on those formulas
to explore which player has a winning strategy.

Finiteness To guarantee termination though, finiteness of these trees is crucial.
It is sufficient to have a finite number of propositions since there are only finitely
many logically equivalent positive Boolean formulas over a finite set of propositions.
This is straightforward to see as there are exactly 2" different Boolean functions for
n propositions. In our domain, maximal plays are represented by terminal words.
While the number of the latter is infinite, we can factorize them into their equivalence
classes over A by using the boxes defined before. To be able to refer to those
equivalence classes, we define the language of a box p: L(p) = {w | pu = p}
Obviously, there can be boxes for which this language is empty.

The maximal number of boxes for A with n states corresponds to the maximal
number of binary relations for a set M of size n. Let C' = (M x M) with size n - n.
Each subset of C' corresponds to exactly one relation, so counting them leads to the

18

desired result: 2™" which is finite.
So we can use CPBF 4/ as our finite domain and check equality by checking logical
implication.

Kleene lteration For Kleene iteration, one usually needs a partial order. Intu-
itively, F© < G for two formulas F,G € CPBF,/~ if it is easier for refuter to
win the play represented by G. Logically, this means FF < G iff F' = G. So
we should check whether = is a partial order, i.e. if it is reflexive, transitive and
antisymmetric. Reflexivity and transitivity are trivial. In contrast, the implication
is not antisymmetric for the general domain PBF4. Consider two logically equivalent
formulas K,L € PBF,, K = L and L = K hold but they are not the same. This
is another reason why we use CPBF, /. There, K € [L] and thus antisymmetry
holds. So = yields a partial order on CPBF4/.. Furthermore, the function
to compute the fixed-point has to be monotone. We therefore investigate our
three different operators. Monotonicity was proven for composition-free formulas
in Lemmal2] so it is sufficient to recall a lemma from [HMMI6] without proof where
monotonicity is proven for the relational composition.

Lemma 3. If F = F' and G = G’ , then F';G = F';G'.

We compute a fixed point over a number of formulas, i.e. for every non-terminal
in the CFG. So for each non-terminal X, one step should compute a new formula
by using its right-hand side in the grammar. The outermost logical connective of
the formula for a non-terminal X depends on its owner, i.e. A for prover and V for
refuter. Technically, it is a monotonic function fx : (CPBF4/5)Y — CPBF4/s
which takes a vector of formulas (one for each non-terminal) and computes a new
formula for X. Lifting this to all non-terminals yields a single function:

f: ((CPBFs/)N — (CPBF4/)™).
We explain the construction with an example.

Example 4.
We show the iteration process for the automaton and the grammar introduced in
Example [1] and [2}

Nr. | X Yo

0 false false

1 D= false

2 | pe Pa \ Po

3 | (PaApp)Vpe | pal\py

4 (Pa N o) V pe | pa N ([(Pa A po) V pel; po)
= pa A ps (by Ex[6)

Implication Checks As explained before, termination is only enforced by using
CPBF 4/ instead of CPBF,. Thus checking syntactic equivalence is not sufficient
to find a fixed-point but we need to check whether two formulas are semantically

19

equivalent. As we use Kleene iteration, we know that F' = f(F') so we only need
to check whether f(F) = F to show F & f(F). Computing new formulas with
logical operators and the relational composition is not very costly but checking
implication can be. As this operation is used very frequently and is central to the
presented approach, we investigate the complexity of entailment checking and dif-
ferent approaches to check implication for composition-free and symbolic formulas,
i.e. formulas containing compositions, in the remainder of this thesis.

Remark 2. After we explained the technical part in more detail, we come back to
the reasoning why we use set representation for conjunctions and disjunctions and
lists for compositions.

To explain advantages of the set representation, consider the context-free gram-
mar again. Consider a non-terminal N which occurs on the right side of its own
production rule. We need to recompute the formula if at least one part of its
right side changed. Assume that the formula for N did not change. If we used a
binary representation, the formula would reoccur on some deeper level of the syntax
tree, connected by the same logical operator, and thus unnecessary for the semantic
meaning of the formula. Furthermore, two parts on the right side of a production
can result in the same formula. It might seem we could neglect these overheads but
these can increase enormously as we are dealing with a fixed-point iteration.

For the use of lists for compositions there are more practical reasons. For the
application of the rules for relational composition, one of several conditions has to
hold: First, the first two components are two boxes which can simply be composed.
Second, the first component is a box and the second one is a formula with a logical
operator. Third, we are able split the first component of a composition if it is a
formula with a logical operator.

So we have to ensure that the operator in the next level is not a compositional
relation. Therefore, we decided to use this list representation. We are aware
of the fact that we could look for the actual first and second component of the
composition every time but for the sake of simplicity we take it for granted that
the outermost operator of any component of a composition is different from the
relational composition.

We could also assume that all formulas have alternating operators, i.e. that every
component of a conjunction, disjunction or composition is not of the same kind
as those could have been lifted otherwise. In contrast to the assumption about
composition, we do not assume alternating operators. In practice, this can be
advantageous but it is not significant for the succeeding theory.

20

3 Co-NP-Completeness

After underlining the importance of implication checks for the overall approach, we
analyze the complexity of entailment checking for two formulas F,G € PBF,. The
main result of this chapter is the co-NP-completeness of this problem which shows
its hardness, unless P = NP. This has already been proven in [DG93] in which the
authors introduce new variables for negated variables in order to reduce entailment
checking of Boolean formulas to entailment checking of positive Boolean formulas.
We take a different approach. First, we show membership in co-NP. Second, a
reduction from 3SAT for non-mixed clauses to checking implication is constructed.
The question might rise why the monotonicity shown before does not simplify the
problem. As alluded to before, the implication secretly introduces negations on the
left side and this impairs the monotonicity applying to positive Boolean formulas.
In contrast, the monotonicity can be exploited for some combinations of formulas in
CNF and DNF, so we present polynomial time algorithms for them and prove their
correctness.

3.1 Complexity and Reductions

Considering time and space requirements, there are several classes of decidable
problems. For this section, we use the well-known definition of NP, the class of
problems decidable by non-deterministic Turing-machines in polynomial time, and
its complement co-NP as well as the definition of polynomial reductions from [Sip05].
Let us shortly recap that a problem A C ¥* is polynomial reducible to B C I'* if
there is a total function, computable in polynomial time, with which instances of
¥* can be transformed into instances of I'* so that x € A < f(x) € B.

3.2 Membership in co-NP

A problem is in co-NP if there is a non-deterministic algorithm of the following
shape: One can guess a candidate for a counterexample, verify it in polynomial
time and return false if it actually was a counterexample. An input is accepted if all
branches, i.e. all guesses, return true and it is rejected if there is at least one branch
yielding false.

Lemma 4 (Membership in co-NP).
Checking Entailment for F,G € PBF 4, i.e. whether F' = G holds, is in co-NP.

Proof. The result is proven by presenting a nondeterministic algorithm with time
complexity O(n).

e First, guess a candidate for a counterexample,
i.e. an assignment ¢ C (GS(F)UGS(Q)).

e Second, evaluate p(F') and ¢(G) in O(n) by Lemma [1] and check whether F’
is satisfied and G is not satisfied by . If this is the case, we return false and
if not, we return true.

21

If the implication does not hold, there is at least one counterexample. If we guess
it, the algorithm returns false so the input is not accepted. In case the implication
holds, there is no counterexample and therefore the algorithm returns true for all
guesses. O

3.3 Co-NP-Hardness

Complement However, in our use case the technique of reduction is not used
directly. We consider the complement of the problem instead, i.e. checking whether
the implication F' = G does not hold, and denote it by its negation since we know
that H is a tautology iff its negation —H is unsatisfiable from the logic’s point of
view. We show co-NP-hardness by proving the complement to be NP-hard.

3SAT We consider an NP-hard problem and present a polynomial reduction which
transforms one arbitrary instance into an instance of non-entailment checking. We
use the NP-hard problem 3SAT with non-mixed clauses, i.e. in any clause all literals
can either occur positively or negatively, which was shown to be NP-hard in [Sch78§].
To be precise, they presented a list of properties so that an instance of 3SAT is in P
iff it satisfies at least one of these properties and is NP-complete otherwise.

More General As the reduction works for any domain of positive Boolean formulas
PBF, we use letters instead of boxes as variables to improve readability. We can
substitute each letter by a box of A in order to transfer this kind of instances to our
domain. Prior to going into details of the technical construction, we illustrate the
idea with an example.

Example 5. Let a,...,e be any variables.

(aVbVe)A(avVdVe)A(—aV -cVad)A(=bV -V —e)

(De Morgan)

= (avbVe)AN(avdVve)N=(aNcANd)N=(bAcAe)
(De Morgan)

= (avVbVe)AN(avdVe)AN=((aNcANd)V (DAcAe))
(-mF=F)

H —=l(avVbVe)A(avdVe)AN=((aNcANd)V (DAcAe))
(De Morgan)

= S[=((avbVe)A(avdVe))V(aneNd)V (bAcAe))

(F=GH-FVG)
H S[((avbVve)A(avdVe))= ((aNeANd)V (bAcAe))

Lemma 5 (co-NP-hardness). Checking Entailment for F,G € PBF, i.e. whether
F = G holds, is co-NP-hard.

Proof. Guided by the construction illustrated in Example |5 the reduction will be
stated formally.

22

Let A = (Ajcicn Vicjes @ij) N (Ai<icn Vicjcs 7bij). Hence, the same transforma-
tions are executed.

