
A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

On Boundedness in Depth in the π-Calculus

Roland Meyer

University of Oldenburg

2008-02-09

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Client sends on public channel url his private IP address ip to server

Graphically

ipC

lS

In π-Calculus

νip.url〈ip〉.ip(s).s(x).Cburl , ipc |
νl .url(y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Client sends on public channel url his private IP address ip to
server

Graphically

ip

lS

C

In π-Calculus

νip.url〈ip〉.ip(s).s(x).Cburl , ipc |

νl .url(y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Client sends on public channel url his private IP address ip to
server

Graphically

ipC

lS

In π-Calculus

νip.url〈ip〉.ip(s).s(x).Cburl , ipc |

νl .url(y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Client sends on public channel url his private IP address ip to
server

Graphically

ipC

lS

In π-Calculus

νip. url 〈ip〉.ip(s).s(x).Cburl , ipc |
νl . url (y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Client sends on public channel url his private IP address ip to
server

Graphically

lS

C ip

In π-Calculus

νip .url〈 ip 〉.ip(s).s(x).Cburl , ipc |
νl .url(y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Server spawns a new thread that handles the session with the
client

Graphically

ipC

lS

In π-Calculus

νip.url〈ip〉.ip(s).s(x).Cburl , ipc |

νl .url(y).(νsn.y〈sn〉.T bsn, lc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Thread sends back a private session sn on the private channel ip

Graphically

ipC

lS T sn

In π-Calculus

νip.(ip(s).s(x).Cburl , ipc |
νl .(νsn.ip〈sn〉.T bsn, lc | Sburl , lc))

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Thread sends back a private session sn on the private channel ip

Graphically

lS snT

C ip

In π-Calculus

νip .(ip (s).s(x).Cburl , ipc |

νl .(νsn. ip 〈sn〉.T bsn, lc | Sburl , lc))

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

Thread sends back a private session sn on the private channel ip

Graphically

ipC

lS T sn

In π-Calculus

νip.(ip(s).s(x).Cburl , ipc |
νl .(νsn .ip〈 νsn 〉.T bsn, lc | Sburl , lc))

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

The thread switches its mode

Graphically

ip sn

l

C

S T

In π-Calculus

νsn.(νip.sn(x).Cburl , ipc |

νl .(T bsn, lc | Sburl , lc))

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

To terminate the session, the thread sends the private session
object sn on the channel sn itself

Graphically

ip

l WS

C sn

In π-Calculus

νsn .(νip. sn (x).Cburl , ipc |
νl .(sn 〈 sn 〉.W bl , snc | Sburl , lc))

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

The thread writes back information to the server and terminates,
the client is ready to contact the server again

Graphically

ip

sn

C

S l W

In π-Calculus

νip.Cburl , ipc |

νl .(νsn. W bl , snc | Sburl , lc)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

A Client/Server System in the π-Calculus

This yields the initial state

Graphically

ipC

lS

In π-Calculus

νip.Cburl , ipc |
νl .Sburl , lc

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Motivation and Contribution

Motivation: Verification of dynamically reconfigurable systems

Does the client/server system terminate?

Is it finite state?

Contribution: This can be done automatically

For systems of bounded depth

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Overview

1 A client/server system in the π-Calculus X
2 Systems of bounded depth

3 From bounded depth to well-structured transition systems

4 Decidability results

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions

Yields parallel composition of fragments F ,G

Example

νl .νsn.νsn′.(Sburl , lc |W bl , snc |W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions
Yields parallel composition of fragments F ,G

Example

νl .νsn. νsn′ .(Sburl , lc |W bl , snc | W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions
Yields parallel composition of fragments F ,G

Example

νl .νsn. νsn′ .(Sburl , lc |W bl , snc | W bl , sn′c)

≡ νl .νsn.(Sburl , lc |W bl , snc | νsn′ . W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions
Yields parallel composition of fragments F ,G

Example

νl .νsn.νsn′.(Sburl , lc |W bl , snc |W bl , sn′c)
≡ νl . νsn .(Sburl , lc | W bl , snc | νsn′.W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions
Yields parallel composition of fragments F ,G

Example

νl .νsn.νsn′.(Sburl , lc |W bl , snc |W bl , sn′c)
≡ νl . νsn .(Sburl , lc | W bl , snc | νsn′.W bl , sn′c)

≡ νl .(Sburl , lc | νsn . W bl , snc | νsn′.W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A normal form for processes

