

BERICHTE
������������	
���
��	�����	��
��

���������������������������� �!���"#$���"������	�#$�"%�""��"#$�����

&����"'�(��)����������""�����������������""����

�����������������"���*�������"��+������������

����#�����������������,
����$��-�.��#���"

	��������,��

��""��������

�������/0�/1�2���(�����0//1

�����3456�1034

Gutachter: Prof. Dr. E.-R. Olderog

Prof. Dr. E. Best

Prof. Dr. D. Sangiorgi (Uni Bologna)

Datum der Einreichung: 29.11.2008

Datum der Verteidigung: 20.02.2009

 © 2009 by the author

Author´s address:

Roland Meyer

Fakultät II, Department für Informatik

Abteilung „Entwicklung korrekter Systeme“

26111 Oldenburg

Germany

E-mail: Roland.Meyer@liafa.jussieu.fr

Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Structural Stationarity

in the π-Calculus

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von

Dipl.-Inform. Roland Meyer

Gutachter:

Prof. Dr. Ernst-Rüdiger Olderog

Prof. Dr. Eike Best

Prof. Dr. Davide Sangiorgi

Tag der Disputation: 20. Februar 2009

ii

Abstract

Dynamically reconfigurable systems (DRS) permeat our daily lifes, and their
importance in critical application areas where correct functionality is essential
increases. Home banking systems where a secure channel has to be established
between client and server prior to money transfers, may serve as an example.
Already the classical concurrent systems are difficult to design correctly. DRS
add to concurrency the problem of evolving connections between system compon-
ents. To ensure desired system behaviour, program verification techniques are an
established means. In particular computer-aided verification has received much
attention. This thesis presents finite representations for DRS modelled in the
π-Calculus, thus bridging the gap to existing automated verification techniques.

DRS are infinite-state systems with an unbounded number of components and
connections. Despite this unboundedness, a large class of DRS exhibits only fi-
nitely many patterns of connections at runtime. These systems are called struc-
turally stationary. We propose a semantical translation of structurally stationary
systems into finite place/transition Petri nets, which highlights the connection
patterns. With this structural semantics, structurally stationary systems inherit
all verification techniques and tools for Petri nets. To demonstrate that our
translation-based approach to verification is feasible in practice, we establish
correctness properties of different kinds for two industrial case studies.

To judge the expressiveness of structurally stationary systems, we present
two complete characterisations. The first proves structural stationarity for well-
known DRS classes from the literature and for finite handler systems, which we
design to model the client-server architectures in our case studies. The second
characterisation shows that structural stationarity is equivalent to boundedness
in the novel functions depth and breadth. The breadth of a DRS corresponds to
the connection degree of the components, while the depth measures their inter-
dependence. Searching for finite representations of these larger classes, we find
that systems of bounded depth have well-structured transition systems, where
properties can be decided on a finite prefix of the computation tree. For systems
of bounded breadth, we show Turing completeness.

Inspired by the decidability result, we aim at recovering a translation into fi-
nite place/transition Petri nets for systems of bounded depth. The approach

iii

is to combine the newly developed structural semantics with classical concur-
rency semantics. Although the resulting mixed semantics generalises the previous
translations, it does not cover all processes of bounded depth. By proving unde-
cidability of reachability, we show that a Petri net translation for the full class
does not exist. The undecidability result relies on a class of systems just beyond
the capabilities of the mixed semantics. In this sense, we find the borderline
between DRS and finite place/transition Petri nets.

iv

Zusammenfassung

Dynamisch rekonfigurierbare Systeme (DRS) sind allgegenwärtig und werden
zusehends selbst in kritischen Anwendungsgebieten eingesetzt, wo eine korrek-
te Funktionsweise unerlässlich ist. Als Beispiel sind Home-Banking-Systeme zu
nennen, bei denen vor einer jeden Überweisung zunächst eine sichere Verbindung
zwischen Client und Server zu erstellen ist. Schon das Design nebenläufiger Sys-
teme ist als sehr schwierig bekannt, bei DRS kommen noch die Probleme der sich
ändernden Verbindungsstrukturen hinzu. Um dennoch das gewünschte System-
verhalten sicherzustellen, haben sich Programmverifikationstechniken etabliert.
Insbesondere der computergestützten Verifikation wurde viel Aufmerksamkeit
geschenkt. In dieser Arbeit werden endliche Darstellungen für DRS vorgestellt,
welche die bestehende Lücke zwischen DRS und existierenden automatischen Ve-
rifikationsmethoden schließen. Als Modellierungssprache für DRS werden dabei
die Prozesse des π-Kalküls genutzt.

DRS sind zustandsunendliche Systeme, bei denen weder die Anzahl der Kom-
ponenten noch der Verbindungen beschränkt ist. Trotz dieser Unbeschränktheit
zeigen viele DRS während der Laufzeit nur endlich viele Verbindungsmuster.
Diese DRS heißen strukturell stationär. In der Arbeit wird eine semantische
Übersetzung von strukturell stationären Systemen in endliche Stellen-Transitions-
Petri-Netze vorgestellt, die die Verbindungsmuster betont. Mit dieser strukturel-
len Semantik erben strukturell stationäre Systeme alle Verifikationstechniken und
Tools für Petri-Netze. Um zu belegen, dass der vorgeschlagene übersetzungsba-
sierte Ansatz zur Verifikation tatsächlich für Systeme der Praxis durchführbar ist,
werden verschiedene Korrektheitseigenschaften für zwei industrielle Fallstudien
nachgewiesen.

Um die Ausdrucksmächtigkeit strukturell stationärer Systeme zu beurteilen,
werden zwei vollständige Charakterisierungen der Eigenschaft vorgestellt. Die
erste beweist strukturelle Stationarität für wohl-bekannte Klassen von DRS aus
der Literatur sowie für Finite-Handler-Systeme, die vorgestellt werden, um die
Client-Server-Architekturen der Fallstudien zu modellieren. Die zweite Charakte-
risierung zeigt, dass die Eigenschaft der strukturellen Stationarität äquivalent zur
Beschränktheit des Systems in den neuen Funktionen Tiefe und Breite ist. Die
Breite eines DRS entspricht dem Verbindungsgrad der Komponenten des System,

v

während die Tiefe deren wechselseitige Abhängigkeit misst. Bei der Suche nach
endlichen Darstellungen dieser größeren Systemklassen zeigt sich, dass Systeme
beschränkter Tiefe wohl-strukturierte Transitionssysteme haben, die es erlauben,
Systemeigenschaften auf endlichen Anfangsstücken der Berechnungsbäume zu
entscheiden. Für Systeme beschränkter Breite wird Berechnungsvollständigkeit
nachgewiesen.

Motiviert durch das Entscheidbarkeitsresultat, wird versucht, eine endliche
Petri-Netz Darstellung für die Systeme beschränkter Tiefe zu finden. Der An-
satz ist, die neu entwickelte strukturelle Semantik mit klassischen Nebenläufig-
keitssemantiken zu verknüpfen. Obwohl die resultierende gemischte Semantik die
vorherigen Übersetzungen verallgemeinert, kann sie doch nicht alle Systeme be-
schränkter Tiefe übersetzen. Durch einen Beweis der Unentscheidbarkeit der Er-
reichbarkeit für Systeme beschränkter Tiefe wird gezeigt, dass eine Übersetzung
der gesamten Klasse nicht existiert. Das Unentscheidbarkeitsresultat bedient sich
einer Klasse von Systemen, die gerade außerhalb der Fähigkeiten der gemisch-
ten Semantik liegen. In diesem Sinne zeigt die vorliegende Arbeit die Grenzlinie
zwischen DRS und endlichen Stellen-Transitions-Petri-Netzen auf.

vi

Acknowledgements

I am deeply indebted to Ernst-Rüdiger Olderog. As the professor of my very first
lectures he introduced me to the areas of program verification and concurrency
theory, as the supervisor of my thesis he freely shared his precious insights about
research with me. These discussions shaped the way I work and I am grateful for
everything I learned from him. Thank you for the beautiful years in your group,
the trips, the lunches and dinners, and all the fun we had!

My second supervisor Eike Best is the source of my fascination for Petri nets.
Thank you for guiding my interest to the topic! Eike and Maciej Koutny arranged
a visit for me to Newcastle from November to December 2008 and I am indebted
to both for the wonderful weeks. In Newcastle I met Victor Khomenko, to whom
I am grateful for all I learned in our joint work, for the beautiful dinners, and
for hosting my stay in March 2008. On a summer school 2006 I met Davide
Sangiorgi. His interest in an early version of my Petri net translation may have
saved me from discarding the idea. He later agreed to to review this thesis and
visited us in Oldenburg for the colloquium. I thank you for your efforts! With
Roberto Gorrieri I had numerous email discussions about expressiveness aspects
of process algebras, for which I am grateful.

Within the Correct System Design Group, my colleagues created a wonderful
working atmosphere. From Andreas Schäfer I learned a good deal about life and
work and I am happy we became good friends. Tim Strazny agreed to write his
Master’s thesis under my supervision and spent an incredible amount of work
on implementing the results presented here. As colleagues we shared whatever
lay on our hearts and I would not like to miss a single minute of discussion or
laughter. Thank you! To Sven Linker I am grateful for taking over my group
of mentees. I am indebted to Johannes Faber, Jochen Hoenicke, and Andrey
Rybalchenko for the (real-)time we shared in the AVACS R1 research project.
The AVACS S2 project on reconfigurable systems admitted me as a spy and I
benefitted from discussions with Tobe Toben, Bernd Westphal, and Jörg Kreiker.

My thanks also go to the remaining members of the theory division. To Michael
Möller for teaching me about graphics, to Hans Fleischhack and Elke Wilkeit for
remarks on results in this thesis, to Harro Wimmel for convincing me to take
Mathematics as subsidiary subject, to Sibylle Fröschle for arranging my visit

vii

to Edinburgh in December 2007, to André Platzer, Ingo Brückner, Jan-David
Quesel, Mani Swaminathan, and Margarete Muhle for lunch discussions, and to
Andrea Göken for help in administrative issues. I especially thank Annegret
Habel for introducing me to the area of reconfigurable systems.

As a PhD student in the Graduate school TrustSoft, I was surrounded by
friends who shared the ups and downs of being a PhD student. For pleasant
trips to Dagstuhl as well as nice parties I thank André van Hoorn, Astrid Rakow,
Christian Storm, Heiko Koziolek, Henrik Lipskoch, Jens Happe, Karl-Heinz Pen-
nemann, Kinga Kiss-Jakob, Malte Diehl, and Timo Warns. I thank our secretary
Ira Wempe for her friendship, travelling organisation, and moral support.

During my studies and throughout my PhD, I was supported by my friends
and family at home in Ostfriesland. I am indebted to Thorsten Müller, who kept
in touch no matter how many meetings I missed. I thank my mother Lydia Meyer
for insisting on and providing me with a good education. Thanks for everything
you took upon you! My foremost thanks go to my girlfriend Katrin Lambertus
for her constant love and support. You took all the worries from me and I would
not have made it through this thesis without you! I love you and feel the greatest
respect for you!

viii

Contents

List of Figures xiii

List of Tables xv

I Structural Stationarity 1

1 Introduction 3

1.1 Contribution . 4
1.2 Structure of the Thesis . 8
1.3 Related Approaches . 9

2 Preliminaries 11

2.1 π-Calculus . 12
2.1.1 Syntax . 13
2.1.2 Names and Substitutions 16
2.1.3 Structural Congruence . 20
2.1.4 Sequential Processes . 22
2.1.5 Standard Form . 24
2.1.6 Reaction Relation . 32
2.1.7 Proof of Proposition 2.1.38 36

2.2 Place/Transition Petri Nets . 40
2.2.1 Syntax and Semantics . 41
2.2.2 S-Invariants . 44
2.2.3 Unfoldings . 45
2.2.4 Coverability Trees . 47

3 A Structural Semantics for the π-Calculus 49

3.1 Idea of the Structural Semantics 51
3.2 Restricted Form . 52
3.3 Structural Semantics . 61
3.4 Full Retrievability and Full Abstraction 70

ix

Contents

3.5 Implementation Issues . 77
3.6 Related Work and Conclusion . 78

4 Structural Stationarity 83

4.1 Structural Stationarity and Finiteness 85
4.2 Derivatives . 86
4.3 A First Characterisation of Structural Stationarity 91
4.4 Finite Handler Processes . 97
4.5 Complexity- and Decidability-theoretic Aspects 107

4.5.1 From Petri nets to Structural Stationarity 108
4.5.2 Size of the Structural Semantics 114

4.6 Related Work and Conclusion . 117

II Reasoning in Structural Stationarity 121

5 Unfolding-based Model Checking of Finite Control Processes 123

5.1 Boundedness of Finite Control Process Nets 125
5.2 From Finite Control to Safe Processes 130
5.3 Optimality of the Translation . 136
5.4 Unfolding-based Model Checking 138
5.5 Experimental Results . 140
5.6 Related Work and Conclusion . 144

6 Case Studies 147

6.1 Car Platooning . 148
6.1.1 Modelling the Case Study 149
6.1.2 Occurrence Number Properties 152
6.1.3 Topological Properties . 153
6.1.4 Temporal Properties . 154

6.2 Autonomous Transport . 156
6.2.1 Modelling the Case Study 156
6.2.2 Temporal Properties . 159
6.2.3 Topological Properties . 164

6.3 Discussion of the Verification Approach 165
6.4 Related Work . 166

III Beyond Structural Stationarity 169

7 Depth and Breadth 171

7.1 From Processes to Hypergraphs 173
7.1.1 Hypergraphs . 173

x

Contents

7.1.2 Graph Interpretation of Processes 175
7.2 A Second Characterisation of Structural Stationarity 180
7.3 Anchored Fragments . 186
7.4 Characterisation of Boundedness in Depth 192
7.5 Characterisation of Breadth . 194
7.6 Applications . 198
7.7 Related Work and Conclusion . 200

8 Decidability in Bounded Depth and Undecidability in Bounded Breadth 203

8.1 Well-Quasi-Orderings and the Rooted Tree Embedding 205
8.2 Well-Structure and Decidability in Bounded Depth 211

8.2.1 An Adequate Well-Quasi-Ordering 212
8.2.2 Proof of Simulation . 222
8.2.3 Decidability Results . 227

8.3 Undecidability in Bounded Breadth 229
8.3.1 Counter Machines . 229
8.3.2 From Counter Machines to Bounded Breadth 230
8.3.3 Undecidability Results . 232

8.4 Related Work and Conclusion . 234

9 Structure and Concurrency 237

9.1 A Concurrency Semantics for the π-Calculus 239
9.1.1 Name-aware Transition System 239
9.1.2 Concurrency Semantics 242
9.1.3 Proofs of Lemma 9.1.6 and Lemma 9.1.9 250