(A V adr(N\ by

1<i<n 1<j<3 1<i<n 1<j<3
(De Morgan)

= (A V oadrC A\ = A by

1<i<n 1<;<3 1<i<n 1<j<3
(De Morgan)
(A Va)rn=\V A by
1<i<n 1<;j<3 1<i<n 1<j<3
(F = ~-F)
= (A V a)n=\ N b)
1<i<n 1<;<3 1<i<n 1</<3

(De Morgan)
= =[=(/\ \/ aij) V (\/ /\ bi)]
(F=GH-FVGQG) T R
H SNV a)=C\ N byl

1<i<n 1<5<3 1<i<n 1<5<3

So for F' = (Ai<jcp Vicjes @ij), G = (Vicicn Ni<jes bij) € PBF, A can be reduced
to =(F = () so that its complement is shown to be co-NP-hard. O

Altogether, this yields our first theorem.

Theorem 1.
Checking Entailment for F,G € PBF, i.e. whether F' = G holds, s co-NP-complete.

CNF and DNF There is some regularity in the final formulas of our construction
and therefore we shortly recap the frequently used conjunctive and disjunctive
normal form. Even if we have omitted negations in our domain, we can observe
that implications introduce them. Just like the implication itself, we will always
state them explicitly, but we permit negations for the following definitions because
we only use them for the remainder of this section. A literal is either p,, or —p,, for
some w € T*. A clause is a disjunction of literals whereas a co-clause is a conjunction
of literals. A formula in conjunctive normal form (CNF') is a conjunction of clauses,
frequently represented by a set of clauses. Analogously, a formula in disjunctive
normal form (DNF) is a disjunction of co-clauses.

23

3.4 Special Cases

We have shown that checking F' = G for F' in CNF and G in DNF is hard, unless
NP = P. Conversely, polynomial algorithms exist for all remaining combinations of
CNF and DNF. For the remainder of this section, let F,G € PBF. An algorithm
for F' and G in CNF has already been presented in [HMMI16] and [DG96]. The
following lemma simply restates this result without proof.

Lemma 6. For F in DNF and G in CNF, F = G if and only if for every clause
L of G there is a clause K of F such that the variables of K are a subset of the
variables of L.

Algorithms for the remaining two combinations have been stated in [DG96] without
proofs, so they are restated and proven.

Lemma 7. For F' in DNF and G in CNF, F = G if and only if every co-clause in
F and every clause in G have at least one variable in common.

Proof.

(<) Consider an assignment ¢ for which F' is evaluated to true. Then, there is
at least one co-clause D in F' which evaluates to true: ¢(D) = 1. Therefore,
all variables in D have to be assigned to true: Vd € D : p(d) = 1. As each
clause of GG contains at least one of those d, all clauses evaluate to true. Thus,

o(G) = 1.

(=) By contraposition, assume that there is a co-clause D in F' and a clause C'
in G that do not have any variable in common. Consider the assignment
p:={d|de D}. As F is a disjunction of co-clauses and ¢ satisfies D,
©(F)=1. As D and C do not share any variable, C' is not satisfied by ¢.
Since G is a conjunction of clauses, p(G) = 0. So altogether, the implication
does not hold.

]

Lemma 8. For F' in DNF and G in DNF, F = G if and only if for every co-clause
Dpr in F there is a co-clause Dg in G such that the variables of Dp are a superset
of the variables of Dg.

Proof.

(<) Consider an assignment ¢ for which F' is evaluated to true. Then, there is
at least one co-clause Dp in F' which evaluates to true: ¢(Dp) = 1. There
is a co-clause Dg in G whose variables are a subset of the variables of Dp.
Therefore, ¢(Dg) =1 and ¢(G) = 1.

(=) By contraposition, assume there is a Dp in F and there is no D¢ in G such
that the variables of D are a superset of those in Dg. Let F’ be the formula
F without the co-clause Dp. Wlog, consider an assignment ¢ with ¢(F') = 1
such that ¢(Dp) = 1 and for ¢(F’) = 0. As there is no suitable subset for

Dp, there is no co-clause in G' which satisfies so that ¢(G) = 0.
O

24

These results give rise to the question whether it is useful to handle compositions
in implication checks or consider non-normalized formulas at all. As illustrated in
Figure] removing compositions can increase the size of the instance multiplicatively
while normalizing formulas can even be exponential [MRWO05]. Thus, approaches for
composed and non-normalized formulas are needed and therefore the main concern
of the following chapters.

Symbolic

< multiplicatively

Non-normalized

< exponentially

Normalized

Figure 4: Increase in size: From symbolic formulas to non-normalized, the size can
increase multiplicatively. Normalizing these formulas can even inflate the
size exponentially.

25

4 Sequent Calculus

We propose an adapted version of the sequent calculus presented in [Bus98] for
PBF, which is able to handle compositions and prove it to be sound and complete.
The sequent calculus was firstly introduced by Gentzen [1935] and is a flexible and
elegant way for writing proofs.

4.1 Notation and Semantics

As indicated by the name, sequents are crucial for proofs in the sequent calculus.
In detail, every line in a proof is called a sequent and has the following shape

Al,...,Ak%Bl,...,Bl

where [,k € N, Ay,..., Ay, By,...,B, € CPBF, and — is a special symbol, called
the sequent arrow. The similarity between the sequent arrow and the symbol for
implication is volitional as the sequent is supposed to mean

N A=\ B

1<i<k 1<j<l

Consequently, we define a sequent Ay,..., Ay — By, ..., B; to be valid iff its corre-
sponding formula A,_,., Ai = V,.;., B is a tautology. As widely adopted, empty
conjunctions respectively disjunctions are considered to be true respectively false.
The sequence Aq,..., A is often called antecedent while the sequence By, ..., B
will be named succedent. For both, the general term is cedent.

4.2 Inference Rules

A proof system allows us to prove that a sequent is a tautology by manipulating
its syntax. For this purpose, such a system usually consists of axioms and inference
rules. The proof starts at the bottom and new sequents are written on top of the
old one. To finish a branch, the axioms are needed to check whether this sequent is
an initial sequent.

Definition 6. For a formula A € PBF, and arbitrary cedents I',TV, A and A’,
ATV — A, A, A’ is an axiom, also referred to as initial sequent.

Lemma 9 (Correctness of Axioms). All initial sequents are valid.

Proof. Consider any assignment ¢ for which the formula F' corresponding to the
antecedent evaluates to true. As F' is a conjunction of its parts, ¢(A) = 1 has to
hold. Since the formula G associated with the succedent is a disjunction of its parts,
©(G) = 1 holds and verifies the correctness of all axioms. O

The inference rules of a sequent calculus explain how sequents can be rewritten or
modified. We adapt some of the inference rules from [Bus98] to handle conjunctions
and disjunctions. In order to handle compositions, we propose rules to modify

26

them. To start with, we present the inference rules for conjunction and disjunction.
In every rule, the first component in the cedent will be modified or considered but
all of them can be used up to commutativity.

Definition 7 (Inference Rules for Conjunction and Disjunction).
Let I', A be arbitrary cedents and Fy, ... F, € PBF, some formulas.

Fo,...,Fp,T = A

A left
/ Ni<icn Fi, T = A
V: left T — A F,,T'—= A
Vicien Fis T = A
A: right I' —» Fy, A I - F, A
F_>/\1§i§n17i7A
v vight L2 Fooee P A

['— Vlgz’gn A

So far, this is not new to readers familiar with sequent calculi. Prior to introducing
the inference rules for composition, we explain their behaviour with a short example.

Example 6. The goal is to prove p, A ([(paAps) V pel; o) = pa/Aps to be a tautology.
Initially, some known rules are applied and all different kinds of steps are explained
below.

(Aziom)
(N: left)

Pas Pabs Po —7 Pb
Pas [Pab N Pb] = Pb Par Po — Pb
Pas ([Pab N po] V pp) = pa Pas ([Pab N pu] V py) = py
Pa; ([Pab N po] V py) = pa A py
Pas ([Pas P N po; o] V po) = pa N po
Pas ([(Pa N po); 0] V b)) = pa I\ o

(Aziom)
(V: right)

(Aziom)

(A: Tight)

(2% p; p: left)

(A;*: left)

(p; p: left)
Pas ([(pa A po); po] V [pe; pol) = pa A po (i let)
P ((Pa NP0V pelipy) > pa Ny s

Pa N ([(Pa N pu) V pels po) = pa N\ po

We do not explain every single step but the different kinds of applied rules. We
always read such proof from bottom to top and we explain the rules according to
the order of their application.

We first split one formula on the left side into two separate ones due to the inference
rule for conjunction A:left. Second, we use the inference rule for composition
V;x: left in order to split the first formula of a composition by appending the suffix
pp to both paths and connect them with V again. Third, we compose two boxes to
a new one by the NFA A. Next, we split the sequent into two sequents due to the
inference rule for conjunction A: right and have to prove both of them to be valid.
Except for the axioms which are marked by the empty bar above, the remaining
rules are similar to the former ones.

27

Definition 8 (Inference Rules for Composition).
Let I', A be arbitrary cedents, a,b € T any terminals, Fy, ... F,,Gy,...,G; € CPBF,
some formulas and ¢ € {V,A}.
[pab; Fri .. BT — A
[a; pv; F1; -5 F], T = A
Or<i<ilpa; Gy Fry .. s Fol, T — A
[pa; (Or1<i<uGi); Frs .. B, T — A

Or<i<t|Gis Fr; .. F), T = A

p; p: left

p; O left

Qs left
[(OlgiglGi);Fl;---§Fn],F - A
0 p: right L' = [pap; P15 Ful, A
L — [pa; po; Fry .5 Bl A
020 right I' = Or<i<ilpa; Gy Frs .. s FL], A
[= [pa; (Or<iciGi); Frs oo Ll A
O %: right I' = O1<i<i|Gi; Fu; .. 5 FL) A

F — [(OlgiglGi); F17 ceey Fn]7 A

There are three different kinds of rules as it actually does not matter on which side
we apply an inference rule for composition. All of them simulate the characteristics
of handling compositions in formulas and therefore these rules are sound. The first
rule replicates the behaviour of composing two boxes according to the NFA whereas
the second one imitates the process of splitting the second formula and prefix these
by the box before. The third rule is to split logical operators in the first formula,
append the remainder of the composition to every subformula and recombine them
again.