Normalise the process

Minimise the scopes of restrictions
Yields parallel composition of fragments F ,G

Example

νl .νsn.νsn′.(Sburl , lc |W bl , snc |W bl , sn′c)
≡ νl .νsn.(Sburl , lc |W bl , snc | νsn′.W bl , sn′c)
≡ νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

The latter process is a fragment

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Example

nestν

(
νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Example

nestν

(
νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

)
= 1 + max{. . .}

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Example

nestν

(
νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

)
= 1 + max{0, . . .}

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Example

nestν

(
νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

)
= 1 + max{0, 1, . . .}

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Example

nestν

(
νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

)
= 1 + max{0, 1, 1}
= 2

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Problem: The fragment representation is not unique

Example

νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c) =: F

≡ νsn.νsn′.νl .(Sburl , lc |W bl , snc |W bl , sn′c) =: G

Then nestν (F) = 2 but nestν (G) = 3

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

The nesting of restrictions

Count the nesting of restrictions in the fragment

Problem: The fragment representation is not unique

Example

νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c) =: F

≡ νsn.νsn′.νl .(Sburl , lc |W bl , snc |W bl , sn′c) =: G

Then nestν (F) = 2 but nestν (G) = 3

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Boundedness in depth

Solution: Define the depth of a fragment as the nesting of

restrictions in the flattest representation

Depth

depth(F) = min {nestν (G) | G ≡ F}

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Boundedness in depth

Solution: Define the depth of a fragment as the nesting of
restrictions in the flattest representation

Depth

depth(F) = min{nestν (G) | G ≡ F}

A process is bounded in depth if the depth of

all reachable fragments is bounded

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A Characterisation of Boundedness in Depth

Problem: No good intuition to processes of bounded depth

How to find the flat representation?

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

A Characterisation of Boundedness in Depth

Theorem

A process is bounded in depth if and only if

the length of the longest simple paths in the graphs is bounded

Simple paths do not repeat hyperedges

Reachable states are star-like

Anchored fragments are flat representations

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Example: The Client/Server System

In the case study, the depth is bounded by 4

A longest simple path

ip sn

l

sn sn sn

C

S T

W W W

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Example: The Client/Server System

In the case study, the depth is bounded by 4

A longest simple path

lS T

W W W

C sn

snsnsn

ip

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Example: The Client/Server System

In the case study, the depth is bounded by 4

A longest simple path

lS

W W W

C

snsnsn

ip sn

T

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Example: The Client/Server System

In the case study, the depth is bounded by 4

A longest simple path

S

W W

C

snsnsn

ip sn

Tl

W

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

Example: The Client/Server System

In the case study, the depth is bounded by 4

A longest simple path

S

W W

C

snsn

ip sn

Tl

W

sn

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Towards a notion of depth
A graph-theoretic characterisation of boundedness in depth
Examples

More Examples

All decidable subclasses of π-Calculus are bounded in depth

Finitary agents [FGMP03], finite control processes [Dam96],
bounded processes [Cai04] (finite state systems)

Structurally stationary processes [Mey08], finite handler
processes [Mey08], restriction-free processes [AM02] (Petri
nets)

Bounded input unique receiver systems [AM02] (subclass of
transfer nets)

Finite net processes [BG95, BG08] (subclass of inhibitor nets)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Well-Structured Transition Systems

Framework for infinite state systems [Fin90, FS01, AČJT00]

Generalises decidablity results for particular models

Technically

WSTS=(S ,→,≤) where

(S ,→) is a transition system

≤ ⊆ S × S is an ordering on the states with two properties

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Well-Structured Transition Systems

Framework for infinite state systems [Fin90, FS01, AČJT00]

Generalises decidablity results for particular models

Technically

WSTS=(S ,→,≤) where

(S ,→) is a transition system

≤ ⊆ S × S is an ordering on the states with two properties

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Well-Structured Transition Systems

Framework for infinite state systems [Fin90, FS01, AČJT00]

Generalises decidablity results for particular models

Technically

WSTS=(S ,→,≤) where

(S ,→) is a transition system

≤ ⊆ S × S is an ordering on the states with two properties

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Well-Structured Transition Systems

≤ ⊆ S × S is a well-quasi-ordering

In every infinite sequence of states, there are two comparable ones

s
0

...s
1 i j

ss

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Well-Structured Transition Systems