9.2 Combining Structural and Concurrency Semantics 256
9.2.1 Mixed Normal Form . 257
9.2.2 Mixed Semantics . 260

9.3 Completeness of Mixed Boundedness 263
9.4 Related Work and Conclusion . 267

10 Conclusion 271

10.1 Summary . 271
10.2 Future Work . 273

Bibliography 275

Index 285

xi

xii

List of Figures

1.1 Illustration of structurally stationary systems 5
1.2 Structural semantics of a structurally stationary system 6
1.3 Illustration of boundedness in depth and breadth 7
1.4 Organisation of the thesis . 8

2.1 Milner’s interpretation of processes as flow graphs 13
2.2 Place/transition Petri net of a client/server system 41
2.3 An unfolding and a finite and complete prefix 46
2.4 An unbounded Petri net and its coverability tree 48

3.1 Graph interpretation of a process 52
3.2 Idea of the structural semantics 52
3.3 Illustration of unnecessary transitions 66
3.4 Structural semantics of an example process 68
3.5 Structural semantics of a closed process 69
3.6 Illustration of the transition system isomorphism in Theorem 3.4.3 71

4.1 Illustration of the behaviour of finite handler processes 98
4.2 Representation of Petri nets by structurally stationary processes 109
4.3 Illustration of the transition system isomorphism in Proposition 4.5.4111
4.4 A first hierarchy of processes . 118

5.1 Illustration of the approach to verification of FCPs 124
5.2 Illustration of Theorem 5.1.3 . 127
5.3 Structural semantics of a safe process 132
5.4 SAT encoding of a finite and complete prefix 139

6.1 Illustration of the merge manoeuvre 148
6.2 Structural semantics of the merge manoeuvre 151
6.3 Sketch of the transportation system 156

7.1 Illustration of the graph operations 174

xiii

List of Figures

7.2 Illustration of graph equivalence 176
7.3 Infinite structural semantics in unbounded breadth and depth . . 181
7.4 Reaction sequence illustrating unbounded breadth 181
7.5 Reaction sequence illustrating unbounded depth 182
7.6 Identifying and handling unboundedness in breadth 186
7.7 Illustration of the idea of anchored fragments 187
7.8 Illustration of Lemma 7.3.2 . 188
7.9 Illustration of Proposition 7.3.4 189
7.10 Graph of a list . 199
7.11 Graph of a bag . 199

8.1 Illustration of the rooted tree embedding 207
8.2 Finite reachability tree of a Petri net 211
8.3 Finite reachability tree of a process of bounded depth 228

9.1 Illustration of the bisimilarity in Lemma 9.1.6 241
9.2 Concurrency semantics of an example process 245
9.3 Structurally stationary and restriction bounded processes 249
9.4 Name-aware transition system of a tagged process 260
9.5 Mixed semantics of the bag data structure 261
9.6 Petri net with transfer modelling a test for zero 264
9.7 A more complete hierarchy of processes 268

xiv

List of Tables

2.1 Definition of free, active restricted, and bound names 17
2.2 Definition of function sf . 25
2.3 Definition of the reaction relation 33
2.4 Definition of the standard form reaction relation 37

3.1 Definition of function rf . 54
3.2 Definition of the structural semantics 65

5.1 Experimental results I . 141
5.2 Experimental results II . 142
5.3 Experimental results III . 143

6.1 π-Calculus model of the merge manoeuvre 150
6.2 Experimental results for the transportation system 161

8.1 Proof of undecidability of structural stationarity 233

9.1 Definition of the concurrency semantics 244

xv

xvi

Part I

Structural Stationarity

1

1 Introduction

Finally the checker has to verify that the process comes
to an end.

A. M. Turing 1949

The sentence is quoted from Turing’s paper Checking a Large Routine [MJ84].
The purpose of early computers was the calculation of mathematical functions.
Turing observed a large gap between the mathematical formulation and the actual
computation of a function with the commands available in a computer. To ensure
that a program computed the function it was designed for, Turing suggested to
give a mathematical proof. He advocated the following approach to program
development.

A programmer should annotate the code by assertions on the values of vari-
ables in the different program locations. A mathematician, called the checker,
then proves the assertions and shows that they entail correctness of the program’s
return value. According to Turing, correctness of a program should follow easily
from the assertions. As an example, he considers a program for computing the
factorial function and provides the corresponding table of assertions. They are
given in a detail, which makes the correctness proof a plain and simple calcula-
tion. It may have come to Turing’s mind to automate the procedure.

Turing’s article turned out prophetic. 60 years later, program verification is
an established branch of computer science. A prominent research topic in this
area is computer-aided verification, searching for algorithms that help a developer
proving correctness of a program. In 2007, the ACM Turing award was given to
the founders of a fully-automated verification technique, the roots of which lie in
the late 70s and early 80s where operating systems required new approaches to
verification.

In his seminal work, Turing pays particular attention to proving termination of
his factorial program. With the development of new operating systems, the style

3

Chapter 1 Introduction

computers were used changed. Instead of one, several programs were executed
concurrently—either on one processor by interleaving their threads of execution
or on separate processors. Moreover, the new operating systems were not meant
to terminate but to process smoothly a continuous flow of user programs [Dij68].
As a result, new problems—unique to concurrent systems—joined the classical
ones of correct computation and termination of the separate programs. It had to
be guaranteed that every program is eventually assigned the processor, and that
different programs synchronise their access to peripheral devices.

In [Pnu77], Pnueli unified the verification of both sequential and terminating
as well as concurrent and non-terminating programs, a contribution for which
he was awarded the ACM Turing award in 1996. Pnueli’s approach understands
computing systems in terms of their execution sequences. He then suggests to
specify correctness properties in the language of temporal logic, which explicitly
talks about temporal dependences between events in executions. Pnueli shows
that temporal logic captures in a natural way termination in sequential and non-
starvation or mutual exclusion in concurrent programs. Shortly afterwards, in
1981 Clarke and Emerson [CE81] and independently in 1982 Queille and Sifakis
[QS82] proposed the first algorithms that fully-automatically prove satisfaction
of a temporal logic property by a transition system. After 35 years, these still
called model checkers provided a substitute for Turing’s mathematician.

In 2008, it is common practice to realise client-server architectures, even for
critical applications like banking systems, over web interfaces. These new dy-
namically reconfigurable systems (DRS) are still concurrent in the sense that
they consist of several interacting programs. Different from the classical notion,
the number of interacting programs together with their connections—the con-
figuration—is not static but evolves over time.1 Like concurrent systems enjoy
problems not present in sequential programs, DRS introduce their own set of
obstacles. Most notably, correctness crucially depends on the connection topo-
logy, not only on the interaction of programs. For example, a secure channel
has to be established between client and server before money can be transferred.
Supported by this observation, we claim that DRS form the class of systems,
program verification has to face today. This thesis establishes a basis for their
computer-aided verification.

1.1 Contribution

Concurrent programs consist of finitely many components, each of which having
a finite state space. This finiteness assumption no longer holds for DRS, e.g.

1We argue that statically reconfigurable systems determine their configuration at startup,
e.g. operating systems configure according to the available peripheral devices.

4

1.1 Contribution

the number of clients trying to access a server is not bounded. In fact, DRS are
typically infinite-state systems.

Any automatic verification algorithm requires a finite representation of the
infinite state space of a DRS. This thesis provides such finite representations, in-
spired by the following elementary observation in client-server systems. Although
the number of connections between clients and server threads is not bounded,
there are (essentially) finitely many patterns of connections. DRS which satisfy
this constraint are called structurally stationary. Figure 1.1 gives an example of
a structurally stationary DRS. We stress that this decomposition of states into
connection patterns focuses on the distinctive feature in DRS: the evolving con-
nection structure. The interaction between system components, which was the
main concern in classical concurrent systems, has taken a back seat.

.

.

→ T → T → T T . . .

Figure 1.1:
A structurally stationary client-server system. A client (shown at the bottom
of the figure) contacts a server (shown at the top), which in response spawns
a thread (indicated by T) that handles the requests of the client. There are
three patterns of connections in the system: the client alone, the server alone,
and the connection between client and thread.

Exploiting the decomposition, we observe that structurally stationary DRS
are adequately reflected by finite place/transition Petri nets.2 The translation
is rather intuitive. For every possible connection pattern reachable in the DRS,
a place is created. For every occurrence of the structure in a state, a token is
added to the place. Transitions imitate the interactions between the groups of
programs, which lead to state changes. We call the resulting Petri net the struc-
tural semantics of the DRS, to highlight the difference to the ordinary transition
system semantics. For example, the structural semantics of the client-server
system above is depicted in Figure 1.2.

Our main results states that the structural semantics does not lose information.
The transition systems of DRS and Petri net are isomorphic, and the states of
the DRS can be obtained from the states of the Petri net. Hence, to establish

2A reader not familiar with Petri nets will find an introduction in Section 2.2. Finiteness

of a Petri net means finiteness of the sets of places and transitions, the state-space may
be infinite.

5

Chapter 1 Introduction

correctness of a DRS, we can compute its Petri net representation and verify the
latter with existing techniques. This approach has a number of advantages. It
does not depend on a concrete verification algorithm, but—with the structural
semantics—structurally stationary systems inherit all techniques and tools for
place/transition Petri nets. In particular, the positive results on verification of
infinite state Petri nets become applicable for structurally stationary system.
Finally, we demonstrate that correctness of connections, a crucial property in
DRS, can be established efficiently on our Petri net representation.

.

.

•

•

T

Figure 1.2:
Structural semantics of the structurally stationary client-server system in Fig-
ure 1.1. Note that the local connection between client and thread yields a
place.

To justify the claim that our translation-based approach in fact permits ef-
ficient automatic verification of structurally stationary systems, we conduct a
number of experiments. Most notably, we establish correctness of two realistic
case studies.

Since not every DRS is structurally stationary, we strive for an intuitive ex-
planation of the property. The main result is a complete characterisation, which
shows that structural stationarity is equivalent to boundedness in two dimen-
sions. Phrased differently, we prove that there are precisely two counterexamples
to structural stationarity. The first class of systems that fail build lists as il-
lustrated in Figure 1.3 (top). We say that these systems are not bounded in
depth. In systems of unbounded breadth, single programs are connected with an
unbounded number of components, Figure 1.3 (bottom).

Since important classes of systems, e.g. concurrent Java programs with broad-
cast mechanisms, are bounded in depth but not bounded in breadth, we investig-
ate decidability in systems where only one of the dimensions, depth or breadth, is
bounded. The outcome is that list structures (of unbounded depth but bounded
breadth) are Turing complete. For DRS of bounded depth but unbounded breadth,
we obtain a positive result: their transition systems are well-structured. Al-
though not finitely factorisable, the states can be equipped with an ordering

6

1.1 Contribution

relation, which allows us to compute a finite prefix of the infinite state space and
draw conclusions about all computations.

.

.

→ → . . .

T → T T → T T T . . .

Figure 1.3:
The system above is not bounded in depth but bounded in breadth, the sys-
tem below is bounded in depth but not bounded in breadth. Both fail to be
structurally stationary. For the system below, we recover a mixed Petri net
translation.

To maximise the benefit of Petri net verification techniques, we try to recover a
translation into Petri nets for systems of bounded depth. For concurrent systems,
Petri net semantics exist that highlight the interactions of programs. We define
a corresponding translation for DRS and observe that it finitely represents a
class of systems, which is incomparable with structurally stationary ones. We
then show that both, structural and concurrency semantics, can be combined
to a mixed translation. To give an example, the mixed translation detects the
invariant that threads and server are always connected in Figure 1.3 (bottom).
The connection is dropped and the system is translated into a Petri net similar
to that in Figure 1.2. The main result is that this mixed view yields the precise
borderline between DRS and Petri nets. Beyond this class, the transition systems
of DRS can no longer be represented by place/transition Petri nets. Note that
the border divides the systems of bounded depth.

To conclude the sketch of our contribution, we remark that before this thesis
no classification of DRS existed. As soon as they became infinite state, they
were considered Turing complete and approximate verification techniques were
applied. This thesis contains the first presentation of decidable infinite-state
DRS classes: structurally stationary, bounded in depth, bounded in breadth,
and mixed bounded. We believe such a classification is an indispensable tool
to judge hardness of the verification problem one is faced with, and to develop
computer-aided verification techniques for the classes beyond the scope of Petri
nets.

7

Chapter 1 Introduction

The introduction is kept general to emphasise that the theory of structural
stationarity is independent of the modelling language for DRS. We develop it
for the π-Calculus, but it should be extendable to graph grammars and object-
oriented programs as well.

1.2 Structure of the Thesis

The contributions in this thesis are obtained according to a list of criteria that
representations of DRS transition systems have to satisfy in order to be useful
for verification purposes. Every chapter is dedicated to a different aspect.

1 2 3 4

7 8 9

10

5 6

Figure 1.4: Organisation of the thesis.

After having recalled the basics on π-Calculus and Petri nets in Chapter 2, we
turn to the aspect of retrievability. In Chapter 3, we define the structural se-
mantics and show that a process and its Petri net representation have isomorphic
transition systems. Moreover, the reachable process terms can be retrieved from
the markings of the Petri net. This shows that the structural semantics contains
all information necessary to verify properties of the process.

To apply automatic verification techniques, the Petri net representation has
to be finite. We show that precisely the structurally stationary processes are
finitely represented under the structural semantics in Chapter 4. In order to
analyse a wide range of systems with help of our Petri net translation, we study
the expressiveness of the class of structurally stationary processes. The main
finding is a complete characterisation of structural stationarity, which shows that
important classes of processes known from the literature satisfy this constraint.

In Chapter 5, we develop a concrete verification approach to demonstrate that
properties of processes can be inferred efficiently using the structural semantics.
In Chapter 6, we verify two larger case studies, which also supports our claim
for analysability of the Petri net representation.

For the user of our translation, an intuitive understanding of whether it is
able to cope with the system class of interest is indispensable. In Chapter 7, we
prove that structural stationarity can be decomposed into boundedness in depth
and boundedness in breadth. For both process classes, we establish intuitive
graph-theoretic characterisations.

8

1.3 Related Approaches

For systems of bounded depth and systems of bounded breadth, we study
finite representations in Chapter 8. It turns out that systems of bounded depth
have well-structured transition systems, and thus properties like termination and
infinity of states can be decided on a finite prefix of the state space. Systems of
bounded breadth are shown to be Turing complete.

Inspired by the decidability results for systems of bounded depth, we aim at
maximising our translation into Petri nets. A Petri net semantics is maximal if
no immediate extension exists that translates a larger class of processes into finite
nets. In Chapter 9, we show how to combine the structural and the concurrency
view to DRS to a translation which is maximal in a strong sense. The class of
processes it finitely represents is complete with respect to finite place/transition
Petri nets. Chapter 10 concludes the thesis.

The dependency graph of the chapters is shown in Figure 1.4.