As alluded to before, we could combine the second and the third rule due to the
list representation for compositions. We refrained from doing this for the sake
of readability and in order to maintain the analogy between these rules and the
behaviour of relational compositions for formulas.

In [Bus9§|, the inference rules for conjunction and disjunction are called strong
inference rules in contrast to weak structural rules and the cut rule. Weak structural
rules can be used to exchange the order of formulas as well as to duplicate or omit
formulas in the cedents. The cut rule is a way to shorten proofs by guessing some
additional formula A:

I —-AA AT — A
- A

For now, the cut rule is omitted but can be introduced easily to shorten proofs
without compromising the correctness of the calculus. Because of the definition
of axioms as nonempty intersection of antecedent and succedent, there is no point
in having weak structural rules. Furthermore, rules to exchange the formulas are
pointless as all of the rules can be used up to commutativity.

28

Remark 3. Prior to showing that the presented calculus is sound and complete, we
explore in which way the calculus exploits the absence of negations and implications
in our domain. Of course, we did not present any rules to handle these operators,
so the calculus is not applicable directly but we could extend the existing rules
for this expanded domain. If we consider implications and their associativity, we
actually could use every implication to separate the formula into antecedent and
succedent and the remaining implications can be handled: F = G H -F V G. So it
is sufficient to handle negations. If the outermost operator of a formula is a negation,
we remove the negation by switching the formula to the other side and omitting the

negation: I A A and AT = A

AT = A L A -A
The correctness of this approach follows directly from the semantic meaning of a
sequent and the equality for implications above. In this way, any negation can
be handled and the calculus could handle a domain containing implications and
negations.

4.3 Soundness and Completeness

Calculi are always the syntactic counterpart to some semantic behaviour one wants
to check. The goal is to hand over the process of reasoning to a machine. On the one
hand, it remains to show that any sequent which can be proven in the proof system
is a tautology, i.e. the proof system is sound. On the other hand, it is preferable
that any tautology respectively its corresponding sequent has a valid proof in the
proof system, i.e. the proof system is complete. The proofs for these two properties
are counterparts in some way. For completeness, the proof is started at the bottom
and it is proven by induction on the number of connectives that there is a proof
for the remaining sequents, so it is considered from bottom to top. For soundness,
the initial sequents at the top are shown to be tautologies and it is observed that
applying any rule preserves their property of being tautologies, so the proof tree is
considered from top to bottom.

Proposition 1 (Soundness). The presented proof system is sound, i.e. any formula
for which a proof exists is a tautology.

Proof. As argued before, it suffices to show that (i) any initial sequent is a tautology
and (ii) the property of being tautology is maintained by any rule application.

to (i) This was proven in Lemma [0}

to (ii) Firstly, consider the inference rules for conjunction and disjunction. It is
straightforward to see that A : left and V : right do not change the formula
associated with the sequents so the property is maintained. Considering
V : left, there are n sequents of the form F;,I' — A where 1 < i < n for
which the corresponding formulas are tautologies. Applying the inference
rule yields \/, .., Fi,I' = A and thus for any assignment satisfying one of
the original formulas, the formula H corresponding to the fresh antecedent

29

is satisfied as well. Likewise, the unique formula corresponding to all
succedents is satisfied by (at least) any assignment satisfying H. The proof
for A : right is analogous und hence both rules perpetuate the property of
being tautologies.

Secondly, consider the inference rules for composition which are specific
to the relational composition. It is straightforward that all of these rules
represent one step backwards in the process of removing compositions.
Thus, the property is preserved as well.

]

Similarly to [Bus98|, we prove a stronger lemma instead of proving completeness
directly.

Lemma 10. Let I' — A be a valid sequent with m logical connectives, e.g. A and
V. Furthermore let b; be the mazximal number of terms in a disjunction in I, b, the
mazximal number of terms in a conjunction in A and b = max (b, b,). Then, there is
a tree-like proof for I' — A containing fewer than 0™ applications of inference rules
for conjunction and disjunction.

Proof. At first, there will be a case distinction for b. Because of the definition of
CPBF4, b > 1 if there is a disjunction in the antecedent or a conjunction in the
succedent. So for b = 0, there are no logical connectives and the sequent is an axiom.
Therefore, the proof consists of 0 < 1 = 0° inferences E] . For b > 1, the proof is by
structural induction on the number of logical connectives, i.e. m.

In the base case, m = 0, the sequent does not contain any logical connectives so
that b = 0. Since I' — A is a valid sequence, there is at least one atomic symbol
occurring in the antecedent and the succedent so that I' — A is an initial sequent
and 0 < 1 = 0° = b° applications of inference rules for conjunction and disjunction
are needed.

For the induction step, we only consider the different outermost logical connectives
of the formulas in the cedents and disregard compositions as these can be removed
by inference rules for composition.

e A in the antecedent or V in the succedent:
We only investigate the first case since the second is handled analogously. Let
IV be the cedent obtained from I' by removing A, ..., F;, then we can infer
I' - A as follows: o

Fo,... F, T = A
/\lgign FZ’,F, — A

By the induction hypothesis Fy, ..., F,,I" — A is a valid sequent with a proof
containing b™~! applications of inference rules for conjunction and disjunction.
Since ™! + 1 < b™, the proof consists of fewer than b™ applications of these
inference rules.

2To clarify this, we use the appropriate definition: 0° = 1.

30

e A in the succedent or V in the antecedent:
Like before, we only consider the first case since the second can be handled
analogously. Let A’ be the cedent obtained from A by removing A,..., F,
then we can infer I' = A as follows: o

I' - [y, A'... T — F,, A
I — AlgignE7A/

By the induction hypothesis Vi with 1 < i < n there is proof with b1

applications of inference rules for conjunction and disjunction. I' — F;, A’.
So these proofs have fewer than n - b~ applications of these inference rules
altogether. Since n < b; and b; < b, n < b holds and n- b™~ ! < b- b1 = ™.
Thus, fewer than b™ applications of these rules are needed to prove I' — A.

O
Proposition 2 (Completeness).
The presented proof system is complete, i.e. there is a proof for any tautology.
Proof. The result follows from Lemma [10} O

In fact, a proof for any tautology does not only ezist, but we are able to construct
it with the following iterative procedure. For every branch in the proof tree which
is no axiom, we apply one of all applicable rules either until it is an axiom or no
rule is applicable any more. If the sequent is a tautology, this leads to a proof. If
not, we reach a dead end, i.e. a sequent which is no axiom and for which no rule is
applicable any more, at some point.

Because of the weakening rule, a weak structural rule, and the cut rule in different
calculi, there can be sequences of rule applications which do not lead to any result
since a dead end might have been caused by the application of such a rule. Then, one
has to backtrack and try to use different rules. Therefore, these rules are omitted in
the presented calculus. The significant property of strong inference rules in [Bus9§]
is the fact that one never has to backtrack due to their application. This is also the
case for the inference rules for composition and we therefore do distinguish between
inference rules for conjunction and disjunction and such rules for composition.

It might seem that our calculus is determistic, but there is some non-determinism
in the order of rule applications as multiple rules might be applicable at once. This
does not prevent us from finding a proof but the order affects the performance.
Distinguishing different precedences of rule applications, we explain two different
approaches. The first one can be called split-last where every non-splitting inference
rule is applied exhaustively on both sides prior to applying any splitting rule.
The second approach is called split-variable and can be separated into different
gradings. In general, splitting before applying non-splitting rules exhaustively can
lead to multiple same inferences. If the implication does not hold, there is at least
one counterexample witnessing this. We might speed up the process of finding
a counterexample with the split-variable approach since some non-splitting rules
might not have been applied. If the implication holds, the split-last approach is
most efficient since a proof that is constructed that way has the least number of
inferences.

31

5 Lattice of Assignment

In this section, we present a second approach to handle entailment checking. To
start with, we assume the instance to be composition-free. We present an algorithm
to find candidates for counterexamples which disprove the implication and show
some of its properties. Afterwards, we weaken this assumption in order to handle
instances with compositions symbolically. For the first part, let F,G € PBF4 some
formulas for which F' = G is checked.

Idea Exploiting the monotonicity of positive Boolean formulas PBF, is the key
idea of this approach. The goal is to find all minimal satisfying assignments for F'
and then check for all of them whether G is satisfied by this assignment. If not,
a counterexample is found and therefore the implication does not hold. If G is
satisfied by any minimal satisfying assignment, there exists no counterexample and
thus the implication holds. Analogously, one can look for all maximal unsatisfying
assignments for G and check whether F' is not satisfied by those assignments. The
main challenge is a clever probing of assignments to find all minimal satisfying
assignments for F' respectively all maximal unsatisfying assignments for G. To
achieve this, the structure of the domain of assignments is important.

Lattice of Assignment We shortly recall the key concept of lattices from |[Grad8].
A lattice is a tuple (D, <) with a domain D and a partial order < where any two
elements have a supremum, also called join, and an infimum, also called meet. As
seen before, assignments for F' can be seen as subsets of all boxes occurring in F'.
Given the subset relation, it is straightforward to see that the join is the union of
two assignments while the meet is the intersection. Altogether, this yields to the
lattice of assignments (GS(F), C) which is shown for a formula with three boxes in

Fig. b

NS

Figure 5: Hasse diagram of a lattice (GS(F), C) with |GS(F)| = 3.

32

Our algorithm comprises one important optimization which reduces the size of the
search space. Therefore, we explain this prior to presenting the algorithm.