≤ ⊆ S × S is a well-quasi-ordering

In every infinite sequence of states, there are two comparable ones

s
0

...s
1 i j

ss

≤ ⊆ S × S is a simulation

Larger states can imitate the transition behaviour of smaller ones

s s’

t

⇒
s’

t t’

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Instantiation of the framework—the ordering �PBD

Intuitively: Hypergraph embedding so that

No connections are added to vertices

No connections are removed from vertices

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Instantiation of the framework—the ordering �PBD

Intuitively: Hypergraph embedding so that

No connections are added to vertices
No connections are removed from vertices

Example

lsn

S

W

�PBD

snWsn l

S

W

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Instantiation of the framework—the ordering �PBD

Intuitively: Hypergraph embedding so that

No connections are added to vertices
No connections are removed from vertices

Technically: Parallel composition of fragments

may be added

νa.(F | G) �PBD
νa.(F | G | H)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Instantiation of the framework—the ordering �PBD

Intuitively: Hypergraph embedding so that

No connections are added to vertices
No connections are removed from vertices

Technically: Parallel compositions of fragments may be added

νa.(F | G) �PBD
νa.(F | G | H)

Example

νl .(Sburl , lc | νsn.W bl , snc)
�PBD

νl .(Sburl , lc | νsn.W bl , snc | νsn′.W bl , sn′c)

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Why is it a wqo?

Understand fragments as (syntax) trees

Processes are leafs
Restricted names are nodes

Example

νl .(Sburl , lc | νsn.W bl , snc)
S sn

l

W

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Why is it a wqo?

Understand fragments as (syntax) trees

Processes are leafs
Restricted names are nodes

Example

νl .(Sburl , lc | νsn. W bl , snc)
sn

l

S

W

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Why is it a wqo?

Understand fragments as (syntax) trees

Processes are leafs
Restricted names are nodes

Example

νl .(Sburl , lc | νsn .W bl , snc)
S

W

l

sn

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Why is it a wqo?

Understand fragments as (syntax) trees

Processes are leafs
Restricted names are nodes

Use a suitable wqo on trees

Example

S sn

l

W

�T (A)
sn

WW

snS

l

Wqo on trees of bounded depth

Induction on depth + Higman’s result [Hig52]

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Main Result

Simulation is easier to prove

Theorem

If P is a process of bounded depth, then (Reach (P)/≡,→,�PBD
)

is a well-structured transition system.

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Build the computation tree (finite branching)

If a new node covers a predecessor stop the computation,
mark the node by +

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Build the computation tree (finite branching)

If a new node covers a predecessor stop the computation,
mark the node by +

The Finite Reachability Tree

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Build the computation tree (finite branching)

If a new node covers a predecessor stop the computation,

mark the node by +

The Finite Reachability Tree

s

t, +

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Build the computation tree (finite branching)

If a new node covers a predecessor stop the computation,
mark the node by +

Theorem ([Fin90, FS01, AČJT00])

There is a non-terminating computation if and only if the tree

contains a node marked by + .

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Build the computation tree (finite branching)

If a new node covers a predecessor stop the computation,
mark the node by +

Theorem ([Fin90, FS01, AČJT00])

There is a non-terminating computation if and only if the tree
contains a node marked by +.
Infinite state if and only if + node is truely bigger

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Application to the Client/Server System

Build the computation tree

. . .→
ipC

lS T sn

→→→

sn

W

S T

ipC

snl

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Application to the Client/Server System

Build the computation tree

. . .→
ipC

lS T sn

→→→

sn

W

S T

ipC

snl

Results

The system does not terminate , the system is infinite state

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Related Work

Interpretation of processes as graphs due to Milner (flow
graphs) [Mil79, MM79]

For π-Calculus in [MPW92, Mil99, SW01]

We relate depth on terms with the

longest simple paths in graphs

Normal forms for π-Calculus by Engelfriet and Gelsema
[EG99, EG04] and Milner [Mil99]

Similar to minimising scopes
Anchored fragments are more stringent

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Related Work

WSTS by Finkel [Fin90, FS01] and Abdulla et. al. [AČJT00]

Finkel inspired by Petri nets, termination and boundedness
problems
Abdulla inspired by lossy channel systems, temporal and
simulation properties
First instantiation for π-Calculus
�PBD

is non-trivial

Importance of termination for π-Calculus by Yoshida et. al.
[YBH04] and Sangiorgi [DS06]