1.3 Related Approaches

While we discuss approaches related to our work at the end of every chapter,
this section gives a broad overview of related work on automatic verification
techniques for DRS. We stress that all of the discussed approaches are semi-
decision procedures based on abstractions. Our technique yields precise finite
representations of infinite-state systems that allow for decidability results.

Graph Grammars Graph grammars model states of DRS as graphs. Trans-
itions are defined by rewriting rules that identify a subgraph and replace it by a
different one. In [Bau06], the reachable graphs of a graph grammar are abstrac-
ted to finitely many instances by identifying neighbouring vertices of the same
type. Rensink suggests a combination of type graphs with logical formulae to ab-
stract graphs [Ren04]. In [KK06], an abstraction refinement technique for graph
grammars based on Petri nets is presented. The reachable graphs are abstracted
to a shape graph by merging vertices. This shape graph is accompanied by a
Petri net that has the edges of the shape graph as places so that tokens in the
Petri net count the occurrences of edges in concrete graphs. If the abstraction
yields a counterexample that cannot be concretised, the abstraction is refined by
computing new shape graphs that merge less vertices. An approach orthogonal
to verification is pursued in [EEHP06]. From a given safety property, application
conditions for rewriting rules are computed so that the modified graph grammar
is guaranteed to satisfy the requirement.

Graph-labelled Transition Systems In [Wes08], infinite-state graph-labelled
transition systems are abstracted to finite instances by a so-called spotlight ab-
straction. It chooses a set of vertices to reflect precisely (those in the spot-

9

Chapter 1 Introduction

light) and abstracts the remaining ones to a single entity [WW07]. In [BTW07],
the spotlight abstraction is refined by invariants generated from the analysis in
[Bau06]. Toben extends the spotlight abstraction method by a refinement cycle
[Tob08]. If the abstraction is to coarse to establish a temporal logic property,
two refinement techniques are applied. The spotlight is enlarged to keep track of
more entities and the abstract part is refined by taking into account the counter-
example.

Petri Nets In [DFS98], extended Petri net models are proposed where the
cardinality of an arc depends on the marking of the place. Dufourd et. al. show
that important problems like coverability remain decidable in these extensions
of place/transition Petri nets. The relationship of extended Petri nets with con-
structs in multithreaded JAVA programs is established by Delzanno and Raskin
in [DRB02]. They show that the broadcast mechanism notify all as well as the
non-blocking notify can be modelled adequately by Petri nets with transfer and
propose symbolic verification techniques. They continue with an investigation of
decidability of linear-time logics for Petri nets with transfer, which they settle
negatively in [RB04]. Further decidability and expressiveness results as well as
algorithmic improvements are given in the thesis of Geeraerts [Gee07].

10

2 Preliminaries

Contents
2.1 π-Calculus . 12

2.1.1 Syntax . 13

2.1.2 Names and Substitutions 16

2.1.3 Structural Congruence 20

2.1.4 Sequential Processes 22

2.1.5 Standard Form . 24

2.1.6 Reaction Relation 32

2.1.7 Proof of Proposition 2.1.38 36

2.2 Place/Transition Petri Nets 40

2.2.1 Syntax and Semantics 41

2.2.2 S-Invariants . 44

2.2.3 Unfoldings . 45

2.2.4 Coverability Trees 47

At the heart of the theory of structural stationarity is a mapping of π-Calculus
processes into place/transition Petri nets. Therefore, we recall both models in
this section. As we shall make extensive use of the structural congruence relation
for the π-Calculus we give it a clean definition and carefully investigate its prop-
erties. In particular, we define a function to compute Milner’s standard form,
which allows us to characterise structural congruence by an equivalence relation.

For place/transition Petri nets, we recall the theory of S-invariants, unfoldings,
and the coverability tree construction. While we need all of them in Part II
on verification, the coverability tree also serves us as an analogy for the finite
reachability tree introduced in Chapter 8.

11

Chapter 2 Preliminaries

2.1 π-Calculus

The π-Calculus is a process algebra for modelling DRS. The origins of process
algebras date back to the 1970s with Hoare’s algebra of Communicating Sequen-
tial Processes (CSP) [Hoa85] and Milner’s Calculus of Communicating Systems
(CCS) [Mil89]. Both lines of research were devoted to the study of the semantics
of concurrent systems—with the following observation. Communication, i.e.,
sending and simultaneous receiving of messages, is the fundamental computation
mechanism in concurrent systems. More complex mechanisms, e.g. semaphores,
can be derived from elementary communications.

In CSP and CCS, a communication corresponds to a synchronisation on a
channel. The π-Calculus was proposed by Milner, Parrow, and Walker [MPW92]
as extension of CCS, where communications exchange messages over channels.
For example, to transmit its IP address to a server located at some URL, a client
uses the output action url〈ip〉. Here, url is the channel on which the message ip
is sent. The input action url(x) of the server listens on channel url and replaces
variable x by the incoming message.

Transmission of data values was known to be encodable in CSP and CCS. The
idea in the π-Calculus is to let message and channel have the same type: they
are just names. Consequently, a message that is received in one communication
may serve as channel in the following. We extend the model of the server to
S = url(x).x〈ses〉. The server receives a channel x on url from the client. As a
reply to this message it sends a session ses on the received channel, i.e., to the
client. We also extend the client to receive the session: C = url〈ip〉.ip(y).

The concurrent execution of client and server is reflected by the parallel com-
position operator | . In the scenario above, the parallel composition is C | S =
url〈ip〉.ip(y) | url(x).x〈ses〉. Since a communication of C and S forms a compu-
tation step, it is denoted by the transition arrow:

url〈ip〉.ip(y) | url(x).x〈ses〉 → ip(y) | ip〈ses〉.

Milner suggests to understand processes as flow graphs [MM79, Mil79]. The
sequential processes yield nodes in the graph. The names in a process are mapped
to labelled points on the border of the node. Points with the same name are
connected by an edge. Intuitively, the names define the interface of a process, over
which it communicates with other processes. The flow graphs of the client/server
example are depicted in Figure 2.1. Note that the communication changes the
link structure. While in C | S client and server share channel url , they are
connected by ip in the next step.

In the example, the communication does not change the number of entities
in the system. To model object creation, the parallel composition operator can
be nested under prefixes. Combined with the observation that new connections

12

2.1 π-Calculus

C url

ip

Surl
ses

→ C’ ip S’ip
ses

Figure 2.1:
Interpretation of the client/server system as flow graphs. The graph of C | S
with C = url〈ip〉.ip(y) and S = url(x).x〈ses〉 is depicted to the left. A com-
munication yields the process C′ | S′ with C′ = ip(y) and S′ = ip〈ses〉. The
corresponding flow graph is depicted to the right.

can be established, we conclude that the evolution of connection structures over
time—the characteristic feature of DRS—is well-reflected in the π-Calculus.

Much research on process algebras—CSP, CCS, or the π-Calculus—has been
devoted to semantic models, their equivalences, and ordering relations between
them. We do not pursue this line of research, but take the operational semantics
of processes defined in terms of transition systems for granted. The contribution
of the present thesis are (1) representations of the transition systems and (2)
analysis methods for the transition systems that are based on the representation.

Before we turn to the definition, we remark that we work with a π-Calculus
variant with parameterised recursion that is proposed by Sangiorgi and Walker
in [SW01]. Our presentation and the notation follow the conventions therein.

2.1.1 Syntax

The basic elements of processes are names a, b, x, y in the infinite set of names
N . They are used as channels and messages in communications. Technically, we
define prefixes π of the form

π ::= x〈y〉 p x(y) p τ.

The output action prefix x〈y〉 sends name y along channel x, the input action
prefix x(y) receives a name via x that replaces y, and the silent prefix τ performs
an internal action.

Since we exchange single names in communications, the calculus is called mon-
adic. In a polyadic π-Calculus, lists of names can be sent in one communication.
The adaptation of the theory in this thesis to the polyadic π-Calculus is straight-
forward. Details can be found in the Master’s thesis of Tim Strazny [Str07],
who implemented the translation of π-Calculus into Petri nets for the polyadic
version in the tool Petruchio [SM08]. We prefer the basic model for its simpler
syntax. Since there is an encoding of polyadic into bisimilar monadic processes
[Mil99, SW01], monadic and polyadic π-Calculus are in fact equally expressive.

13

Chapter 2 Preliminaries

A finite sequence of names a1, . . . , an is abbreviated by ã and treated as a set
where required, i.e., ã =

Sn
i=1{ai}. To define parameterised recursion, we use

process identifiers K, L in the set of process identifiers ID. A process identifier
represents a process P via a recursive definition K(x̃) := P , where the elements
in x̃ are pairwise distinct. The term K⌊ã⌋ is a call to the process identifier,
which results in the process P with the names x̃ replaced by ã. The remaining
operators are standard; we recall their meaning.

The symbol 0 represents the stop process without any behaviour. A prefixed
process π.P offers the prefix π for communication and behaves like P when the
prefix is consumed. The choice between the prefixed processes in M and N is
represented by M + N . If a prefix π.P is chosen in a composition π.P + M , the
alternatives in M are forgotten. In a parallel composition P | Q, the processes
P and Q communicate via pairs of send and receive prefixes. The restriction
operator νa.P converts the name a in P into a private name. It is different from
all names in other processes.

Definition 2.1.1 (Syntax of the π-Calculus)
π-Calculus processes are typically denoted by P or Q. Their syntax is defined
inductively in two steps:

M ::= 0 p π.P p M1 + M2

P ::= M p K⌊ã⌋ p P1 | P2 p νa.P.

Every process relies on finitely many process identifiers K, each defined by an
equation K(x̃) := Q. The set of all π-Calculus processes is P. ¨

Convention 2.1.2 (Abbreviations and Precedences)
We use the following syntactic abbreviations and operator precedences.

1. A choice composition M = 0 + . . . + 0 is called empty and is denoted by
M=0. A non-empty choice composition contains a prefixed process π.P .
To indicate a choice composition is non-empty, we denote it by M 6=0.

2. We omit any pending 0, which means we write π instead of π.0.

3. A prefix a.P denotes a〈a〉.P . The counterpart is a.Q, which stands for
a(x).Q where x is unimportant for process Q. With Definition 2.1.9 this
means x is not in the free names of Q.

4. The natural numbers N contain 0, i.e, N := {0, 1, 2, . . .}.

5. With k, m, n ∈ N so that n ≥ m we define parallel compositions of multiple
terms:

ΠkP := P | . . . | P
| {z }

k times

14

2.1 π-Calculus

Πn
i=mPi := Pm | . . . | Pn

Πi∈IPi := Pi0 | . . . | Pim ,

where the index set I = {i0, . . . , im} ⊆ N is finite with i0 < . . . < im. If
k = 0, we let Π0P := 0 and similarly Πi∈∅Pi := 0.

6. A sequence of restrictions νa1 . . . νan.P is abbreviated by νã.P , where ã :=
a1, . . . , an.

To avoid brackets, we define that (1) prefix π binds stronger than choice compos-
ition + and (2) choice composition as well as restriction νa bind stronger than
parallel composition | . ¨

Our definition of choice composition uses only prefixed processes π.P as altern-
atives. In the literature, this well-accepted restriction is called guarded choice.
It ensures that before process Pi can be executed in π1.P1 + . . .+πn.Pn prefix πi

has to be consumed. The definition excludes choices of the form (P1 | P2)+P3 or
(νa.P)+Q. For the former process, it is known to be hard to define suitable Petri
net semantics [Old91] and it is considered of minor practical importance [SW01].
The latter process causes problems in the definition of normal forms. A more
elaborate structural congruence would allow for using the general syntax, but
also complicate the theoretical development. Moreover, the decision for guarded
choice does not delimit the computational expressiveness of the calculus.

Restricting the use of the remaining operators—restriction, recursion, and par-
allel composition—yields three syntactic subclasses of π-Calculus. Restriction-
free processes are built without using the restriction operator. Amadio and
Meyssonnier proved them to be computationally equivalent to Petri nets in
[AM02]. We recall their construction in Section 4.5 when we investigate the
size of the Petri nets resulting from our translation of structurally stationary
processes.

Definition 2.1.3 (Restriction-Free Process)
A process P ∈ P is restriction-free, if it is built from the syntax in Definition 2.1.1
without using νa.P . ¨

Recursion-free processes, also known as finite terms, do not use any recursion.
Much research has been devoted to finding axiomatisations and proof systems
for behavioural relations (e.g. bisimilarity) on these terms. A presentation of the
main results can be found in [SW01]. In [DKK06a], a translation of recursion-free
processes into high-level Petri nets is given. We discuss the work of Koutny et.
al. in Section 3.6.

15

Chapter 2 Preliminaries

Definition 2.1.4 (Recursion-Free Process)
A process P ∈ P is recursion-free, it is built from the syntax in Definition 2.1.1
except calls to process identifiers K⌊ã⌋. ¨

Mads Dam gave a model checking algorithm and a sound and complete proof
system for verifying so-called finite control processes against modal µ-calculus
formulas in [Dam96]. Finite control processes restrict the use of parallel compos-
itions.

Definition 2.1.5 (Finite Control Process)
A finite control process has the form νã.(P1 | . . . | Pn) where the Pi do not use
the parallel composition operator, i.e., they are built from the syntax in Defin-
ition 2.1.1 without P1 | P2. In particular, parallel compositions are forbidden
within recursive definitions, i.e., in Q where K(x̃) := Q. ¨

To study the size of the Petri net translation, we define the size of a process.
We sum up the lengths of the terms in all defining equations and the length of
the main process. Note that prefixes π yield length two for channel and message.

Definition 2.1.6 (|| − || : P → N)
Consider process P ∈ P which uses the defining equations Ki(x̃i) := Qi with
1 ≤ i ≤ n. The size of P is ||P || := len(P) + Σn

i=1len(Ki(x̃i) := Qi), where
function len : P → N is defined by

len(0) := 1 len(π.P) := 2 + len(P)

len(M + N) := len(M) + 1 + len(N) len(K⌊ã⌋) := 1 + |ã|

len(P | Q) := len(P) + 1 + len(Q) len(νa.P) := 1 + len(P)

len(K(x̃) := P) := 1 + |x̃| + len(P).

Here, |x̃| is the length of the list, for example n for x̃ = x1, . . . , xn. ¨

2.1.2 Names and Substitutions

We mentioned that a name a, which occurs in the scope of a restriction νa, is
different from all other names in the process under consideration. To ensure
this disjointness, we define ν to bind the name a. We then allow for renaming
bound names by α-conversion. Similarly, in a prefixed process a(y).P the receive
action a(y) binds the name y in P . Intuitively, y is a variable which has not yet
received a concrete value and should be assumed different from all other names
in the process.