Fixing Assignments We identify parts of an assignment that can be fixed without
compromising the possibility of finding a counterexample. This is advantageous
since any fixed element cuts the size of the lattice of assignments by half. Thus,
fixing [components decreases the search space to %

If FF = G holds, every assignment ¢ C GS(F) U GS(G) satisfies (F) < ¢(G).
Consider a ground symbol f which only occurs in F' and two assignments ¢ and ¢’
that only differ in this ground symbol: ¢’ := pU{f} D ¢. We can observe that
©(G) = ¢'(Q) as the difference between ¢ and ¢’ is invisible for G. Therefore, if ¢
is a witness for a counterexample, i.e. p(F) A =p(G), then ¢ is a witness as well
because of the monotonicity of F' and the fact that ¢(G) = ¢/(G). Thus, F' can
be strengthened by fixing ¢(f) to true for each ground symbol only occurring in F'.
In a similar way, G' can be weakened. Consider a counterexample for which a box
only occuring in G exists. F' cannot tell the difference between this counterexample
and an assignment not containing this box. G is not satisfied by both, so both
assignments are counterexamples. Therefore, we assign every box solely occuring in

G to false.

5.1 Basic Algorithm

Preconditions Even if the goal is to handle compositions, the following example
shows why it is reasonable for the formulas to be composition-free for now. In Section
[b.2] we will present an algorithm for which this assumption can be weakened.

Example 7. Consider the following instance for which we check entailment:

Pab = Pa; (b V Pab)

The implication does hold since the formula on the right is congruent to pu V pap
which is logically equivalent to p,, so both sides are actually the same. However, this
cannot be handled correctly in terms of assignments. Checking entailment means
checking every assignment. The size of an assignment for this instance is intuitively
four as there are four different boxes, but actually there is only one single box. On
the one hand, it is unclear how to handle compositions of truth values. Composing
two truth values instead of the corresponding boxes is impossible since there is not
enough information to imitate the behaviour of composing boxes properly, i.e. there
is no means of connecting the paths through boxes. On the other hand, one can
never be sure that every assignment has been checked since there might be some
boxes hidden by a composition.

From now on, we explain the construction and ideas to find minimal satisfying
assignments for F'. The algorithm to find maximal unsatisfying assignments for G
is similar.

33

Number of Minimal Satisfying Assignments Finding the minimum satisfying
assignment ¢ for F, i.e. ¢, |¢'| < || : ¢ (F), is NP-complete [DG96]. In this use
case, one does not want to find a minimum satisfying assignment but all minimal
satisfying assignments o for F, i.e. fliy’ C ¢ : ¢/(F). It is easy to find one such
minimal assignment by reducing a given assignment but the maximal number of
such assignments is given by the breadth of the lattice, i.e. the size of the largest
antichain. It is straightforward that all vectors of dimension k, where the number

of 1's is ng, are incomparable. Therefore, we count the number of these vectors

combinatorially [AZ98]:
1)
51/ =

Thus this is a lower bound on the size of the largest antichain. For an upper bound,
the size of the lattice can be considered. Since this is 2¥ and thus exponential,
the largest antichain has exponential size. So we know that finding all maximal
unsatisfying or all minimal satisfying assignments can be costly in the worst case.

Longest Unmarked Path Thinking of the structure of the lattice again and ex-
ploiting the monotonicity, the following approach seems to be quite powerful. At
the first step, guess an assignment ¢ in the middle of the lattice, i.e. a subset of
size ng and check whether F' is satisfied. If so, we mark every superset of ¢ with
a label (s) as they are larger than ¢ and F' will be satisfied by them as well. If not,
we mark every assignment which is a subset of ¢ with a label (U) since ¢ is larger
and smaller assignments cannot satisfy F'.

Intuitively, we would like to mark as many assignments as possible in one step.
Therefore, choose the longest unmarked path in the lattice and jump into one of
the assignments bisecting this path. Then, check F' and mark accordingly like
before. Finding the longest unmarked path is central to this idea. In [BBCBI6], a
solution to a similar problem is presented. There, a SAT-instance is created that
describes the marked vertices. With a request of finding a minimal solution, the
lower vertex is found. Then, the SAT-Solver is asked to find a comparable vertex
which is maximal. Obviously, this approach does not guarantee to find the longest
path but its performance seems to be fine overall. Intuitively, including a SAT-
Solver which is requested several times per instance produces an immense overhead
in our use case. For their problem, this is adequate since the corresponding checking
process involves tasks from complexity classes above NP. However, this approach
causes too much overhead for our needs.

It could be appropriate to check more assignments to find the minimal satisfying
ones as this evaluation is linear. So checking more candidates could improve the

overall performance.

Checking Too Much At the beginning, we said that all minimal satisfying as-
signments have to be checked but we are not restricted to only checking these. So
this observation gives rise to the question whether we can exploit that our checking
process, i.e. the evaluation of two formulas, has linear complexity. To simplify

34

the following explanations, we use a notation of vectors for assignments. For this
purpose, enumerate all occurring boxes. E.g.

© = A{pa, P} T {pe, Pa, Pos Pav} 1 represented by (0101)
Prior to presenting the basic algorithm, we show the different steps with an example.

Example 8. Consider F' = p, V (ppa A (PbV pab))s G = paV poa V pe and the instance
F = G. Both formulas have four boxes in common. As argued above, p. can be set
to false in any assignment which we should check. So the assignments are vectors

of size four: (pa, Po, Pabs Poa)-
We go through the traversal step by step and explain the different decisions with

0000

Figure 6: The lower part of the nodes show the considered assignment whereas the
upper part gives the order of traversal. Green nodes contain satisfying
assignments and red nodes contain unsatisfying ones.

Figure [6] The empty assignment is also checked as F' might be satisfied by the
fixed assignment for the boxes which only occur in F'. Here, this is not the case
and hence the node is red. So we proceed with ¢; = (1000) and evaluate F'. Since
©1(F) = true, we found a possible candidate for a counterexample and evaluate
G. ¢1(G) = false and thus ; is no witness of a counterexample and in general
there are no counterexamples since the implication does hold. So from now on, we
only point to the assignments we would check G for. Since we backtrack once, we
never assign p, to true again and continue with the assignments ps = (0100) and
w3 = (0110). As @o(F) = false and @3(F') = false, we continue with ¢, = (0111)
and check G as @4(F') = true. Even if we had not found a satisfying assignment, we
would have proceeded by backtracking as there are no more options in this branch.

35

The backtracking leads to node (2) with its remaining child ¢5 = (0101). Like before,
we check G since p5(F') = true. Backtracking leads back to the root (0) this time
and we go on with ¢ = (0010) and ¢7 = (0011) similarly. Here, we see the scenario
described above: Even if o7 C ¢4, we checked both assignments. Finally, assignment
s = (0001) is considered in the same manner and we complete our example.

After the explanation of the algorithm on the basis of the example above, we provide
some sample code for the required methods and give some more insights afterwards.

bool checkWithMinSatAssignments (Formula F, Formula G) {

// the assignment for common boxes
vector<int, bool> a = {false, ..., false};
for (int r = 0; r < a.size(); r++) {

//try to find a counterexample at this level

if (!checkPerLevel(F, G, a, r)) {

return false;
}

}

return true;
}
bool checkPerLevel (Formula F, Formula G, vector a, int i) {
al[i] = true;
// check current assignment
if (evaluate(F, a)) {
if (levaluate(G, a)) {

return false; // countererample
}
else{
return true; // reset (MSA was found) and go on

}

else { //keep looking for MSA
1++;
for (int r = i; r < a.size(); r++) {
if (!checkPerLevel(F, G, a, 1r)){
return false; // countererample
}
}

return true; // reset and go on

To start with, we should mention that the formulas F' and G are simplified due to the
fixed assignment for boxes occuring in exactly one formula. After this simplification,
we catch the trivial case in which F' is already satisfied by the fixed part as the
implication does not hold in this case.

Then, the first method only initializes the process in line 3 and calls the second one

36

for any index from which the traversal should be started with the for-loop in line
4, e.g. it spawns the branches starting in the root. At first, the second method sets
the current index to true in line 13 and checks whether formula F' is satisfied. If so,
G is checked and depending on the result the algorithm returns false (line 17) if a
counterexample is found, i.e. G is not satisfied, and true (line 20) if G is satisfied,
as a minimal satisfying assignment for F' is found. If F' is not satisfied, we keep
looking for a minimal satisfying assignment and thus iterate from this index with
the for-loop in line 25. There, the method is called recursively with a larger index.

The Other Way Around As alluded to before, we might not only check the
minimal satisfying assignments because of the traversal. Considering Example [§]
and the nodes (4) and (7) with their assignments 0111 and 0011 again, such scenarios
arise if a variable on the left of an assignment could be set to false without altering
the overall evaluation. If we traverse the lattice the other way around after the
initial check, i.e. we start iterating with the last box and continue rightwards every
time, the order of the traversal changes to (0), (), (6), (7), (2), 5), 3), (4), (1). Thus,
we could collect all minimal satisfying assignments and check whether a smaller
assignment has been checked before we evaluate the current one. As all minimal
satisfying assignments are unrelated, this check is linear in the length of the set as
we have to compare the new assignment with any element in the set in the worst
case. This happens if we find a minimal satisfying assignment that is unrelated
to each of those seen before. A single check depends on the number of boxes in
the assignment. On the one hand, such an approach will only improve the overall
performance if the formulas become very large in relation to the number of boxes
as we could avoid expensive evaluations thereby. On the other hand, such formulas
are likely to be reducible and, as we argue in Section [0.2] this is more appropriate
in the context of an iteration process.

Ordering Boxes In the last paragraph, we explained that it might be useful to
traverse the lattice in a slightly different way. Considering the order of boxes in
an assignment, we could count their occurence in one or both formulas and reorder
these for the traversal. At this point, one can think of different heuristics. On
the one hand, we could put the boxes in front which occur in F' very often, as the
assignment consisting of these might be a small one satisfying F'. In addition, we
can include that the boxes are not allowed to occur in G very frequently as the
satisfying assignments for F' might satisfy G as well. This is undesirable as these
assignments are no counterexamples in this case. On the other hand, the order could
be determined by the minimal number of occurrences in G. As pointed to before, it
is important to find a good trade-off between the overhead to enable such heuristics
and the benefits to enhance the overall performance.