Type systems that ensure termination of well-typed processes
Instantiate WSTS framework, derive decidability of

termination as corollary

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Conclusion and Thanks

Processes of bounded depth are graphs where the
longest simple path is bounded

Star-like structures

Unbounded parallelism/unboundedly many restricted names

They have well-structured transition systems

Termination is decidable

Infinity of states is decidable

The class is huge

Contains all decidable subclasses of π-Calculus known so far
[BG95, Dam96, AM02, FGMP03, Cai04, Mey08, BG08]

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

Conclusion and Thanks

Thanks for your attention

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

References I

P. A. Abdulla, K. Čerans, B. Jonsson, and Y.-K. Tsay.

Algorithmic analysis of programs with well quasi-ordered domains.
Information and Computation, 160(1–2):109–127, 2000.

R. M. Amadio and C. Meyssonnier.

On decidability of the control reachability problem in the asynchronous π-calculus.
Nordic Journal of Computing, 9(1):70–101, 2002.

N. Busi and R. Gorrieri.

A Petri net semantics for π-calculus.
In Proc. of the 6th International Conference on Concurrency Theory, CONCUR 1995, volume 962 of LNCS,
pages 145–159. Springer-Verlag, 1995.

N. Busi and R. Gorrieri.

Distributed semantics for the π-calculus based on Petri nets with inhibitor arcs.
To appear in JLAP, August 2008.

L. Caires.

Behavioural and spatial observations in a logic for the π-Calculus.
In Proc. of the 7th International Conference on Foundations of Software Science and Computation
Structures, FOSSACS 2004, volume 2987 of LNCS, pages 72–89. Springer-Verlag, 2004.
Spatial Logic Model Checker: http://ctp.di.fct.unl.pt/SLMC/.

Roland Meyer On Boundedness in Depth in the π-Calculus

http://ctp.di.fct.unl.pt/SLMC/

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

References II

M. Dam.

Model checking mobile processes.
Information and Computation, 129(1):35–51, 1996.

Y. Deng and D. Sangiorgi.

Ensuring termination by typability.
Information and Computation, 204(7):1045–1082, 2006.

J. Engelfriet and T. Gelsema.

Multisets and structural congruence of the pi-calculus with replication.
Theoretical Computer Science, 211(1-2):311–337, 1999.

J. Engelfriet and T. Gelsema.

A new natural structural congruence in the pi-calculus with replication.
Acta Informatica, 40(6):385–430, 2004.

G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore.

A model-checking verification environment for mobile processes.
ACM Transactions on Software Engineering and Methodology, 12(4):440–473, 2003.
HAL: http://fmt.isti.cnr.it:8080/hal/.

A. Finkel.

Reduction and covering of infinite reachability trees.
Information and Computation, 89(2):144–179, 1990.

Roland Meyer On Boundedness in Depth in the π-Calculus

http://fmt.isti.cnr.it:8080/hal/

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

References III

A. Finkel and Ph. Schnoebelen.

Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

G. Higman.

Ordering by divisibility in abstract algebras.
Proc. London Math. Soc. (3), 2(7):326–336, 1952.

R. Meyer.

A theory of structural stationarity in the π-calculus.
55 pages, submitted for publication, June 2008.

R. Milner.

Flowgraphs and flow algebras.
Journal of the Association for Computing Machinery, 26(4):794–818, 1979.

R. Milner.

Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

G. Milne and R. Milner.

Concurrent processes and their syntax.
Journal of the Association for Computing Machinery, 26(2):302–321, 1979.

Roland Meyer On Boundedness in Depth in the π-Calculus

A client/server system in the π-Calculus
Systems of bounded depth

From bounded depth to well-structured transition systems

Well-structured transition systems
Instantiation of the framework
Decidability results
Application to the client/server system

References IV

R. Milner, J. Parrow, and D. Walker.

A calculus of mobile processes, part I.
Information and Computation, 100(1):1–40, 1992.

D. Sangiorgi and D. Walker.

The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

N. Yoshida, M. Berger, and K. Honda.

Strong normalisation in the π-Calculus.
Information and Computation, 191(2):145–202, 2004.

Roland Meyer On Boundedness in Depth in the π-Calculus

	A client/server system in the -Calculus
	Systems of bounded depth
	Towards a notion of depth
	A graph-theoretic characterisation of boundedness in depth
	Examples

	From bounded depth to well-structured transition systems
	Well-structured transition systems
	Instantiation of the framework
	Decidability results
	Application to the client/server system