16

2.1 π-Calculus

Definition 2.1.7 (bn : P → P(N))
The function bn : P → P(N) computes the set of bound names in a process as
defined in Table 2.1. ¨

bn(0) := ∅ bn(τ.P) := bn(P)

bn(a〈b〉.P) := bn(P) bn(a(y).P) := {y} ∪ bn(P)

bn(M + N) := bn(M) ∪ bn(N) bn(K⌊ã⌋) := ∅

bn(P | Q) := bn(P) ∪ bn(Q) bn(νa.P) := {a} ∪ bn(P).

arn(M) := ∅ arn(K⌊ã⌋) := ∅

arn(P | Q) := arn(P) ∪ arn(Q) arn(νa.P) := {a} ∪ arn(P).

fn(0) := ∅ fn(τ.P) := fn(P)

fn(a〈b〉.P) := {a, b} ∪ fn(P) fn(a(y).P) := {a} ∪ (fn(P) \ {y})

fn(M + N) := fn(M) ∪ fn(N) fn(K⌊ã⌋) := ã

fn(P | Q) := fn(P) ∪ fn(Q) fn(νa.P) := fn(P) \ {a}.

Table 2.1: Definition of bn, arn, and fn.

Of particular interest in the theory of structurally stationary processes are
those restricted names that are not covered by a prefix. We call them active
restricted names or just active restrictions. For example, in the process

νa.(a〈b〉.νc.a〈c〉 | a(x) | K⌊b⌋)

the restriction νa is active while νc is not as it is covered by the prefix a〈b〉.

Definition 2.1.8 (arn : P → P(N))
The set of active restricted names in a process is computed by the function arn
in Table 2.1. ¨

The active restricted names are a subset of the bound names of a process, i.e.,
arn(P) ⊆ bn(P) holds. Active restrictions connect the processes that use the
name. In the example above, νa connects a〈b〉.νc.a〈c〉 and a(x), but not K⌊b⌋. In
Section 3.2, we formalise the idea of connecting processes by active restrictions.
To make the notion of using a name precise, we define free names. A name that

17

Chapter 2 Preliminaries

is not bound by an input action or a restriction is free in a process. The function
fn collects all free names; it is the counterpart to bn defined above.

Definition 2.1.9 (fn : P → P(N))
The function fn : P → P(N) yields the set of free names in a process as defined
in Table 2.1. We say that process P uses the name a, if a ∈ fn(P) holds. ¨

In the literature, processes without free names are known as closed processes.
In Section 3.3, we show that our structural semantics translates them into a
subclass of Petri nets.

Definition 2.1.10 (Closed Process)
A process P ∈ P is closed if fn(P) = ∅. ¨

Since we will permit α-conversion of bound names, we assume without loss of
generality (1) that all bound names are different and (2) that bound names and
free names do not interfere. So, we forbid the following two processes

νa.a〈b〉 | b(a) b(a) | a(x).

In the first, the name a is bound twice; in the second process, the name a occurs
bound in b(a) and free in a(x). With α-conversion we can rewrite the first
process to νa.a〈b〉 | b(c) and the second to b(c) | a(x), both of which respect the
conventions.

Convention 2.1.11 (Disjointness of Names)
Consider process P ∈ P with the defining equations Ki(x̃i) := Pi for 1 ≤ i ≤ n.
We formalise three requirements.

(1) The free names in a defining process are included in the parameter list,
fn(Pi) ⊆ x̃i for all 1 ≤ i ≤ n.

(2) Bound and free names are always disjoint, i.e., fn(Q) ∩ bn(R) = ∅ for all
Q, R ∈ {P, P1, . . . , Pn}.

(3) The main process as well as all defining equations use disjoint sets of bound
names: bn(Q) ∩ bn(R) = ∅ for all Q, R ∈ {P, P1, . . . , Pn} with Q 6= R

Unless otherwise stated, a name is bound at most once in a process. This means
for νx.P and a(x).P we have x /∈ bn(P). For P | Q we get bn(P) ∩ bn(Q) = ∅.
Combined with Requirement (3) this ensures that a name is bound at most once
in a process and in all the defining equations. ¨

Technically, α-conversion of a bound name a to c means changing the process
νa.P to νc.P ′, where every free occurrence of a in P is replaced by c in P ′. As

18

2.1 π-Calculus

an example, νa.a(x) can be α-converted to νc.c(x). To rename free names in a
process, we use substitutions.

Definition 2.1.12 (σ : N → N)
A substitution σ is a mapping from names to names, σ : N → N . Let xσ
denote the image of x under σ. If we give domain and codomain, σ : A → B
with A, B ⊆ N , we demand xσ ∈ B if x ∈ A and xσ = x otherwise. An
explicitly defined substitution σ = {a1, . . . , an/x1, . . . , xn} maps xi to ai, i.e.,
σ : {x1, . . . , xn} → {a1, . . . , an} with xiσ = ai. ¨

An application of a substitution σ to a process P results in a new process Pσ,
where all free names in P are changed according to σ. For example, applying σ =
{a, b/x, y} to νc.x〈y〉 yields (νc.x〈y〉)σ = νc.a〈b〉. To ensure that substitutions
do not introduce new bindings, we assume that the names in the substitution σ
do not interfere with the bound names in the process σ is applied to.

Convention 2.1.13 (Substitution)
If we apply a substitution σ : A → B to a process P , we demand the names in σ
to be disjoint from the bound names in P , i.e., (A ∪ B) ∩ bn(P) = ∅. ¨

Definition 2.1.14 (Application of Substitutions)
Consider a substitution σ : A → B and a process P ∈ P with (A∪B)∩bn(P) = ∅.
The application of σ to P results in a new process Pσ defined by

0σ := 0 (τ.P)σ := τ.(Pσ)

(x(y).P)σ := xσ(y).(Pσ) (x〈y〉.P)σ := xσ〈yσ〉.(Pσ)

(M + N)σ := Mσ + Nσ K⌊ã⌋σ := K⌊ãσ⌋

(P | Q)σ := Pσ | Qσ (νa.P)σ := νa.(Pσ).

¨

In Section 4.2, we construct substitutions σ and have to show that their codo-
main is correct, i.e., we prove σ : fn(P) → A for some set A. The following
lemma provides a proof technique for this problem. To show σ maps fn(P) to A
it is sufficient to apply σ to P and then check whether the free names in Pσ are
in A.

Lemma 2.1.15 (Proof Technique for the Codomain of Substitutions)
For every process P ∈ P and every substitution σ with domain fn(P) we have:
σ : fn(P) → A if and only if fn(Pσ) ⊆ A.

Lemma 2.1.15 follows from the compatibility of applications of substitutions

19

Chapter 2 Preliminaries

with the computation of the free names in a process. Lemma 2.1.16 can be shown
by an induction on the structure of processes.

Lemma 2.1.16
For every process P ∈ P and substitution σ the equality fn(Pσ) = fn(P)σ holds.

Proof (of Lemma 2.1.15)
Consider P ∈ P and substitution σ with domain fn(P). The following equival-
ences hold:

σ : fn(P) → A

(Def. (co)domain) ⇔ fn(P)σ ⊆ A

(Lemma 2.1.16) ⇔ fn(Pσ) ⊆ A.

This proves the claim. ¥

2.1.3 Structural Congruence

To give an operational semantics to a process algebra, the behaviour of every
process has to be defined. To keep the definition of the transition relation simple,
Berry and Boudol suggested to define only the transitions of representative terms
and use a second relation to relate processes with representatives [BB90]. It
is then demanded that a process behaves like its representative. Intuitively,
the definition of the operational semantics is factorised into the definition of a
transition and a structural relation.

Berry and Boudol called the approach chemical abstract machine with the
following idea. Processes are chemical molecules that change their structure.
Changing the structure heats molecules up or cools them down. Only heated
molecules react with one another, which changes their state.

The π-Calculus semantics that exploits the chemical abstract machine idea was
introduced by Milner in [Mil92]. He called the relation to identify processes with
representatives structural congruence and the name is still in use. Many results
in this thesis exploit the invariance of the transition relation under structural
rewriting.1 Without the idea of Berry and Boudol and Milner’s adaptation to
the π-Calculus, the results in this thesis would not have been possible.

Before we turn to the definition of structural congruence ≡ ⊆ P × P, we
recall that a congruence relation is an equivalence which is compatible with the

1For example the definition of the restricted form and the structural semantics in Chapter 3,
or the theory of depth and breadth and anchored fragments in Chapter 7.

20

2.1 π-Calculus

operators of the algebra under study. That ≡ is an equivalence means we have

∀P ∈ P : P ≡ P (Reflexivity)

∀P, Q ∈ P : P ≡ Q implies Q ≡ P (Symmetry)

∀P, Q, R ∈ P : P ≡ Q and Q ≡ R implies P ≡ R. (Transitivity)

That structural congruence is a congruence means it is preserved under compos-
ition, using any of the operators:

∀P, Q, M ∈ P : ∀π : P ≡ Q implies π.P + M ≡ π.Q + M

∀P, Q, R ∈ P : P ≡ Q implies P | R ≡ Q | R

∀P, Q ∈ P : ∀a ∈ N : P ≡ Q implies νa.P ≡ νa.Q.

Note that the operands of choice compositions are guarded in our setting, hence
P + M is no valid term unless P = π.P ′. For the latter case, congruence is
demanded by the first implication. Note also that this implication in particular
requires π.P ≡ π.Q when M = 0.

Definition 2.1.17 (Structural Congruence)
Structural congruence ≡ ⊆ P × P is the least congruence relation on processes,
which allows for α-converting bound names, i.e.,

νx.P ≡ νy.(P{y/x}) a(x).P ≡ a(y).(P{y/x}),

where in both cases {y}∩ (fn(P)∪ bn(P)) = ∅, where + and | are commutative
and associative with 0 as neutral element, i.e.,

M + 0 ≡ M M1 + M2 ≡ M2 + M1

M1 + (M2 + M3) ≡ (M1 + M2) + M3

P | 0 ≡ P P1 | P2 ≡ P2 | P1

P1 | (P2 | P3) ≡ (P1 | P2) | P3,

and restriction is a commutative quantifier that is absorbed by 0 and whose scope
can be shrunk and extruded over processes not using the quantified name:

νx.νy.P ≡ νy.νx.P νx.0 ≡ 0

νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn(P).

The latter law is called scope extrusion. ¨

For the implementation of our Petri net translation it is important to note that
structural congruence is decidable in our setting. In particular, we encode calls
to process identifiers K⌊a⌋ into the reaction relation (Definition 2.1.34) to obtain
this decidability. For a structural congruence that is extended by K⌊ã⌋ ≡ P{ã/x̃}
where K(x̃) := P decidability is far from trivial.

21

Chapter 2 Preliminaries

Theorem 2.1.18 ([KM09])
For all P, Q ∈ P it is decidable whether P ≡ Q holds and the problem is graph
isomorphism complete. If P and Q are (1) restriction-free or (2) contain neither
parallel nor choice composition, then the problem P ≡ Q can be decided in time
polynomial in the size of P and Q.

To reduce P ≡ Q to graph isomorphism, Khomenko and the author give a
reduction to a term equality problem that is known to be reducible to labelled
digraph isomorphism [Bas94]. In practical tools for π-Calculus verification like
MWB [VM94], HAL [FGMP03], the Spatial Logic Model Checker [Cai04],
or Petruchio [SM08], structural congruence is a basic task to be solved when
computing the state space of a process, or the Petri net representation in case of
Petruchio. So the efficiency of a tool crucially depends on the efficiency of the
structural congruence checker. Therefore, in [KM09] reduction techniques for the
graphs resulting from Basin’s construction are presented, which exploit specific
features of π-Calculus terms. Example graphs were reduced from 60/63 to 26/38
vertices and edges. Off-the-shelf graph isomorphism checkers could then be used
in black-box fashion to decide graph isomorphism of the reduced graphs.

We shall need some properties of structural congruence. The relation allows
for removing unused restricted names, i.e., νa.P ≡ P if a /∈ fn(P) is a derived
rule. The fact is well-known; we quote the proof from [SW01]:

νa.P ≡ νa.(P | 0) ≡ P | νa.0 ≡ P | 0 ≡ P.

We also need that structural congruence preserves the free names in a process.
We quote this result from Milner’s book and remark that he uses a structural con-
gruence that expands the definition of process identifiers. Hence, our congruence
is included in his version and the result still holds in our setting.

Lemma 2.1.19 (Invariance of fn under ≡, [Mil99])
For all P, Q ∈ P we have: P ≡ Q implies fn(P) = fn(Q).

2.1.4 Sequential Processes

Of particular interest in the theory of structural stationarity are sequential pro-
cesses, i.e., non-empty sums M 6=0 and calls to process identifiers K⌊ã⌋. Intuit-
ively, the behaviour of sequential processes determines the behaviour of composed
processes. It should be noted that a process K⌊ã⌋ always yields a reaction in
the reaction relation defined below. Therefore it is justified to call it sequential
regardless of its definition, which may be K(x̃) := P | Q. We use the function
S : P → P(P) to refer to the sequential processes inside a given process.

22

2.1 π-Calculus

Definition 2.1.20 (S : P → P(P))
The set of sequential processes in a process P ∈ P is S(P) defined by

S(M=0) := ∅ S(M 6=0) := {M 6=0}

S(K⌊ã⌋) := {K⌊ã⌋} S(P | Q) := S(P) ∪ S(Q)

S(νa.P) := S(P).

¨

The application of substitutions is compatible with the computation of the
sequential processes.

Lemma 2.1.21
Given P ∈ P and σ : fn(P) → N , then S(Pσ) = S(P)σ holds.

We also need that the free names of a sequential process in P are included in
the active restrictions and free names of P .

Lemma 2.1.22
For every process P ∈ P and every Q ∈ S(P) we have fn(Q) ⊆ fn(P) ∪ arn(P).

Formally, the number of sequential processes is defined by counting the non-
empty sums and process identifiers, e.g. ||νb.(b(x) | K⌊a, b⌋)||S = 2.

Definition 2.1.23 (|| − ||S : P → N)
The number of sequential processes inside P ∈ P is ||P ||S , defined inductively:

||M=0||S := 0 ||M 6=0||S := 1

||K⌊ã⌋||S := 1 ||P | Q||S := ||P ||S + ||Q||S

||νa.P ||S := ||P ||S .

¨

The function is invariant under structural congruence. This follows from an
induction on the derivations of structural congruence.

Lemma 2.1.24 (Invariance of || − ||S under ≡)
Consider P, Q ∈ P. If P ≡ Q then ||P ||S = ||Q||S .

23

Chapter 2 Preliminaries

2.1.5 Standard Form

The chemical abstract machine approach only defines transitions of representative
processes. In the π-Calculus, processes in Milner’s standard form are well-known
representatives [Mil99, SW01]. Lemma 2.1.43 shows that the reaction relation is
essentially defined for processes in standard form. The behaviour of the remaining
processes can be derived from theirs using structural congruence.