Reusing Evaluation Results We can exploit the similarity between two succeeding
assignments in the sequence of evaluations of the considered formula. If we do not
backtrack, we ascend in the tree which is created during the traversal of the lattice
and the assignment only changes at one position. Hence, it is useful to save the

37

ug CA
CQ CQ

Figure 7: Indexed syntax tree for F' = p, V (pea A (05 V pas)) for the two assignments
0110 and 0111 which differ in exactly one box.

intermediate results of the previous step and only recompute the changed part. To
illustrate one possible technique, we can think of the syntax tree of a positive Boolean
formula. The inner nodes represent logical operators whereas the leaves represent
boxes. For the formula F = p, V (pea A (b V pap)) in Example [§], such a syntax tree
is illustrated in Figure |7l We can reuse the intermediate results for the assignment
0110 to evaluate F' for 0111. Therefore, we jump to any occurence of the box whose
assignment changed, ascend the syntax tree and check whether the intermediate
result of the inner node changes. If not, we stop as the overall evaluation result
does not change. If so, we continue and look at the parent of the current node. By
this, we reach the root iff the evaluation result changes due to the minimal change
in the assignment. E.g. we change py, to true in Figure [7|and propagate this change
upwards. As the intermediate results of all inner nodes change, we reach the root
and the result of the evaluation becomes true.

To apply this technique for the case of backtracking, we either change multiple parts
of the assignment, e.g. use the intermediate results of (4) for (5), or use the immediate
predecessor in the computation tree, e.g. use the intermediate results of (2) for (5).

Remark 4. Before we show how compositions can be handled symbolically, we
explore in which way this approach depends on the absence of negations and implica-
tions. In contrast to the sequent calculus, we cannot extend this algorithm easily to
this expanded domain. The reason is the key idea of the presented algorithm which
is to find candidates for counterexamples cleverly and if none exist, the implication
has to hold since any valid candidate was checked. The actual problem is that we
cannot look for these candidates cleverly as any assignment is such a candidate.
Due to the loss of monotonicity in the expanded domain, we are not able to cut
branches and find promising candidates which is central to the presented algorithm.
So overall, this algorithm strongly depends on the fact that only positive Boolean
formulas can occur.

In the next section, we investigate an approach where both formulas can contain
compositions not preventing us from finding real counterexamples.

38

5.2 Refining Compositions

From now on, let F,G € CPBF4 be some formulas with compositions. As argued
before, there is no reasonable way to evaluate two composed boxes with their truth
values, thus one appropriate solution to include compositions is to handle them as
ground symbols. For this section, the set of boxes B(F') does not coincide with
the ground symbols GS(F). Hence, we have defined an assignment as a subset
of ground symbols and not as a subset of boxes. With the compositions C(F)

in F', the ground symbols are the disjoint union of boxes and compositions in F":
GS(F)=B(F)UC(F).

Real vs. Spurious Counterexamples In order to handle compositions, we will
refine them until F' and G do not share any of them and fix their assignment
appropriately. As explained before, we look for real counterexamples, in contrast
to spurious ones. Intuitively, a real counterexample is an assignment for which the
compositions cannot be refined in a way that a counterexample becomes invalid, e.g.
if new boxes due to the refining are considered. Technically, ¢ is a real counterex-
ample if ¢ U X is a counterexample where X is a subset of the new boxes which
evolves from refining the compositions. A counterexample is spurious if it is not
real. Basically, this can be checked by removing all compositions and checking for
every assignment of the new boxes whether one of them is a counterexample. If not,
the counterexample is spurious. E.g. consider that F' and G have one composition
in common which is assigned to false for some witness ¢ of a counterexample. So
the trustworthiness of this witness has to be examined. The question whether ¢
weakens G even if a refined version is valid cannot be answered in general. The
most appropriate way to handle these scenarios is to refine all compositions until
F and G do not have any of them in common. Then, we set all compositions in
F to false in order to weaken F' and all compositions in G to true. Thereby, a
counterexample cannot be spurious as we can only strengthen F' and weaken G if
we refine compositions and this does not impair a counterexample.

Adopting the Basic Algorithm As the assignment for compositions is fixed, we
can easily derive a new algorithm using the basic one. Here, two auxiliary methods
are used which return a Boolean whether F' and G have a composition in common
or whether there are remaining compositions in a formula, respectively. In order to
explain the whole process, we refer to the method on the right.

Initially, with the while-loop in line 2, the precondition that both formulas do not
share any compositions is ensured. Then, the known algorithm for checking the
formulas with minimal satisfying assignments is called in a while-loop (line 5). As
long as no counterexample is found, we check whether there are compositions to
refine in F' or GG in line 6. If not, we return true since every candidate for a
counterexample was checked in line 5 before. Otherwise, we refine the compositions
in F' and G. Like before, the while-loop in line 10 ensures that both formulas do
not share any compositions. If we find a counterexample during the while-loop in
line 5, false is returned.

39

bool checkRefiningCompositions (Formula F, Formula G) {
while (compositionsInCommon (F, G)) {
refine (F, G);
}

while (checkMinimalSatisfyingAssignments (F, G)) {
if (noCompositions (F) && noCompositions(G)) {
return true;
}

else {
while (compositionsInCommon (F, G)) {
refine (F, G);
}

}
}

return false;

Refining Compositions Since we did not specify how compositions are refined, the
given program fragment is a template where the process of refining can be specified
in different ways. This method has two parameters since there might be heuristics
handling both formulas in parallel for example.

One can think of a version in which the method actually does not only refine the
compositions but removes them completely. In this way, there will be two iteration
steps at most. At first, there is one check where the compositions are handled
symbolically if both formulas do not share compositions. In the second round, both
formulas are composition-free and checked again. This approach can be understood
as a first quick check for some simple cases followed by a larger one if necessary.
Another extreme is a version where compositions are refined very gradually. Picto-
rially, compositions are pushed one level deeper in the syntax tree of the formula
in order to uncover the logical operators underneath. Of course, this approach can
need a lot more iteration steps. If all compositions have to be refined, the last check
coincides with the second one in the first version which is the worst-case scenario for
this approach. It is worth mentioning that this procedure primarily speeds up the
process of finding a counterexample. If the implication does hold, it is likely that
most compositions have to be removed.

Even More Possibilities It could even be possible to connect the idea of the basic
algorithm with the process of refining. Consider a run where no counterexample
have been found and thus (at least) all minimal satisfying assignments M for F
have been computed. Then, we could solely refine the compositions in G and just
recheck for any assignment in M. Fulfilling the condition that no composition occurs
in both formulas leads to a great disadvantage. It may be likely that storing M is
not only useless since it cannot be used but even very space demanding considering
the maximal number of unrelated assignments which is exponential.

40

6 Exploiting Iterations

Until now, we have solely considered two arbitrary formulas and ignored that the
formulas to check are constructed by the same function, i.e. by the same equation.
The next two sections try to exploit the fact that two formulas are built iteratively
and thus similarly. At first, we show how to reduce an instance by omitting suitable
parts that did not change after the last update. Second, we present an attempt
how one could split compositions and check them seperately and proceed with a
counterexample which shows that the approach actually does not work.

6.1 Checking Changed Parts

In general, only formulas for the same non-terminal X are compared. So after a few
iterations the outermost operator stays the same since the ownership of X does not
change. There may be parts of the new formula which already existed in the former
one since not every component of the right-hand side has changed compulsorily.
Actually, we have to compute again if at least one component of the right-hand
side has changed. So exploiting these observations gives rise to the following two
lemmata. For the remainder of this subsection, let Fy, ..., F,,, F{,... F! € CPBF,/+
for some n € N, where F; and F! represent the formula built by the same part of
the equation.

Lemma 11. Let G=F A ---NF, and G' = F{ AN --- N F). Furthermore, G = G’
as G' is assumed to be the successor of G in the Kleene iteration. Let I be the index
set of changed components in G and G', i.e. Vi ¢ I : F! = F;.

Then G' = G iff F{N---NF) = N\ B

Proof. The direction from left to right trivially holds since the G = A, F; and the
implication is transitive.

Vice versa, we use the sequent calculus presented in Chapter [4| to prove the result.
So let us have a look at a part of the proof tree of G = G-

Fl,...,Fl>F ... F,. F —F

Fl,..F.>F A AF,

FIN-—ANE S F A AF,

So it suffices to prove FY,..., F) — Fj for 1 < j < n. For k ¢ I, the corresponding
sequent is

(A: right)

(A: left)

/ / / /
Fl""7Fk—17Fk7Fk+17""F?’L—>Fk

and they are all axioms due to the definition of initial sequents and hence valid

sequents. Consequently, proving Fy, ..., F! — F; for i € I is sufficient. Recombining
the remaining sequents, i.e. applying the rules of the sequent calculus backwards,
yields the desired result. O]

The next lemma is the counterpart to the latter one and shows how to deal with V
as outermost operator.

41

Lemma 12. Let G = F,V---V F, and G' = F|V ---V F!. Furthermore G = G’
as G' is assumed to be the successor of G in the Kleene iteration. Let I be the index
set of changed components in G and G', i.e. Vi ¢ I : F] = F;.

Then G' = G iff \l,e, Ff = FiV -V F,.

Proof. The proof is analogous to the one for Lemma[I1] Instead of using A: left and
A: right, V: right and V: left are applied. The remaining reasoning is analogous. [

6.2 Splitting Compositions

In Chapter[7] we argue why a normal form for the grammar similar to the Chomsky
Normal Form is reasonable. Therefore, we try to exploit this observation and will
see that this does not work out.