The idea of the standard form is to maximise the scopes of active restricted
names. This yields processes of the form νã.P , where P is a parallel composition
of choices and calls to process identifiers. Empty choices are then removed from
P . Similarly, names a ∈ ã that are not used in P are erased. For example,
νc.(a(x) | 0) | νb.a〈b〉 is not in standard form but νb.(a(x) | a〈b〉) is.

Definition 2.1.25 (Process in Standard Form)
A process in standard form is typically denoted by P sf or Qsf and built from the
following syntax:

P 6=ν ::= M 6=0
p K⌊ã⌋ p P 6=ν

1 | P 6=ν
2

P sf ::= 0 p P 6=ν
p νa.P sf

with a ∈ fn(P sf). The set of all processes in standard form is Psf . ¨

The name suggests that the syntax in Definition 2.1.25 is a normal form for
processes. This means any process is related to a process in standard form by
structural congruence. In the proof, we use the function sf .

Definition 2.1.26 (sf : P → Psf)
The function sf : P → Psf computes for every P ∈ P a process sf (P) ∈ Psf as
defined in Table 2.2. We call sf (P) the standard form of P . ¨

Example 2.1.27 (sf : P → Psf)
Consider the process νc.(a(x) | 0) | νb.a〈b〉. The definition of sf (P | Q) recurs-
ively computes

sf (νc.(a(x) | 0)) = sf (a(x) | 0) = a(x)

sf (νb.a〈b〉) = νb.sf (a〈b〉) = νb.a〈b〉.

The function then maximises the scope of νb:

sf (νc.(a(x) | 0) | νb.a〈b〉) = νb.(a(x) | a〈b〉).

¨

24

2.1 π-Calculus

sf (M=0) := 0 sf (M 6=0) := M 6=0 sf (K⌊ã⌋) := K⌊ã⌋

sf (νa.P) :=

(

νa.sf (P), if a ∈ fn(P)

sf (P), if a /∈ fn(P)

sf (P | Q) :=

8

>>>>>><

>>>>>>:

0, if sf (P) = 0 = sf (Q)

sf (P), if sf (P) 6= 0 = sf (Q)

sf (Q), if sf (P) = 0 6= sf (Q)

νãP .νãQ.(P 6=ν | Q 6=ν), if sf (P) = νãP .P 6=ν

and sf (Q) = νãQ.Q 6=ν .

Table 2.2: Definition of function sf .

Lemma 2.1.28 shows that the codomain of sf is correct, i.e., sf (P) is in fact in
Psf . It furthermore proves that a process and its standard form are related by
structural congruence as required. We shall also need that sf does not change
the sequential processes as well as the active restrictions. To see this, recall that
we assume a name to be bound at most once and the bound names to be disjoint
with the free names. Hence, α-conversion is not required in the computation
of sf (P) and the statement holds. Finally, sf is the identity on processes in
standard form.

Lemma 2.1.28 (Properties of sf)
For every P ∈ P we have the following properties: sf (P) ∈ Psf , P ≡ sf (P),
S(P) = S(sf (P)), arn(sf (P)) ⊆ arn(P), and sf (Pσ) = sf (P)σ. For processes
P sf ∈ Psf the equality sf (P sf) = P sf holds.

Proof
We proceed by induction on the structure of processes. The base cases of empty
sums M=0, non-empty sums M 6=0, and calls to process identifiers K⌊ã⌋ are
trivial. We turn to the induction step and assume the desired properties hold for
P and Q.

Case P | Q Since sf (P) and sf (Q) are included in Psf , we have sf (P) =
νãP .P 6=ν or sf (P) = 0 and similar for sf (Q). Let both standard forms be differ-
ent from 0, the remaining cases are trivial. We compute

sf (P | Q) = νãP .νãQ.(P 6=ν | Q 6=ν) ∈ Psf .

To see that the inclusion holds, we observe that ãP ⊆ fn(P 6=ν) by the hypothesis

25

Chapter 2 Preliminaries

and fn(P 6=ν) ⊆ fn(P 6=ν | Q 6=ν) by definition of fn. For ãQ we argue similarly.
We now prove structural congruence:

P | Q

(P ≡ sf (P) by hypothesis, sf (P) = νãP .P 6=ν) ≡ νãP .P 6=ν | Q.

We assume bn(P | Q) ∩ fn(P | Q) = ∅, so in particular arn(P) ∩ fn(Q) = ∅.
By the hypothesis, we have ãP = arn(sf (P)) ⊆ arn(P). Thus, we conclude
ãP ∩ fn(Q) = ∅ and we can extrude the scope of ãP :

(Scope extrusion) ≡ νãP .(P 6=ν | Q)

(Q ≡ sf (Q) by hypothesis, sf (Q) = νãQ.Q 6=ν) ≡ νãP .(P 6=ν | νãQ.Q 6=ν).

To extrude the scope of ãQ, we need to ensure that ãQ ∩ fn(P 6=ν) = ∅. Consider
a name a ∈ fn(P 6=ν) with a ∈ ãP . We assume that a name is bound at most
once in P | Q, so bn(P)∩ bn(Q) = ∅. Since ãP = arn(sf (P)) ⊆ arn(P) ⊆ bn(P)
and similar for ãQ, we conclude that ãP ∩ ãQ = ∅. Hence, a /∈ ãQ. Assume that
a /∈ ãP , then a ∈ fn(νãP .P 6=ν) = fn(sf (P)). With the congruence sf (P) ≡ P and
the invariance of free names under structural congruence we conclude a ∈ fn(P).
Since ãQ ⊆ bn(Q) and bn(Q) ∩ fn(P) = ∅, we conclude a /∈ ãQ. Summing up,
we have ãQ ∩ fn(P 6=ν) = ∅, which allows us to extrude the scope of ãQ:

(Scope extrusion) ≡ νãP .νãQ.(P 6=ν | Q 6=ν)

(Def. sf , form of sf (P) and sf (Q)) = sf (P | Q).

For the sequential processes we compute

S(P | Q)

(Def. S) = S(P) ∪ S(Q)

(Hypothesis) = S(sf (P)) ∪ S(sf (Q))

(sf (P) = νãP .P 6=ν and sf (Q) = νãQ.Q 6=ν) = S(νãP .P 6=ν) ∪ S(νãQ.Q 6=ν)

(Def. S) = S(P 6=ν) ∪ S(Q 6=ν)

(Def. S) = S(νãP .νãQ.(P 6=ν | Q 6=ν))

(Def. sf , form of sf (P) and sf (Q)) = S(sf (P | Q)).

To check the active restrictions, we start with the standard form of P | Q and
show that the active restrictions are included in arn(P | Q):

arn(sf (P | Q))

(Def. sf , form of sf (P) and sf (Q)) = arn(νãP .νãQ.(P 6=ν | Q 6=ν))

(Def. arn, P 6=ν , and Q 6=ν) = ãP ∪ ãQ

(Def. arn, form of sf (P) and sf (Q)) = arn(sf (P)) ∪ arn(sf (Q))

26

2.1 π-Calculus

(Hypothesis) ⊆ arn(P) ∪ arn(Q)

(Def. arn) = arn(P | Q).

We need to take care of substitutions. With the hypothesis, we have

sf (Pσ) = sf (P)σ = (νãP .P 6=ν)σ = νãP .(P 6=νσ),

where the second equation holds with the assumption on the form of sf (P) and
the third uses the definition of substitution application. We compute

sf (P | Q)σ

(Def. sf , form of sf (P) and sf (Q)) = (νãP .νãQ.(P 6=ν | Q 6=ν))σ

(Applic. σ) = νãP .νãQ.(P 6=νσ | Q6=νσ)

(Observation above, def. sf) = sf (Pσ | Qσ)

(Applic. σ) = sf ((P | Q)σ).

Case νa.P We distinguish between a /∈ fn(P) and a ∈ fn(P) and begin with
the latter. By definition of sf and the assumption that sf (P) = νãP .P 6=ν we
derive

sf (νa.P) = νa.sf (P) ∈ Psf .

To justify the inclusion νa.sf (P) ∈ Psf , we argue that a ∈ fn(sf (P)) with the
invariance of fn under structural congruence and the hypothesis P ≡ sf (P).
Structural congruence νa.P ≡ sf (νa.P) is immediate with the hypothesis P ≡
sf (P) and the fact that ≡ is a congruence:

νa.P ≡ νa.sf (P) = sf (νa.P).

The following equations show that the sequential processes coincide:

S(νa.P) = S(P) = S(sf (P)) = S(νa.sf (P)) = S(sf (νa.P)).

They hold with the definition of S, the hypothesis, again the definition of S, and
the definition of sf .

For the active restrictions, we first apply the definition of sf and then the
definition of arn. This yields the first of the following equations. We continue
with an application of the hypothesis. The last equation again holds by definition
of arn:

arn(sf (νa.P)) = {a} ∪ arn(sf (P)) ⊆ {a} ∪ arn(P) = arn(νa.P).

To show that sf ((νa.P)σ) = sf (νa.P)σ, we apply the substitution and then use
the definition of sf , which gives the first two equations. We continue with an

27

Chapter 2 Preliminaries

application of the hypothesis to justify the third equation. The fourth holds with
the definition of substitution application and the definition of sf :

sf ((νa.P)σ) = sf (νa.(Pσ)) = νa.sf (Pσ) = νa.(sf (P)σ) = sf (νa.P)σ.

In case a /∈ fn(P) we have sf (νa.P) = sf (P). So in this case the subset
relation but not equality holds between arn(sf (νa.P)) and arn(νa.P). The re-
maining properties are established similar to the preceding case.

Identity on Psf We use induction on the structure of processes in standard
form. Recall that 0 is an empty sum M=0, so the claim holds with sf (M=0) = 0.
For M 6=0 and K⌊ã⌋ equality holds by definition of sf .

In the induction step, we assume that sf (P 6=ν) = P 6=ν and similar for Q 6=ν .
For the parallel composition, we get sf (P 6=ν | Q 6=ν) = P 6=ν | Q 6=ν since both
sequences of names, ãP and ãQ, are empty.

In case of restriction νa.P sf with a ∈ fn(P sf), we have

sf (νa.P sf) = νa.sf (P sf) = νa.P sf .

The first equation holds by definition of sf , the second relies on the hypothesis.
This concludes the proof. ¥

Structurally congruent processes do not have the same standard form, i.e.,
P ≡ Q does not imply sf (P) = sf (Q).

Example 2.1.29 (sf is not invariant under ≡)
Consider the following structurally congruent processes P ≡ Q1 ≡ Q2 ≡ Q3:

P = a(x) | νb.a〈b〉 sf (P) = νb.(a(x) | a〈b〉)

Q1 = νb.a〈b〉 | a(x) sf (Q1) = νb.(a〈b〉 | a(x))

Q2 = a(y) | νb.a〈b〉 sf (Q2) = νb.(a(y) | a〈b〉)

Q3 = a(x) | νc.a〈c〉 sf (Q3) = νc.(a(x) | a〈c〉).

The standard form of P is syntactically different from the standard form of any
Qi, i.e., sf (P) 6= sf (Qi) for i = 1, 2, 3. ¨

Example 2.1.29 suggests that the standard forms of structurally congruent
processes P and Q differ in three respects. If sf (P) = νãP .P 6=ν and sf (Q) =
νãQ.Q 6=ν , then the sequential processes in P 6=ν may be rearranged in Q 6=ν . The
second example shows that sequential processes in P 6=ν may be replaced by struc-
turally congruent ones in Q6=ν . Finally, if P ≡ Q is derived with α-conversion
then there is a substitution σ renaming ãQ to ãP . The relation that permits these
transformations on processes in standard form is called standard equivalence.

28

2.1 π-Calculus

Definition 2.1.30 (Standard Equivalence)
Standard equivalence ≡sf ⊆ Psf ×Psf is the smallest equivalence on processes in
standard form where parallel composition is commutative and associative,

νã.(P 6=ν
1 | P 6=ν

2) ≡sf νã.(P 6=ν
2 | P 6=ν

1)

νã.(P 6=ν
1 | (P 6=ν

2 | P 6=ν
3)) ≡sf νã.((P 6=ν

1 | P 6=ν
2) | P 6=ν

3),

where restriction is commutative and restricted names may be alpha-converted,

νx.νy.P sf ≡sf νy.νx.P sf νx.P sf ≡sf νy.(P sf {y/x})

with {y}∩(fn(P sf)∪bn(P sf)) = ∅, and where non-empty choices may be replaced
by structurally congruent ones

νã.(M 6=0 | P 6=ν) ≡sf νã.(N 6=0 | P 6=ν)

with M 6=0 ≡ N 6=0 and P 6=ν optional. ¨

It is immediate to check sf (P) ≡sf sf (Qi) for i = 1, 2, 3 in Example 2.1.29. Pro-
position 2.1.31 shows that the standard forms of structurally congruent processes
are always related by standard equivalence, P ≡ Q implies sf (P) ≡sf sf (Q).
Function sf is invariant under structural congruence up to standard equivalence.
While the proof of this implication is a cumbersome induction on the derivations
of structural congruence, the reverse direction, sf (P) ≡sf sf (Q) implies P ≡ Q,
holds by definition of ≡sf and Lemma 2.1.28. Combined, the implications show
that standard equivalence of sf (P) and sf (Q) characterises structural congruence
of P and Q.

Proposition 2.1.31 (Characterisation of ≡ with ≡sf)
For all P, Q ∈ P we have P ≡ Q if and only if sf (P) ≡sf sf (Q).

With Proposition 2.1.31 and Lemma 2.1.28, structural congruence and stand-
ard equivalence coincide on processes in standard form.

Corollary 2.1.32 (≡ and ≡sf coincide on Psf)
For P sf , Qsf ∈ Psf we have P sf ≡ Qsf if and only if P sf ≡sf Qsf .

Proof
With Proposition 2.1.31, we have P sf ≡ Qsf if and only if sf (P sf) ≡sf sf (Qsf).
According to Lemma 2.1.28, sf is the identity on Psf , i.e., sf (P sf) = P sf . Hence,
sf (P sf) ≡sf sf (Qsf) if and only if P sf ≡sf Qsf . ¥

Standard equivalence enjoys the property that the active restrictions in νãP .P 6=ν

and νãQ.Q 6=ν can be assumed to be identical. The proof of Lemma 2.1.33 is by

29

Chapter 2 Preliminaries

induction on the derivations of standard equivalence and requires the observation
that standard equivalence is preserved under the application of substitutions.

Lemma 2.1.33
Consider P sf , Qsf ∈ Psf with P sf = νãP .P 6=ν ≡sf νãQ.Q 6=ν = Qsf . Then there
is a bijective substitution σ : ãQ → ãP so that Q 6=νσ ≡sf P 6=ν holds.

Proof (of Proposition 2.1.31)
⇒ We proceed by induction on the derivations of structural congruence.

Base Cases We consider the axioms of structural congruence.

Case α-conversion Consider νx.P ≡ νy.P{y/x} with {y}∩(fn(P)∪bn(P)) = ∅.
The case x /∈ fn(P) is trivial. If x ∈ fn(P) we get y ∈ fn(P{y/x}) and thus

sf (νx.P)

(Def. sf) = νx.sf (P)

(α-conversion in ≡sf) ≡sf νy.(sf (P){y/x})

(Lemma 2.1.28: sf (P){y/x} = sf (P{y/x})) = νy.sf (P{y/x})

(Def. sf) = sf (νy.(P{y/x})).

α-conversion of input prefixes yields structurally congruent choices that are non-
empty. Thus ≡sf follows with M 6=0 ≡sf N 6=0 where M 6=0 ≡ N 6=0.

Case + The rule M 6=0 ≡sf N 6=0 if M 6=0 ≡ N 6=0 also yields standard equi-
valence for rewriting non-empty choices using associativity or commutativity of
+ or 0 as neutral element. For empty choices equality holds by definition of sf .

Case | The proof for 0 as neutral element is straightforward. We consider
commutativity of parallel composition, P | Q ≡ Q | P , the proof for associativity
is similar. Let sf (P) = νãP .P 6=ν and sf (Q) = νãQ.Q 6=ν , the remaining cases
when at least one of the standard forms is 0 are trivial:

sf (P | Q)

(Def. sf , form of sf (P) and sf (Q)) = νãP .νãQ.(P 6=ν | Q 6=ν)

(Commut. | and ν in ≡sf) ≡sf νãQ.νãP .(Q 6=ν | P 6=ν)

(Def. sf , form of sf (Q) and sf (P)) = sf (Q | P).

Case ν The proofs for commutativity and 0 as absorbing element are imme-
diate with the definition of sf . The last axiom is scope extrusion. We assume
sf (P) = νãP .P 6=ν and sf (Q) = νãQ.Q 6=ν with a ∈ fn(Q) and a /∈ fn(P). The

30

2.1 π-Calculus

remaining cases are simpler:

sf (νa.(P | Q))

(Def. sf , form of sf (P) and sf (Q)) = νa.νãP .νãQ.(P 6=ν | Q 6=ν)

(Commut. ν in ≡sf) ≡sf νãP .νa.νãQ.(P 6=ν | Q 6=ν)

(Def. sf , form of sf (P) and sf (Q)) = sf (P | νa.Q).

Induction Step We assume that P ≡ Q implies sf (P) ≡sf sf (Q) and similar
for Q ≡ R. Since ≡sf is an equivalence, we immediately have that for symmetry
sf (Q) ≡sf sf (P) and for transitivity sf (P) ≡sf sf (R) holds. The congruence rule
π.P + M ≡ π.Q + M is trivial.

Case | For the parallel composition P | R ≡ Q | R, let sf (R) = νãR.R 6=ν and
sf (P) = νãP .P 6=ν ≡sf νãQ.Q 6=ν = sf (Q):

sf (Q | R)

(Def. sf , form of sf (Q) and sf (R)) = νãQ.νãR.(Q 6=ν | R 6=ν)

(α-convert ãQ to ãP with σ, Lemma 2.1.33) ≡sf νãP .(νãR.(Q 6=ν | R 6=ν))σ

(Applic. σ) = νãP .νãR.(Q 6=νσ | R 6=νσ)

= νãP .νãR.(Q 6=νσ | R 6=ν).

The last equation requires some explanation. Since we consider Q | R, we have
bn(Q)∩ bn(R) = ∅ and bn(Q)∩ fn(R) = ∅ by Convention 2.1.11. The domain of
σ is ãQ = arn(sf (Q)) ⊆ arn(Q) ⊆ bn(Q). The free names in R 6=ν are either in
ãR ⊆ bn(R) or in fn(R). In both cases, the domain of σ is disjoint with the free
names of R 6=ν and R 6=νσ = R 6=ν holds.

To continue our equivalence we assume Q 6=ν = Πn
i=1Qi, where the Qi are

choices or calls to process identifiers. With the definition of substitution ap-
plication we derive Q 6=νσ = Πn

i=1Qiσ. Since Q6=νσ ≡sf P 6=ν by Lemma 2.1.33,
the definition of standard equivalence yields P 6=ν = Πn

i=1Pi so that there is
a bijection φ between the Qiσ and the Pi with Qiσ ≡sf Pφ(i). Without loss
of generality, we assume the processes Pj ordered so that Qiσ ≡sf Pi. We
continue the equivalence by replacing all Qiσ by processes Pi using the rule
νã.(M 6=0 | P 6=ν) ≡ νã.(N 6=0 | P 6=ν) with M 6=0 ≡ N 6=0. Note that a similar
rule holds for calls to process identifiers as K⌊ã⌋ is only structurally congruent
with itself2 and νã.(K⌊ã⌋ | P 6=ν) ≡sf νã.(K⌊ã⌋ | P 6=ν) by reflexivity of standard
equivalence:

(Form of Q 6=ν) = νãP .νãR.(Q1σ | Πn
i=2Qiσ | R 6=ν)

(Discussion above: Q1σ ≡ P1) ≡sf νãP .νãR.(P1 | Πn
i=2Qiσ | R 6=ν)

2This holds because we removed all restrictions, in general K⌊ã⌋ ≡ νb.K⌊ã⌋ with b /∈
fn(K⌊ã⌋).

31

Chapter 2 Preliminaries

(Assoc. and commut. |) ≡sf νãP .νãR.(Q2σ | P1 | Πn
i=3Qiσ | R 6=ν)

(Replace the remaining Qiσ) ≡sf νãP .νãR.(P 6=ν | R 6=ν)

(Def. sf , form sf (P) and sf (R)) = sf (P | R).

Case ν We consider the restrictions νa.P ≡ νa.Q where a ∈ fn(P) = fn(Q).
If a is not in the free names, standard equivalence follows from the definition
of sf and the hypothesis. Let sf (P) = νãP .P 6=ν and sf (Q) = νãQ.Q 6=ν . Since
by the hypothesis νãP .P 6=ν ≡sf νãQ.Q 6=ν , Lemma 2.1.33 gives a substitution
σ : ãQ → ãP so that Q 6=νσ ≡sf P 6=ν . We then replace Q 6=νσ by P 6=ν like we did
in the case of parallel composition. More precisely, the following equations prove
sf (νa.Q) ≡sf sf (νa.P):

sf (νa.Q)

(Def. sf , form of sf (Q)) = νa.νãQ.Q 6=ν

(Commut. ν in ≡sf) ≡sf νãQ.νa.Q 6=ν

(α-convert ãQ to ãP with σ in Lemma 2.1.33) ≡sf νãP .(νa.Q 6=ν)σ

(Applic. σ) ≡sf νãP .νa.(Q6=νσ)

(Replace Q 6=νσ by P 6=ν) ≡sf νãP .νa.P 6=ν

(Commut. ν) ≡sf νa.νãP .P 6=ν

(Def. sf , form of sf (P)) = sf (νa.P).

⇐ All rules making up standard equivalence hold for structural congruence.
Hence, sf (P) ≡sf sf (Q) implies sf (P) ≡ sf (Q). Lemma 2.1.28 yields P ≡ sf (P)
and similar for Q. Transitivity of structural congruence gives P ≡ Q. ¥

2.1.6 Reaction Relation

The behaviour of π-Calculus processes is defined by the so-called reaction relation
→ ⊆ P ×P. The inclusion (P, Q) ∈ →, typically denoted by P → Q, represents
a communication of sequential processes in P , which results in process Q. Hence,
the reaction relation models internal system behaviour. The systems we consider
are also called closed as they do not interact with an external environment.

Besides the reaction relation, the labelled transition relation is commonly used
as operational semantics for the π-Calculus (see, e.g. [Mil99, SW01]). Here,
processes receive messages from an unknown environment and send messages
outside the system. So, the labelled transition relation models open systems that
communicate with any environment they are plugged into.

We prefer the reaction semantics for two reasons. First, the definition of the
labelled transition relation is more involved, which distracts the reader from the

32

2.1 π-Calculus

basic ideas underlying the theory of structural stationarity—which is very much
concerned with the structure of processes. Second, open systems can be imitated
in the reaction semantics by explicitly composing an environment process in
parallel with the system under study.

The definition of the reaction relation uses the structural approach to opera-
tional semantics [Plo81]. Plotkin argues that the states of a transition system,
like that of a program or that of a π-Calculus process, have a syntactic struc-
ture. They are compositions of basic elements using a set of operators. He then
proposes to define transitions between these structured states by a proof system:
a transition exists iff it is provable in the proof system. In order to define the
behaviour of every state, the proof system uses induction on their structure. It
comprises (1) axioms that define the transitions of basic elements and (2) proof
rules that define the transitions of composed states from the transitions of the
operands. The benefit of structural operational semantics is their simplicity and
elegance combined with the possibility to establish properties of transitions by
induction on the derivations.

Definition 2.1.34 (Reaction Relation)
The reaction relation → ⊆ P × P is defined by the rules in Table 2.3. Let the
reflexive and transitive closure be →∗ ⊆ P ×P. For a process P ∈ P, we define
the set of reachable processes to be Reach(P) := {Q ∈ P p P →∗ Q}. ¨

(Tau) τ.P + M → P

(React) x(y).P + M | x〈z〉.Q + N → P{z/y} | Q

(Const) K⌊ã⌋ → P{ã/x̃}, if K(x̃) := P

(Par)
P → P ′

P | Q → P ′ | Q
(Res)

P → P ′

νa.P → νa.P ′

(Struct)
P → P ′

Q → Q′
, if P ≡ Q and P ′ ≡ Q′.

Table 2.3: Rules defining the reaction relation → ⊆ P ×P.

Different from Plotkin’s classical approach where the proof system only relies
on the transition relation, Definition 2.1.34 makes use of the chemical abstract
machine idea (cf. Section 2.1.3). All rules except (Struct) define the transitions
of representative processes. Rule (Struct) then postulates that a process can do
all transitions of the representative it is related to by structural congruence.

33

Chapter 2 Preliminaries

Example 2.1.35 (Reaction Relation)
Consider b(y).y(z) | νh.b〈h〉.h〈b〉. Scope extrusion and neutrality of 0 for + yield

b(y).y(z) | νh.b〈h〉.h〈b〉 ≡ νh.(b(y).y(z) + 0 | b〈h〉.h〈b〉 + 0).

We apply Axiom (React) followed by Rule (Res):

b(y).y(z) + 0 | b〈h〉.h〈b〉 + 0 → h(z) | h〈b〉

νh.(b(y).y(z) + 0 | b〈h〉.h〈b〉 + 0) → νh.(h(z) | h〈b〉).

Using structural congruence, we may insert arbitrarily many 0:

νh.(h(z) | h〈b〉) ≡ νh.(h(z) | h〈b〉) | 0 ≡ νh.(h(z) | h〈b〉) | 0 | 0.

The reaction and the two congruences allow us to apply Rule (Struct):

b(y).y(z) | νh.b〈h〉.h〈b〉 → νh.(h(z) | h〈b〉) | 0 | 0.

¨

Before we continue with deeper investigations of the reaction relation, we
define terminating processes and state the fact that reactions do not generate
free names.

Definition 2.1.36 (Terminating Process)
A process P ∈ P terminates if every reaction sequence P → P ′ → P ′′ → . . . is
finite. ¨

Lemma 2.1.37
For all P, Q ∈ P with P → Q the inclusion fn(Q) ⊆ fn(P) holds.

In Example 2.1.35, we were lucky to rewrite the process b(y).y(z) | νh.b〈h〉.h〈b〉
in a way that revealed a reaction. To establish properties about all reactions of
a process requires a notion of completeness, a certainty that we considered every
behaviour the process can exhibit. Proposition 2.1.38 completely characterises
all possible reactions of a process in standard form. We explain the intuition.

In a process P sf = νã.P 6=ν in standard form, the scopes of the active restric-
tions νã are maximal. Hence, they do not prevent communications. Processes
that are covered by prefixes do not have a reaction. So, we expect P sf to perform
a reaction P sf → Q if and only if one of the following holds.

(1) The process contains a choice composition with a τ prefix that is consumed
by the reaction, i.e., we have

P sf = νã.(P 6=ν
1 | M + τ.P + N | P 6=ν

2)

34

2.1 π-Calculus

Q ≡ νã.(P 6=ν
1 | P | P 6=ν

2)

for some (possibly empty) set of names ã and some processes P 6=ν
1 , P 6=ν

2 , M, N
that are optional, i.e., that can be missing.

(2) The second possibility for a reaction is that a process identifier K with
K(x̃) := P calls its defining equation. In this case, we have

P sf = νã.(P 6=ν
1 | K⌊ã⌋ | P 6=ν

2)

Q ≡ νã.(P 6=ν
1 | P{ã/x̃} | P 6=ν

2),

again for some set of names ã and some processes P 6=ν
1 , P 6=ν

2 that may be
missing.

(3) The last possibility is that a send prefix x〈z〉.P1 sends the name z to a
prefixed process x(y).P2. In this case, P sf and Q are of the following form:

P sf = νã.(P 6=ν
1 | M1 + x〈z〉.P1 + N1 | P 6=ν

2 | M2 + x(y).P2 + N2 | P 6=ν
3)

Q ≡ νã.(P 6=ν
1 | P1 | P 6=ν

2 | P2{z/y} | P 6=ν
3),

for some set ã, some names x, y, z, and some processes P 6=ν
1 , P 6=ν

2 , P 6=ν
3 ,

M1, M2, N1, N2 that are all optional. It is not necessary that the send-
ing process M1 + x〈z〉.P1 + N1 precedes the receiving one in the parallel
composition. We may as well have

P sf = νã.(P 6=ν
1 | M2 + x(y).P2 + N2 | P 6=ν

2 | M1 + x〈z〉.P1 + N1 | P 6=ν
3)

Q ≡ νã.(P 6=ν
1 | P2{z/y} | P 6=ν

2 | P1 | P 6=ν
3).

but without loss of generality we only consider the first form.

Proposition 2.1.38
For P sf ∈ Psf and Q ∈ P we have: P sf → Q if and only if (1), (2), or (3) holds.

We defer the proof of Proposition 2.1.38 until the separate Section 2.1.7. Ex-
ample 2.1.35 illustrates that the use of structural congruence within the reaction
relation and the ability to introduce processes 0 under structural congruence
yields infinitely many Q with P → Q. The reaction relation is not image-finite.
But the processes Q in the example are all structurally congruent. In fact, an
application of Proposition 2.1.38 shows that for a process P sf in standard form
the reaction relation is image-finite up to structural congruence. This means P sf

can only react to finitely many different processes Q1, . . . , Qn, where different
means they are not structurally congruent.3 Since an arbitrary process P ∈ P

3Proposition 2.1.38 reveals the finitely many processes Qi that have to be chosen. They are
given by the right hand sides of the structural congruences in (1), (2), and (3).