Attempt to reverse Lemma[3] In Chapter [2] we stated Lemma[3} If F = F’ and
G = G, then I';G = F’;G’. The question might arise whether the inversion holds
as well. It is easy to see that this is not the case in general. So we can try to find
assumptions satisfiable by the iteration to exploit the normal form. Therefore, we
could try to prove the following statement:

G = G iff F;G = F;G' or the pendant where the second component is unchanged.
The benefit of such a lemma is obvious as we could abbreviate the process of checking
implication and only have to check it if both components of the composition changed.
We were able to find a counterexample which is presented in the following.

Example 9. We consider the context-free grammar and the automaton given by
Figure 8] On the right, the Kleene iteration is shown where all formulas are updated
at once. Here, we see that p.; (pe V pp) = pa; pe but p. V pp does not imply p. and
observe that the desired statement is violated.

a AD BO CO
—> b false false false
Pe false Db

Pe \/pb Pas Pe Pb
G = ({Ap, Bo, Co}, {a, b}, Pe N Py | Pa; (PN py) = pa NV pa | Py
{A—=¢|C, B—a;A, C —b}) H pa = pa; pe

Figure 8: Example consisting of an automaton, a context-free grammar in which
symbols indicating the ownership are omitted in the production rules, and
the corresponding Kleene iteration.

42

7 Implementation

At first, we explain the structure of our tool and its components. Then, we present
how we implemented the theory about formulas without compositions and point to
the challenges for versions with compositions.

Formula Box
Manager Manager
CFG
Iterator
Instance Solver (Heuristics)
NFA
Preprocessor

Figure 9: The input of the solver consists of an NFA and a CFG which is
preprocessed at first. The iterator comprises heuristics and tells the solver
which non-terminal to update next and whether to check implication for
example. The formula manager handles anything related to formulas like
implication checks.

7.1 Structure of the Tool

We have developed a tool to solve context-free games with the summary technique
from [HMM16] and explain the structure and the different components as shown in
Figure [0

Random Generator

Guided by an execution of the tool, we start with the parameters of the random
generator which produces the instance consisting of the automaton and the context-
free grammar. For both, the size of the alphabet can be set.

For the automaton, we can adjust the number of states and the probability whether
there is a transition from one state to another labelled by one terminal. Furthermore,
we can force the automaton to be connected so that any state is reachable from the
initial one. By default, there is only one initial state, but we can fix a probability

43

with which any other state is initial as well, so there is always at least one initial
state. Similarly, there is a probability for final states but there might be no final
state in contrast.

Considering the context-free grammar, we can set the number of non-terminals and
in order to have balanced games, the probability that a non-terminal is owned by
refuter is one half. We assume a normal form which is similar to the Chomsky
Normal Form and briefly sketch how to model such a grammar.

Modelling the Grammar Context-free grammars are a good approximation to
model the control flow of a programming language. From a sequential point of view,
it is appropriate to think of the execution of the code line by line. Consider n lines
of code labelled with [4,...,l, without any branching or loops. We can state the
following rules with initial symbol S:

S—)llRQ,RQ—)bRg,...,Ri—)liRH_l,...,Rn—)ln

So we are able to model the behaviour of sequential code and we therefore can
represent its behaviour by one single non-terminal. Moreover, this kind of rules
can be transformed into Chomsky Normal Form [HU79] by introducing new non-
terminals for terminal symbols and large right sides.

How to model if — then — else was shown in the introduction when we explained
the difference between demonic and angelic non-determinism. If we consider angelic
non-determinism, C' is owned by prover and the corresponding rule is C — T | E
where 7" is the non-terminal representing the branch where the condition holds and
E the one where it does not hold. In case of demonic non-determinism, C' is owned
by refuter and the condition cond is comprised as follows:

C' — assume(cond). T | assume(—cond).E.

It remains to show how we model method calls. Therefore, we consider this short
example code where C'is the non-terminal where the subroutine is called, R corre-
sponds to the code after the subroutine has been invoked and S corresponds to the
code of the subroutine.

C: subroutine (); S: subroutine () {
R:
}

The goal is to pass the return-address R of any possible caller to the callee so that
the control flow can proceed after the subroutine. This behaviour can be modelled
by the following rule: C' — SR.

In contrast to Chomsky Normal Form, we allow e-rules, i.e. rules where e (the
empty word) is on the right-hand side, in order to enable a change of control from
one player to its opponent. So overall, the control flow can be modelled by a normal
form similar to Chomsky Normal Form with rules of the form:

A—BClale

where A, B and C' are non-terminals and a is a terminal.

44

Preprocessor

After the instance was created, we first minimize the grammar because of the
following observation. As we start the fixed-point iteration with false, the formula
for a non-terminal never changes to anything else if it is a conjunction and it occurs
on the right side of its own production rule or any of its parts stays false constantly.
Moreover, the formula for a non-terminal never changes if all components on the
right side of its production rule stay false all the time, regardless of the outermost
operator. The set of those non-terminals can be computed with a fixed-point
iteration. We start with an empty set § of non-terminals. In every round, we
add any non-terminal X € N to § for which one of the following conditions holds
for the corresponding equation until we reach a fixed point. The resulting formula

e is a conjunction and at least one of the non-terminals on its right side is in

SU{X}.

e is a disjunction and there is at least one non-terminal of S U {X} in any
co-clause.

This procedure terminates after at most | N| steps. Since S is the set of non-terminals
for which the corresponding formulas stay false all the time we omit these in the
grammar.

Solver, Iterator and Formula Manager

Then, the solver starts the fixed-point iteration to compute the formulas of the
remaining non-terminals. For this purpose, the solver asks the iterator which non-
terminal to update next. We do not update the formulas for all non-terminals at once
but each of them seperately, so that recent changes can be exploited. The iterator
can use a fixed order for instance where the order of updates does not depend on
recent changes but is the same all the time. In contrast, we can use a worklist and
only update non-terminals for which at least one component on its right side has
changed.

Then, the solver incorporates the formula manager to combine the different parts
for the new formula. If requested, it checks whether the new formula implies the
old one. Whenever the formula manager needs to compose boxes it calls the box
manager that is the interface to the automaton and thus handles the boxes. The
formula manager is responsible for anything concerned with formulas and therefore
the part we consider for the remainder of this section.

45

7.2 Formulas without Compositions

In this section, we explain the implementation of the approaches where compositions
are removed to check implication.

Formulas in CNF

In Chapter [3, we presented three polynomial algorithms for normalized formulas.
The implementation of the first one for which both formulas are given in CNF is
quite straightforward. First, we remove all compositions and transform the result
into CNF afterwards. Checking for any clause in F' that there is a clause in G
that is superset of the first one is not difficult neither. We could also have chosen
the algorithm for which both formulas have to be given in DNF. The polynomial
algorithm for which the formulas are given in different normal forms would be
disadvantageous as we usually check implication after each step of the fixed-point
iteration. To be specific, we would have to transform a formula from DNF to CNF
as it was used in CNF before and has to be in DNF for the next check. These
transformations can be exponential [MRW05] and are thus not preferable.

Lattice of Assignment

For the algorithm in Chapter [, we only remove compositions and the formulas stay
non-normalized. In our implementation, the results satisfy the alternating operators
assumption, i.e. that any component of a conjunction is a disjunction and vice
versa, because of the known advantages. By the usage of caches for the removal, we
abbreviate and speed up this process. To use them properly, we would like to identify
syntactically equivalent formulas easily. We can enforce this uniqueness by some
inductive reasoning. First, we have exactly one formula for every box. For every
conjunction or disjunction of smaller formulas, we enforce uniqueness by checking
whether this formula was built before. Therefore, we use caches for conjunctions and
disjunctions as well. Then, the presented methods can be employed straightforward.
The performance of these procedures is crucial for the overall performance as they
are invoked very frequently.

Iterative Backtracking Thus, the recursion which is responsible for the back-
tracking is substituted by an iterative backtracking procedure. This method is used
similarly in SAT-Solvers and is modified due to the different termination criteria in
our use case. The key is the use of a stack and a container of unused variables to
iterate over all assignments in the same way but without recursion.

Reusing Evaluation Results Our procedure also incorporates the technique of
reusing evaluation results. Consider two formulas F' and G for which we check
implication with the approach using minimals satisfying assignments for F'. There-
fore, we construct an auxiliary data structure for F' which serves as current state of
evaluation in the beginning. After the initial assignment was set, I is evaluated once
exhaustively. In this process, we do not only compute the result of the evaluation

46

but count the number of satisfied subformulas for every inner node in the syntax
tree. This additional information can be used to propagate changing intermediate
results faster, as we only increment or decrement this number for every parent and
check whether their evaluation result changed with one equality check. The process
to ascend the new information is executed every time the assignment of a box is
changed so that we can evaluate F' simply by checking its result in the auxiliary
data structure.

Generally speaking, we changed the complexity of two different methods considering
assignments and evaluation. At first, the process of setting an assignment was in
O(1) whereas the evaluation was linear. We have observed that there are mostly
minor changes in the assignment between two succeeding evaluations for F' so we
added a method to set one box to another truth value so that the information is
propagated directly. For some deformed formulas, the complexity of this method is
linear but in general, the ascending paths can be cut very early because of our set
representation and the alternating operators assumption. In turn, evaluation of F'
is in O(1).

As G is not evaluated as often as F' we refrain from constructing the whole auxiliary
data structure and we only set the truth values of its boxes so that we can evaluate
it for the current assignment. In doing so, we exploit intermediate results of F' if
they share common subformulas, i.e. we check whether we know an intermediate
result due to F' prior to going into deeper levels of the formula during the evaluation

of GG.