35

Chapter 2 Preliminaries

reacts to process Q if and only if its standard form sf (P) ∈ Psf does the reaction,
we conclude that the reaction relation is in general image-finite up to structural
congruence.

Lemma 2.1.39
The reaction relation → ⊆ P × P is image-finite up to structural congruence,
i.e., for every process P ∈ P the following holds:

∃{Q1, . . . , Qn} ⊆ P : ∀Q ∈ P : P → Q implies ∃i : Q ≡ Qi.

Lemma 2.1.39 is important in the theory of structurally stationary processes
as it guarantees finiteness of the Petri net representation. It also indicates that
the transition system created by the reaction relation should be factorised along
structural congruence to give semantics to a process. Without the factorisation,
the transition system is infinitely branching but as the branches are structurally
congruent they show the same behaviour by Rule (Struct).

Technically, a transition system is a triple (S, Ã, s0) with states S, transition
relation Ã ⊆ S × S, and initial state s0 ∈ S. We draw transition systems as
graphs where the states are vertices, transitions are directed edges, and the initial
state has an incoming edge. An example is given in Figure 3.6.

Definition 2.1.40 (Transition System of a Process)
The transition system of a process P is T (P) := (Reach(P)/≡,→T , [P]) where
→T ⊆ Reach(P)/≡ × Reach(P)/≡ with [Q] →T [Q′] iff Q → Q′. ¨

2.1.7 Proof of Proposition 2.1.38

Due to the use of structural congruence within the reaction relation, the proof
of Proposition 2.1.38 is intricate. In a monadic π-Calculus with replication, we
could apply the Harmony Lemma of Sangiorgi and Walker [SW01]. It states that
the reactions of the π-Calculus correspond to the τ -labelled transitions modulo
structural congruence. We could then conduct an induction on the derivations
of transitions to establish the form of processes resulting from τ -transitions.

For the theory of structurally stationary processes, it is beneficial to employ
a variant of the π-Calculus with recursion. Thus, the Harmony Lemma can-
not be applied directly. We could reprove it in our setting and then proceed
as sketched above. The drawback is that this requires the introduction of the
labelled transition relation. Furthermore, the proof of the Harmony Lemma is
long and non-trivial.

Therefore, we give a different proof of Proposition 2.1.38. In Lemma 2.1.43,
we show that any reaction of a process corresponds to a reaction of a process

36

2.1 π-Calculus

in standard form, which can be derived without (Struct). More precisely, the
process in standard form uses a so-called standard form reaction relation →sf ⊆
Psf ×P. It is inspired by Sangiorgi’s and Walker’s idea of normalised derivations,
which follow a particular pattern. Rule (Par) is always applied before (Res), and
only in the end Rule (Struct) is used.

Definition 2.1.41 (→sf ⊆ Psf × P)
The standard form reaction relation →sf ⊆ Psf ×P consists of the Axioms (Tausf),
(Reactsf), and (Constsf), which are identical with (Tau), (React), and (Const)
but for →sf , and the Rules (Parsf) and (Ressf) in Table 2.4. ¨

(Parsf)
P 6=ν →sf P ′

P 6=ν | Q 6=ν →sf P ′ | Q 6=ν
(Ressf)

P sf →sf P ′

νa.P sf →sf νa.P ′
, a ∈ fn(P sf)

Table 2.4:
Rules defining the standard form reaction relation →sf ⊆ Psf × P.

The relation is actually well-defined, i.e., the left hand side of P →sf Q is
always in standard form. Since →sf does not rely on structural congruence,
we can establish the precise form of processes Q resulting from standard form
reactions by induction.

Lemma 2.1.42
For all P sf ∈ Psf and Q ∈ P we have P sf →sf Q if and only if

(a) P sf = νã.(K⌊ã⌋ | P 6=ν) and Q = νã.(P{ã/x̃} | P 6=ν) with K(x̃) := P ,

(b) P sf = νã.(τ.P + M | P 6=ν) and Q = νã.(P | P 6=ν), or

(c) P sf = νã.(x(y).P1 + M1 | x〈z〉.P2 + M2 | P 6=ν) and
Q = νã.(P1{z/y} | P2 | P 6=ν)

for some process P 6=ν and some set of names ã that are both optional.

We now state the mentioned correspondence of the reaction and the standard
form reaction relation.

Lemma 2.1.43 (Characterisation of → by ≡→sf ≡)
For all P, Q ∈ P the following equivalence holds: P → Q if and only if P sf →sf Q′

for some P sf ∈ Psf and Q′ ∈ P with P ≡ P sf and Q ≡ Q′.

Proof
⇐ Since P sf →sf Q′ implies P sf → Q′, we get P → Q with Rule (Struct).

37

Chapter 2 Preliminaries

⇒ We use induction on the derivations of →. The base cases are given by
the Axioms (Tau), (React), and (Const), each of which is countered by the cor-
responding axiom indexed by sf .

Induction Step Assume we have for P → Q a derivation P sf →sf Q′ with
P ≡ P sf and Q ≡ Q′.

Case P | R → Q | R We compute the standard form R ≡ sf (R) = νãR.R 6=ν .
Let P sf be the process νãP .P 6=ν , where we can assume ãP ∩ (fn(R)∪ bn(R)) = ∅
with Lemma 2.1.42. The lemma also reveals that νãP .P 6=ν →sf Q′ implies
Q′ = νãP .Q′′ with P 6=ν →sf Q′′. An application of Rule (Parsf) followed by
several applications of (Ressf) that we contract to one gives:

P 6=ν →sf Q′′

P 6=ν | R 6=ν →sf Q′′ | R 6=ν

νãP .νãR.(P 6=ν | R 6=ν) →sf νãP .νãR.(Q′′ | R 6=ν).

It remains to show structural congruence of P | R and νãP .νãR.(P 6=ν | R 6=ν).
By the hypothesis P ≡ P sf = νãP .P 6=ν . We showed above that R ≡ νãR.R 6=ν

holds. Scope extrusion now yields the congruence (cf. the proof of Lemma 2.1.28
to see why the disjointness assumption validates the scope extrusion). Similarly,
we get Q | R ≡ νãP .νãR.(Q′′ | R 6=ν).

Case νa.P → νa.Q If a /∈ fn(P) then a /∈ fn(Q) by Lemma 2.1.37. We
thus have νa.P ≡ P ≡ P sf and νa.Q ≡ Q ≡ Q′ with P sf →sf Q′. If a ∈ fn(P),
we have a ∈ fn(P sf) by the invariance of free names under structural congruence.
Hence, νa.P sf is in standard form. Furthermore, νa.P sf →sf νa.Q′ with (Ressf).
That νa.P ≡ νa.P sf and νa.Q′ ≡ νa.Q by the hypothesis concludes the case.

For a derivation with Rule (Struct) the claim holds trivially by the hypothesis
and transitivity of structural congruence. ¥

With the help of Lemma 2.1.43 and Lemma 2.1.42, we establish Proposi-
tion 2.1.38.

Proof (of Proposition 2.1.38)
The implication from right to left is immediate. We prove the reverse direction.
With Lemma 2.1.43, P sf → Q implies there is a process Rsf →sf Q′ with P sf ≡
Rsf and Q ≡ Q′. Lemma 2.1.42 gives precise information about the form of Rsf

and Q′. We only consider Case (c) the remaining cases are simpler:

Rsf = νãR.(x(y).R1 + M1 | x〈z〉.R2 + M2 | R 6=ν)

Q′ = νãR.(R1{z/y} | R2 | R 6=ν).

38

2.1 π-Calculus

By Corollary 2.1.32, structural congruence P sf ≡ Rsf implies standard equival-
ence P sf ≡sf Rsf . Let P sf be the process νãP .P 6=ν . Lemma 2.1.33 guarantees
the existence of a substitution σ : ãR → ãP so that

(x(y).R1 + M1 | x〈z〉.R2 + M2 | R 6=ν)σ

(Applic. σ) = xσ(y).R1σ + M1σ | xσ〈zσ〉.R2σ + M2σ | R 6=νσ

(Choice of σ) ≡sf P 6=ν .

By definition of standard equivalence, there is a bijection between the sequential
processes in xσ(y).R1σ + M1σ | xσ〈zσ〉.R2σ + M2σ | R 6=νσ and the sequential
processes in P 6=ν . This means we have

P 6=ν = P 6=ν
1 | N1 | P 6=ν

2 | N2 | P 6=ν
3 ,

where P 6=ν
1 | P 6=ν

2 | P 6=ν
3 is structurally congruent with R 6=νσ. Since R 6=νσ need

not be split into three parts, each of the P 6=ν
i may be missing. Moreover, N1 is

structurally congruent with xσ(y).R1σ + M1σ and N2 is structurally congruent
with xσ〈zσ〉.R2σ + M2σ or vice versa. By definition of structural congruence,
N1 ≡ xσ(y).R1σ + M1σ implies N1 is a choice composition

N1 = N1
1 + xσ(y′).R′

1 + N2
1 ,

where N1
1 and N2

1 may be missing and R′
1 ≡ R1σ{y

′/y} holds. We argue similarly
for N2 and get

N2 = N1
2 + xσ〈zσ〉.R′

2 + N2
2 ,

again with optional choices N1
2 and N2

2 and R′
2 ≡ R2σ. This shows that P sf is

of the desired form:

P sf = νãP .(P 6=ν
1 | N1

1 + xσ(y′).R′
1 + N2

1 | P 6=ν
2 | N1

2 + xσ〈zσ〉.R′
2 + N2

2 | P 6=ν
3).

We now consider Q and show that it is structurally congruent with the process

νãP .(P 6=ν
1 | R′

1{zσ/y′} | P 6=ν
2 | R′

2 | P 6=ν
3).

The idea is to apply the substitution σ : ãR → ãP to process Q′ from Lemma 2.1.43
and show that Q′ is structurally congruent with a process of the desired form.
Then, by transitivity of structural congruence, the statement holds for Q:

Q′

(Form of Q′) = νãR.(R1{z/y} | R2 | R 6=ν)

(α-conversion) ≡ νãP .((R1{z/y} | R2 | R 6=ν)σ)

(Applic. σ) = νãP .(R1{z/y}σ | R2σ | R 6=νσ)

(Explained below) = νãP .(R1σ{zσ/y} | R2σ | R 6=νσ)

39

Chapter 2 Preliminaries

(Composition of σ) = νãP .(R1σ{y
′/y}{zσ/y′} | R2σ | R 6=νσ)

(R1σ{y
′/y} ≡ R′

1) ≡ νãP .(R′
1{zσ/y′} | R2σ | R 6=νσ)

(R2σ ≡ R′
2) ≡ νãP .(R′

1{zσ/y′} | R′
2 | R 6=νσ)

(R 6=νσ ≡ P 6=ν
1 | P 6=ν

2 | P 6=ν
3) ≡ νãP .(R′

1{zσ/y′} | R′
2 | P 6=ν

1 | P 6=ν
2 | P 6=ν

3)

(Ass. and commut. |) ≡ νãP .(P 6=ν
1 | R′

1{zσ/y′} | P 6=ν
2 | R′

2 | P 6=ν
3).

Since y is bound in x(y).R1 + M1 | x〈z〉.R2 + M2 | R 6=ν , we have yσ = y and
aσ 6= y for a 6= y by Convention 2.1.13. This justifies the equation above and
concludes the proof. ¥

2.2 Place/Transition Petri Nets

In the early 1960s, Carl Adam Petri searched for a theoretical model of informa-
tion flow in the upcoming concurrent systems. In his PhD thesis [Pet62], he pro-
posed an automata-theoretic formalism that became the most prominent model
in concurrency theory. The idea of Petri nets is to generalise finite automata by
distributed states and explicit synchronisation of transitions.

To explain distributed states, consider the place/transition Petri net in Fig-
ure 2.2. It loosely reflects the client/server system in Section 2.1.4 The left part
of the net models the states of the client, the right part the behaviour of the
server. More precisely, Petri nets use places, depicted by circles, that corres-
pond to states in a finite automaton. A dot on a place, called a token, means
the system part is in the marked state. The state of the full system is given
by a function that counts the tokens in all places. Transitions are boxes with
incoming and outgoing arcs. When a transition is executed, also called fired, a
token is removed for each incoming arc. Similarly, for each outgoing arc a token
is produced. In the example, transition t0 changes the client’s state from s0 to
s2, transition t1 changes the state of the server from s1 to s3. When the system
starts in state (a), executing the two transitions in any order yields state (b).

Transition t2 models the registration of the client at the server. Since the
transition removes a token from the client’s state s2 and from the server’s state
s3, it explicitly synchronises both systems. The result is state (c) with a token
on s4. Intuitively, the place represents a computation unit consisting of client
and server. Transition t3 lets the unit break apart, which reproduces the initial
state (a).

The example shows that the execution of transitions (like t2 or t3) changes the
amount of tokens in a Petri net. If a Petri net admits execution sequences where
the number of tokens grows arbitrarily, then it reaches infinitely many states.

4The precise relationship between π-Calculus and Petri nets will the topic of Chapter 3 and
Chapter 9. The client/server system is investigated in Chapter 5.

40

2.2 Place/Transition Petri Nets

.

.

•s0 • s1

s2 s3

s4t0 t1

t2

t3

(a)

s0 s1

•s2 • s3

s4t0 t1

t2

t3

(b)

s0 s1

s2 s3

• s4t0 t1

t2

t3

(c)

Figure 2.2:
Three states of a place/transition Petri net modelling a client/server system.
The client’s state space is surrounded by dotted frames, the server states by
dashed frames. Transitions between the states are explained in the text.

Although infinite-state, interesting verification problems remain decidable for
Petri nets. The most famous result is decidability of the reachability problem,
which was settled independently by Mayr 1981 and Kosaraju 1982 and had been
open for twenty years [May84, Kos82].

In this thesis, we investigate translations of π-Calculus models for DRS into
place/transition Petri nets. We develop a theory that allows us to draw conclu-
sions about a process from the verification of its Petri net representation. The
study of Petri nets themselves is not subject to this thesis. They serve us as
background theory to which we reduce problems in DRS. However, the processes
of bounded depth we investigate in Chapter 7 and 8 illustrate how the theory
of coverability trees is lifted from Petri nets to the more general well-structured
transition systems of Finkel and Abdulla [Fin90, FS01, AČJT00].

We use standard notions of place/transition Petri nets with weights on arcs
that follow the presentation in [Rei85]. Variants of the basic model, in partic-
ular high-level Petri nets with data values as tokens, are not considered in this
thesis. Therefore, whenever we refer to Petri nets, we mean place/transition
Petri nets. The presentation of unfoldings is taken from the book of Esparza and
Heljanko [EH08]. Instead of defining the more common coverability graphs, we
use coverability trees along the lines of [PW03].