Minimal Satisfying Assignments vs. Maximal Unsatisfying Assignments So
far, we only explained all constructions for minimal satisfying assignments. The
procedure is analogous for maximal unsatisfying assignments but we would like
to reason why we use both of them. As argued before, every fixed part of the
assignment cuts the search space in half. Therefore, we look at the first level
in the syntax tree and figure out boxes which can be set to false respectively
true without compromising possible counterexamples. If we try to find minimal
satisfying assignments for conjunctions, any box on the first level can be set to
true as any assignment that does not include this box cannot be a satisfying one.
Analogously, if we look for maximal unsatisfying in disjunctions, any box on the first
level can be set to false as any assignment that does include this box cannot be an
unsatisfying one. Overall, we use the approach using minimal satisfying assignments
if ' is a conjunction and the one using maximal unsatisfying assignments if G is
a disjunction. They are both correct for conjunctions and disjunctions but the
performance decreases. In case both conditions hold, we invoke the approach using
maximal unsatisfying assignments as we know from the iteration process that G is
the older formula and thus smaller.

47

SAT-Solver

For an instance F' = G for F,G € PBF,, we use the Tseytin transformation
[Tse70] to get a formula in CNF which is satisfiable iff the original one is satisfiable
in polynomial time. More precisely, we know that for F' = G the implication holds
ifft =F" VvV G is a tautology. Furthermore, a formula H is a tautology iff its negation
—H is unsatisfiable. Hence, we transform —(—=F V G) H F' A =G into a formula N
in CNF using the Tseytin transformation. Then, we check whether N is satisfiable
with a SAT-Solver. As explained before, N is unsatisfiable iff the implication holds.

7.3 Symbolic Formulas

We have presented two different approaches to handle formulas with compositions
in implication checks and will point to the challenges coming along with the imple-
mentation of these approaches.

Both Approaches Revisited

Sequent Calculus In the sequent calculus, we might not have to remove all compo-
sitions if we can identify the same formula including compositions in the antecedent
and the succedent. In order to catch these scenarios, we would like to identify
identical formulas easily. We called this uniqueness before and it is even crucial for
an actual implementation if we think of deciding whether the succedent and the
antecedent have some formula in common, which is used very frequently. Therefore,
we have to compare each formula on the left and each on the right pairwise either
until we find an overlap or every possible combination has been considered.

Refining Compositions We introduced a refining procedure to handle the formulas
symbolically for the lattice of assignment approach. As argued before, we need
to ensure that both formulas do not have compositions in common. Imagine the
scenario if we do not recognize two identical compositions. Then, we set it to false
on the left side whereas we set it to true on the right side. Consider the trivial
example where both formulas only consist of this composition. There, we find a
counterexample and have to refine the composition even if it is the identical. In
general, every time a composition changes the satisfiability in a significant way and
we are not able to identify them being identical, we compute the whole process of
finding minimal satisfying or maximal unsatisfying assignments even if we could
have refined them right away.

Consequences of Altering Formulas As explained before, the uniqueness of for-
mulas is not essential but it is preferable for the usage of caches to remove the
compositions in this case as well. We also ensure uniqueness by the usage of
caches, but the fundamental problem in this case is the caching of altering formulas.
Basically, the hash-value changes if the corresponding formula is modified so that
the normal usage of caches does not ensure uniqueness anymore. Furthermore,
our alternating operators assumption could be invalidated, e.g. a subformula of a

48

conjunction can also become a conjunction if we remove compositions. The latter
does not violate the correctness of both approaches but can worsen their performance
as logically equivalent formulas may not be identified as such.

Merging Congruence Classes From a theoretical point of view, the goal is to
merge different congruence classes efficiently when we update formulas and get the
current representative for this class. This ought to be the formula for which the
least number of removal steps have to be applied in case of compositions. We could
extend this behaviour to the implication checks as well. When we figure out that
a newly created formula implies its predecessor, we know that they are logically
equivalent. Therefore, we update the new formula to its predecessor as the size of
the latter is smaller.

49

8 Evaluation

In this chapter, we give some insights into the experimental results of our tool. We
start with some case studies about the benefit of preprocessing, i.e. the reduction of
the grammar, the preassignment of Chapter 7| and the omission of unchanged parts
of Chapter [0} Then, we proceed with an extensive comparison of three different
approaches to check implication: a polynomial algorithm for formulas in CNF, the
approach considering the lattice of assignment and a method incorporating a SAT-
Solver.

8.1 Case Studies about Preprocessing

We have presented different preprocessing steps in previous chapters. For each of
those, we analyze the benefits for the different approaches. We ran some experiments
for different numbers of states in the NFA, terminals and non-terminals in the CFG
that are similar to the setting for the extensive comparison which we explain in the
next section.

Reduction of the Grammar To start with, we consider the reduction of the
grammar. For very small instances, the reduction catches some trivial cases and
therefore increases the performance strongly. The improvement for bigger instances
was at a low percentage, mostly from one to five percent with rare outliers to 30
%, so this observation does not carry over to bigger instances. This might seem
discouraging at first, but it gives more reliance to our benchmarking results because
big instances are not reduced to trivial ones. This is positive as it probably would
also not happen for real examples.

Preassignment As shown in Chapter |7}, we can fix some parts of the assignment
without compromising the possibility of finding a counterexample. We have realised
that this technique is crucial for the performance of the lattice of assignment ap-
proach during our experiments. So we have adopted it to the SAT-Solver approach
but the impact was negligible and the performance even suffered slightly at times.
Due to the Tseytin transformation we introduce new variables to represent sub-
formulas so that the impact of fixing a small number of them might be marginal.
This is one way to explain the stagnation of performance. Moreover, SAT-Solvers use
heuristics to speed up the process of finding a satisfying assignment. We surmise that
these heuristics are impaired by the preassignment and therefore not advantageous
for this approach.

Checking Changed Parts As explained in Chapter [6] we can omit unchanged
subformulas on the right side of conjunctions and on the left side of disjunctions if
both formulas share the same operator. In contrast to the reduction of the grammar,
this is a preprocessing step that is performed prior to each implication check. Both
approaches for non-normalized formulas could benefit from this observation.

Prior to the usage of intermediate evaluation results for the lattice of assignment

20

approach, this technique improved the performance up to ten percent, but there
are no differences in our recent experimental results anymore. In order to explain
this behaviour, consider two conjunctions F' and G for which we check entailment:
F = (. As argued before, we look for minimal satisfying assignments of F' and omit
unchanged parts in G. By this means, the evaluation results for any subformula of
F' are maintained and thus for all unchanged parts as well. As we use these for the
evaluation of (G, there is no point in omitting these parts anymore because their
branches are cut immediately during the evaluation of G.

For the sake of completeness, we also applied this technique to the SAT-Solver
approach. As the technique did not result in any impact of the performance either,
we assume that the overhead of computing the unchanged parts annihilates its
potential to improve the overall performance.

8.2 CNF, Lattice of Assignment and SAT-Solver

According to these observations, we take the best version of every approach for our
extensive comparison. So the lattice of assignment approach uses the preassignment
whereas the SAT-Solver does not and we do not omit unchanged parts for both.
The number of states of the NFA, the size of the alphabet and the number of non-
terminals are the parameters for our experiments and we ordered them accordingly
in the first column of the table in Figure (10}

Experimental Setting Altogether, the random generator created 100 instances for
every configuration and we forced the grammar to be connected. Prior to invoking
the different solvers with a worklist iterator, we reduce the instance due to the
grammar reduction. The cutoff is 100 seconds so that a solver was interrupted if
it exceeded this time limit for an instance. We measured the time for every solved
instance in that time frame, counted the number of timeouts and computed two
kinds of average time for all solvers. The first one considers interrupted instances
with the cutoff in order to give a feeling how long the solvers actually take including
the interrupted instances. For the actual comparison, our interest focuses on the
amount of solved instances so that we use a lexicographic order by considering the
number of timeouts firstly and the average times without timeouts secondly if the
same number of instances have been cancelled. For the case of distinct numbers of
timeouts, we only consider these and omit the second average. If two or all solvers
share the number of cancelled instances, we fix the leftmost one to be 100 % and
calculate the relative average time for all of them. The number of timeouts coincides
with the ratio as 100 instances have been employed.

Examination For the sake of readability, we use some abbreviations for this section:
the approach using the polynomial algorithm for formulas in CNF is called CNF, the
one using the lattice of assignment LoA while the method incorporating a SAT-
Solver is called SATTS (SAT-Solver & Tseytin). For the first four configurations,
we see that CNF is able to keep up with the others considering the timeouts but
is outperformed conspicuously considering the solved instances. For almost all

51

Conjunctive Normalform Lattice of Assignment SAT-Solver

with | time- without with | time- without with | time- without
avg/s | outs | avg/s % | avg/s | outs | avg/s % | avg/s | outs | avg/s %
5/ 5/ 5 3.09 2 1.120 100 | 2.03 2 0.030 3| 2.09 2 0.090 8
5/ 5/10 2.18 2 0.180 100 | 2.12 2 0.120 68 | 2.07 2 0.070 41
5/ 5/15 2.50 2 0.510 100 | 2.12 2 0.120 24 | 2.35 2 0.360 71
5/ 5/20 3.03 2 1.060 100 | 2.17 2 0.177 17 | 3.53 3 - -
5/10/ 5| 6.44 5 - -] 5.49 4 1.560 100 | 4.69 4 0.720 47
5/10/10 9.15 8 - -] 7.23 7 0.250 100 | 8.24 7 1.330 535
5/10/15 || 5.51 5 - -1 4.76 4 0.796 100 | 5.09 4 1.130 142
10/ 5/ 5 9.62 9 - -| 8.34 8 - -] 6.99 6 - -
10/ 5/10 || 5.37 5 - -1 3.70 3 0.730 100 | 4.38 3 1.420 195
10/ 5/15 4.19 3 1.230 100 | 3.53 3 0.542 44 | 2.99 2 - -
10/10/ 5| 6.22 6 - -1 5.34 4 1.400 100 | 4.74 4 0.770 55
10/10/10 6.37 6 0.389 100 | 6.13 6 0.138 36 | 6.37 5 - -
15/ 5/ 5 1.16 1 0.159 100 | 1.01 1 0.013 8| 1.03 1 0.032 20
15/ 5/10 2.34 2 0.346 100 | 2.09 2 0.095 28 | 3.28 3 - -

Figure 10: The first column corresponds to the parameters: |Q|/|T|/|N|. For every
solver and configuration, the overall average time is given in the first
column. The remaining columns show the number of timeouts and the
average time for the solver(s) with the same number of timeouts for a
lexicographic order.

other configurations, CNF produces more timeouts than at least one of the other
two approaches. There might be some outliers like the last configuration where CNF
has even less timeouts than SATTS. However, LoA and SATTS do not only increase
the number of solved instances overall but they are faster than CNF for most cases.
Therefore, we investigate on the two approaches for non-normalized formulas from
now on. We observe the biggest difference for one of the configurations in the middle
(10/ 5/ 5) for which SATTS has solved 94 instances whereas LoA has only solved
92. On the opposite side, LoA got less timeouts for two other configurations. On
the whole, counting the winner for every configuration, i.e. the solver with the best
performance according to the lexicographic order, leads to quite a balanced result for
LoA and SATTS. We once observed that there were two different cancelled instances
even if the number of these did match. So we assume both approaches to be valuable
for different kinds of examples. Real examples for our tool are more relevant than
distinguishing and detecting these structures as we might not be able to force these
in such a detected structure. This leads to our next chapter in which we present
possible directions of future work.

52

9 Conclusion and Future Work

To conclude the thesis, we give a short recap by pointing at the important ideas
and results of the previous chapters. Moreover, we present two starting points for
future work and explain their importance.

9.1 Conclusion

After introducing some common notation and concepts in Chapter [2] we proceeded
with the definition of positive Boolean formulas for which some basic properties like
monotonicity were shown. We also defined the game arena on which the context-
free games take place. We extended the definition of formulas to handle relational
compositions and explained the summary technique for context-free games. Fur-
thermore, we pointed to the importance of implication checks for the procedure and
therefore focused on them for the remainder of the thesis.

In Chapter 3] we proved the problem of entailment checking to be co-NP-complete by
giving an algorithm in co-NP and proving the complement problem to be NP-hard
with a reduction from 3SAT with non-mixed clauses to non-entailment checking.
Moreover, we presented three polynomial algorithms to check entailment for special
cases in which both formulas are given in some normal form, i.e. CNF or DNF.

Chapter 4] proposed our first approach to handle compositions in implication checks
with a sequent calculus consisting of different inference rules to handle conjunc-
tions, disjunctions and compositions. We proved the sequent calculus to be sound
and showed an upper bound for the number of applications of inference rules for
conjunction and disjunction to give a proof for a valid sequent and thus proved
completeness as well. To conclude the chapter, we commented on different orders
of precedence for the application of inference rules.

In Chapter [, we presented an algorithm to exploit the monotonicity of positive
Boolean formulas. We traverse the lattice of assignment for one formula to find
minimal or maximal satisfying assignments which are potential counterexamples
and check them. We showed that this number can be exponential and thus fits to
the co-NP-completeness we have shown before. Moreover, we demonstrated how this
basic algorithm can be extended to handle compositions symbolically as well.

Chapter [6]discussed how the process of fixed-point iteration can be exploited. There,
the key idea was that a non-terminal is owned by the same player and therefore will
stay a conjunction or disjunction at some point. For them, unchanged parts can
be omitted on the right side in case of conjunctions and on the left side in case of
disjunctions. Our second attempt to split compositions and handle them separately
has not been successful and thus not been applicable.

We illustrated the structure of our tool in Chapter [7] that applies the fixed-point
iteration presented in Chapter [2l After we explained the parameters for the random

23

generator, we described the preprocessor which also uses a fixed-point iteration to
compute the set of non-terminals remaining false all the time. We proceeded with
the implementation of the actual summary technique consisting of the solver, an
iterator and the formula manager and its box manager. We also exhibited how we
implemented the theory of checking implication for formulas without compositions
and pointed to challenges of implementing the theory for formulas with compositions.

Consequently, we presented our benchmarking results in Chapter [§| that demon-
strated the performance of implication checks for non-normalized formulas. The
approach using the lattice of assignment can compete with the procedure incorpo-
rating a SAT-Solver and each of them seems to outperform the other one for different
kinds of examples. Both improved the overall results compared to the algorithm for
CNF as we spotted a number of solved instances which have been infeasible with an
algorithm for normalized formulas, i.e. the one for CNF.

9.2 Future Work

Exploiting Kleene Iteration Our motiviation for implication checks is their appli-
cation in the summary technique from [HMMIG6]. In order to enforce termination
of the fixed-point iteration, we need to check whether two formulas are logically
equivalent. The Kleene iteration guarantees that the old formula implies the new
one. Based on this assumption, checking whether the new formula implies the old
one is a special case. So far, we did not find any means to profit from this fact, but
it might be a good starting point to find optimizations and heuristics.

Real Examples The examples in the presented tool are currently generated ran-
domly. In order to get closer to the overall goal, synthesis of software and hardware,
it is essential to have translations of such problems to our domain. We have sketched
how the elements of a basic programming language could be encoded into context-
free games. So in general, it should be possible to develop a small kernel of a
programming language which fits into the current framework to generate actual
software synthesis problems. On the other hand, considering hardware synthesis
there are some specification languages, but the translation is non-trivial. Despite
of the bridge between our tool and a practical example, real examples are crucial
for the further development of this tool as well. Usually heuristics only increase the
speed of cases with a specific structure while cases different from them have a worse
performance than before. E.g. optimizing the case of non-implication will lead to
slower performance in the case of implication as we explained in the sequent calculus
for example. In general, the key to success is to improve the average performance.
Obviously, most sophisticated heuristics could be counterproductive if they improve
cases which do not occur in practice.

Reducing Formulas During the experiments we realised that some formulas are
kind of redundant. Because of the Kleene iteration, this redundancy will carry
over in every step and thus the formulas will increase excessively. Therefore, it

o4

could be advantageous to use techniques similar to subsumption in SAT-Solvers to
reduce the formulas. One possibility is the usage of the simulation relation from
[ACC™11] to minimize the formulas after each or some steps of the fixed-point

iteration. Additionally, one could use the same simulation to weaken the notion of
implications.

95

List of Figures

(1 Idea of synthesis| 6
2 Different kinds of non-determinisml 7
13 NFA for our running example, 12
4 Increase in size during the transformations ot formulas] 25
5 Lattice of assignment| 0L 32
(§ Traversal of the lattice with an example| 35
[7 oyntax tree ot a formula during the evaluation 38
8 Example of a fixed-point iteration| L. 42
19 Structure of the toollo oo 43
10 Extensive Evaluation Resultsl 52
References

[ACCT11] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukas Holik,
Chih-Duo Hong, Richard Mayr, and Tomas Vojnar. Advanced Ramsey-
Based Biichi Automata Inclusion Testing. In CONCUR, volume 6901 of
LNCS, pages 187-202, 2011.

[AZ98] Martin Aigner and Glinter M. Ziegler. Proofs from the Book. Springer,
1998.

[BBCB16] Jaroslav Bendik, Nikola Benes, Ivana Cernd, and Jiri Barnat. Tunable
Online MUS/MSS Enumeration. In 36th IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016), pages 50:1-50:13, 2016.

[Bus98] Samuel Buss. An Introduction to Proof Theory. Elsevier, 1998.

[DGI93] James P. Delgrande and Arvind Gupta. Two Results in Negation-free
Logic. In Applied Mathematics Letters, pages 79 — 83, 1993.

[DG96] James P. Delgrande and Arvind Gupta. The Complexity of Minimum
Partial Truth Assignments and Implication in Negation-free Formulae.
In Annals of Mathematics and Artificial Intelligence 18, pages 51 — 67,
1996.

(Gra98] George Gritze. General Lattice Theory. Springer, 1998.

[HMM16]| Lukds Holik, Roland Meyer, and Sebastian Muskalla. Summaries for
Context-Free Games. In 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS
2016), pages 41:1-41:16, 2016.

[HU79] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

26

[Kre98] Christoph Kreitz. Program Synthesis. In Automated Deduction — A Basis
for Applications, pages 105-134, 1998.

[MRWO05] Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On
converting CNF to DNF. In Theoretical Computer Science, pages 325 —
335, 2005.

[Sch78] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In
Proceedings of the 10th annual ACM symposium on Theory of computing,
pages 216 — 226, 1978.

[Sip05] Michael Sipser. Introduction to the Theory of Computation. Wadsworth
Inc Fulfillment, 2nd edition, 2005.

[Tse70] Grigorii S. Tseytin. On the Complexity of Derivation in Propositional
Calculus. In Studies in Constructive Mathematics and Mathematical
Logic, pages 115-125. A.O. Slisenko, 1970.

o7

	Introduction
	Synthesis
	Summary Technique for Context-free Games
	Outline

	Preliminaries
	Notation and Definitions
	Summary Technique for Context-Free Games

	Co-NP-Completeness
	Complexity and Reductions
	Membership in co-NP
	Co-NP-Hardness
	Special Cases

	Sequent Calculus
	Notation and Semantics
	Inference Rules
	Soundness and Completeness

	Lattice of Assignment
	Basic Algorithm
	Refining Compositions

	Exploiting Iterations
	Checking Changed Parts
	Splitting Compositions

	Implementation
	Structure of the Tool
	Formulas without Compositions
	Symbolic Formulas

	Evaluation
	Case Studies about Preprocessing
	CNF, Lattice of Assignment and SAT-Solver

	Conclusion and Future Work
	Conclusion
	Future Work