2.2.1 Syntax and Semantics

As the states of Petri nets are functions, we formally define the notations we use.

Definition 2.2.1 (Functions)
The set of all functions φ : A → B from domain A into codomain B is BA.
The image of A under φ is φ(A) := {b ∈ B p b = φ(a) for some a ∈ A}. We

41

Chapter 2 Preliminaries

only consider total functions. Two functions φ, ψ ∈ BA are equal, φ = ψ, if
φ(a) = ψ(a) for all a ∈ A. Similarly, function φ ∈ N

A is smaller than ψ ∈ N
A,

φ ≤ ψ, if it is componentwise smaller, i.e., φ(a) ≤ ψ(a) for all a ∈ A. We
write φ < ψ to indicate that φ ≤ ψ but φ 6= ψ. The sum of φ and ψ in N

A is
the function φ + ψ ∈ N

A with (φ + ψ)(a) := φ(a) + ψ(a). Finally, the support
of φ ∈ N

A is the set of elements that are mapped to a value greater zero, i.e.,
supp(φ) = {a ∈ A p φ(a) > 0}. ¨

Definition 2.2.2 (Place/Transition Petri Net)
An unmarked place/transition Petri net is a triple (S, T, W), where

S is a (potentially infinite) set of places,

T is a (potentially infinite) set of transitions disjoint from S,

W : (S × T) ∪ (T × S) → N is a total weight function giving the number of arcs
from s ∈ S to t ∈ T and vice versa.

The states of Petri nets are functions also called markings M, N ∈ N
S . We refer

to an (unmarked) place/transition Petri net with initial marking M0 as marked
place/transition Petri net or Petri net N = (S, T, W, M0). We denote the set of
all Petri nets by PN . We call a Petri net finite if S and T are finite. ¨

Convention 2.2.3
In a Petri net N = (S, T, W, M0) the places always carry indices in the natural
numbers, i.e., there is an index set I ⊆ N with S = {si p i ∈ I}. ¨

As explained in the introduction, we draw places by circles, transitions by
boxes, and tokens by dots in the circles. For arcs, we obey the following conven-
tion. If W (s, t) = 0, no arc from s to t is inserted. We draw unlabelled arcs as
long as W (s, t) = 1, and label arcs by k for W (s, t) = k > 1.

In order to compare the size of a Petri net with the size of the translated
process, we sum up the numbers of places, transitions, arcs and tokens in the
initial marking.

Definition 2.2.4 (|| − || : PN → N)
The size of a Petri net N = (S, T, W, M0) is

||N || := |S| + |T | + Σs∈SΣt∈T (W (s, t) + W (t, s)) + Σs∈SM0(s).

¨

Let S′ be a superset of the places S of Petri net N . It will be helpful to consider
those functions in N

S′

, which map elements outside S to zero, as markings of N .

42

2.2 Place/Transition Petri Nets

Convention 2.2.5
Consider N = (S, T, W, M0) and a set S′ with S ⊆ S′. There is a bijection

between N
S and N

S′

supp(S) := {M ′ ∈ N
S′

p M ′(s′) = 0 for all s′ ∈ S′ \ S}. More
precisely, the following function res is a bijection:

res : N
S′

supp(S) → N
S

M ′ 7→ res(M ′) with res(M ′)(s) = M ′(s) for all s ∈ S.

Hence, we can understand M ′ ∈ N
S′

supp(S) as marking res(M ′) of N . Furthermore,

we say that M ′ equals a marking M ∈ N
S , if res(M ′) = M holds. ¨

Consider a Petri net N = (S, T, W, M0) with t ∈ T . The set of places transition
t consumes tokens from is the preset of t, •t := {s ∈ S p W (s, t) > 0}. The places
t produces tokens on are in the postset of t, t• := {s ∈ S p W (t, s) > 0}. Pre-
and postsets of places are defined similarly. Communication-free Petri nets are a
subclass of nets where transitions do not synchronise. The syntactic restriction
is that each transition has a single place in its preset, which is connected to the
transition with an arc of weight one. Communication-free nets can be interpreted
as (potentially unbounded) number of finite automata running concurrently. We
shall translate closed processes to communication-free Petri nets.

Definition 2.2.6 (Communication-free Petri Net)
A Petri net N = (S, T, W, M0) is communication-free, if for all t ∈ T and all
s ∈ S the following holds: |•t| ≤ 1 and W (s, t) ≤ 1. ¨

The behaviour of a Petri net is given by a transition relation. It states how
marking M changes to M ′ when executing transition t.

Definition 2.2.7 (Transition Relation)
Consider the Petri net N = (S, T, W, M0). A transition t ∈ T is enabled under a
marking M ∈ N

S , if M(s) ≥ W (s, t) for all s ∈ •t. The transition relation, also
called firing relation, [〉 ⊆ N

S × T × N
S is defined by

M [t〉M ′ iff t is enabled under M and

M ′(s) = M(s) − W (s, t) + W (t, s), for all s ∈ S.

¨

When we compute the transition system of a Petri net, we omit the identity of
transitions, i.e., we use the unlabelled transition relation → ⊆ N

S × N
S defined

by M → M ′ whenever M [t〉M ′ for some t ∈ T . As usual, we denote the reflexive
and transitive closure of → by →∗. The set of all markings reachable from a

43

Chapter 2 Preliminaries

marking M ∈ N
S is Reach(M) := {M ′

p M →∗ M ′}. By Reach(N) we refer to
the states reachable from the initial marking, Reach(N) := Reach(M0).

Definition 2.2.8 (Transition System)
The transition system of N = (S, T, W, M0) is created by the unlabelled trans-
ition relation with M0 as initial state, i.e., T (N) := (Reach(M0),→, M0). ¨

It is worth noting that the semantics is a total function. In particular, the Petri
net N∅ = (∅, ∅, ∅, ∅) is assigned the transition system where the empty function
∅ : ∅ → ∅ is the initial marking, i.e., T (N∅) = ({∅}, ∅, ∅). Like for processes, we
define termination of a Petri net.

Definition 2.2.9 (Terminating Petri net)
A Petri net N = (S, T, W, M0) terminates, if every transition sequence M0 →
M1 → M2 → . . . is finite. ¨

The state space of a Petri net is finite if and only if there is a natural number
that bounds the numbers of tokens in all places. There are some boundedness
restrictions commonly used in net theory, which define different classes of nets.

Definition 2.2.10 (Bounded and Safe Petri nets)
A Petri net N = (S, T, W, M0) is k-bounded for k ∈ N if no reachable marking
puts more than k tokens on a place, i.e., ∀M ∈ Reach(N) : ∀s ∈ S : M(s) ≤ k.
A net is bounded if it is k-bounded for some k ∈ N and safe if it is 1-bounded. ¨

2.2.2 S-Invariants

S-Invariants are constraints on the distribution of tokens in all reachable markings
of a Petri net. They may be interpreted as over-approximations of the state
space. Technically, S-invariants are solutions to homogenous equations. Hence,
their computation does not require costly state space explorations but relies on
methods from linear algebra.

Definition 2.2.11 (Incidence Matrix and S-Invariant)
For a Petri net N = (S, T, W, M0), the incidence matrix is C : S × T → Z

with C(s, t) := W (t, s) − W (s, t). An S-Invariant of N is a vector I ∈ N
S with

Ct · I = 0, where Ct is the transposed incidence matrix and · is the matrix
product. ¨

Consider the Petri net in Figure 2.2. We understand the function I ∈ N
S with

I(s0) = 1 = I(s1) = I(s2) = I(s3) and I(s4) = 2 as vector I = (1, 1, 1, 1, 2)t,

44

2.2 Place/Transition Petri Nets

where entry i is I(si). To show that it is an S-invariant, we compute the product
of I with the incidence matrix, where we also let entry i, j be C(si, tj):

Ct · I =

0

B
B
@

−1 0 1 0 0
0 −1 0 1 0
0 0 −1 −1 1
1 1 0 0 −1

1

C
C
A

·

0

B
B
B
B
@

1
1
1
1
2

1

C
C
C
C
A

=

0

B
B
@

0
0
0
0

1

C
C
A

An S-invariant assigns a weight to each place. In the example, every place is
weighted by one except s4, which is weighted by two. The fundamental property
of S-Invariants is that the weighted sum of tokens is invariant under transitions.

Lemma 2.2.12 (Fundamental Property of S-Invariants)
Let M, M ′ be two markings of a Petri net with M →∗ M ′, let I be an S-Invariant.
Then It · M = It · M ′ holds.

Given the initial marking M0 = (1, 1, 0, 0, 0)t and the S-invariant I, we compute
the weighted sum of tokens in all reachable markings of the client/server system:

It · M0 = (1, 1, 1, 1, 2) · (1, 1, 0, 0, 0)t = 2.

With Lemma 2.2.12, a token on s4 implies the remaining places are empty. The
example explains the use of S-invariants to prove mutual exclusion properties.
We shall see another application of S-invariants in Chapter 6. Note that for
these realistic case studies, S-invariants can no longer be computed by hand but
we rely on mature tools like the Integrated Net Analyser developed in the
group of Starke [Sta03].

2.2.3 Unfoldings

Unfoldings are efficient encodings of the linear-time behaviour of Petri nets. For
the sake of brevity, we restrict ourselves to safe Petri nets in this section. In the
literature, unfoldings have also been proposed for bounded [Kho03] and unboun-
ded Petri nets [EH08]. We explain the idea of unfoldings on the client/server
example in Figure 2.2. In the transition system, a local state change of the client
from s0 to s2 yields a new global marking of the whole Petri net. In the unfolding
in Figure 2.3, the state is distributed and the state change is recorded locally by
transition e0, which removes a token from c0 and adds a token to c2. The state
c1 of the server is not altered. Consequently, unfoldings alleviate the problem
of diamonds in the transition systems of concurrent systems, which arise when
components change their states independently. While the number of states in the
transition system grows exponentially in the number of independent executions,

45

Chapter 2 Preliminaries

the unfolding’s size increases linearly. Therefore, it is more efficient in terms of
memory to compute the unfolding instead of the state space of a Petri net—we
rely on the tool called PUNF that was developed by Victor Khomenko [Kho08]

The technical definition of unfoldings is rather involved. We only explain the
basic concepts and refer to [EH08] for details. The unfolding of a Petri net N is
an acyclic and safe Petri net U . Different from standard Petri nets, the places
of U are called conditions and are labelled by places of N . The transitions in
U are called events and labelled by transitions in N . The terms are justified
by the intuition that an event in the unfolding represents an occurrence of the
transition it is labelled with in an execution of the Petri net. To compute U from
N , we iteratively fire all transitions in N and record their effect in the unfolding.
Instead of formalising the procedure, we explain it on the example.

Example 2.2.13
Consider the Petri net in Figure 2.2. Initially, s0 and s1 are marked and we
add conditions c0 and c1 labelled by s0 and s1 to the unfolding. In the initial
marking, t0 is enabled. Firing the transition removes the token from s0 and adds
a token to s2. In the unfolding, we add an event e0 labelled by t0 with c0 in its
preset. For the token created on s2, we add a new condition c2 in the postset
of e0, which we label by s2. Figure 2.3 shows some more events and conditions.
The unfolding is not finite. ¨

.

.

s0

c0

s1

c1

s2

c2

s3

c3

s4

c4 s0

c5

s1

c6

s2

c7

s3

c8

s4

c9 s0

c10

s1

c11

t0

e0

t1

e1

t2

e2

t3

e3 t0

e4

t1

e5

t2

e6

t3

e7
. . .

. . .

s0

c0

s1

c1

s2

c2

s3

c3

s4

c4 s0

c5

s1

c6

t0

e0

t1

e1

t2

e2

t3

e3

Figure 2.3:
The Petri net above is the unfolding of the client/server net in Figure 2.2.
The names of places and transitions are written outside, their labels inside the
circles and boxes. The Petri net below is a finite and complete prefix of the
unfolding with e3 as cut-off event.

46

2.2 Place/Transition Petri Nets

The reachable markings of a Petri net are reflected by so-called configurations
of its unfolding. A configuration C is a set of events that satisfies the following
two conditions. (1) It is causally closed , i.e., if event f precedes e in the unfolding
and e is in C, then also f is in C. (2) It is conflict-free, which means it does not
contain two events e 6= f that share a common condition in their presets. In the
example, C = {e0, e1, e2} is a configuration, {e2} is not. A configuration of U
yields at least one transition sequence in N , called a realisation. All realisations
yield the same marking. For example, t0, t1, t2 and t1, t0, t2 are the two possible
realisations of C = {e0, e1, e2} and both put a single token on s4. It can be shown
that the reachable markings in the net N are precisely those that are reached by
realisations of configurations of the unfolding.

If the Petri net has an infinite run, the unfolding is infinite. Since a safe Petri
net reaches only finitely many markings, longer configurations start to repeat
markings of shorter ones. The computation of the unfolding stops and returns
a so-called finite and complete prefix , cf. Figure 2.3. The events that reproduce
already known markings are called cut-off. It is guaranteed that the number
of non-cut-off events is bounded by the number of reachable markings in the
Petri net, and often finite and complete prefixes are significantly smaller than
transition systems.

Esparza and Heljanko explain how to rephrase verification problems for Petri
nets on finite and complete prefixes. In particular, properties in linear-time
temporal logic can be restated as properties of the prefix. To establish properties
of prefixes, we recall a technique due to Heljanko and Khomenko in Section 5.4.

2.2.4 Coverability Trees

Coverability trees are finite representations of the infinite state spaces of unboun-
ded Petri nets, which allow for deciding verification problems like termination
and infinity of states. As we shall never compute coverability trees explicitly
in this thesis, we only explain the idea but do not define them formally. We
decided to introduce them for they explain well the verification of infinite-state
systems, they are fundamental to the computation of the structural semantics
(cf. Section 3.5), and they serve us as intuition to finite reachability trees in
Section 8.2.

The idea of coverability trees is to build the computation tree and detect
situations that lead to an unbounded number of tokens. In this case, not the
precise amount of tokens is recorded in the tree, but generalised markings Mω, Nω

with ω as token count are used. An ω-entry indicates that there are computations
where the number of tokens on that place exceeds any natural number.

Technically, the root of the coverability tree is a vertex labelled by the initial
marking of the Petri net. For every vertex labelled by a marking Mω, we compute
all markings Nω reachable by firing a transition Mω[t〉Nω. (The token count ω

47

Chapter 2 Preliminaries

.

.

•s0

s1

s2

t0

t1

(1, 0, 0)

(0, 1, 0)

(1, 0, ω)

(0, 1, ω)

(1, 0, ω)

Figure 2.4:
An unbounded Petri net and its coverability tree. Firing t1 in state M1 =
(0, 1, 0) yields M2 = (1, 0, 1). Since for the initial marking M0 = (1, 0, 0) <
(1, 0, 1) = M2 holds, we update the marking to M ′

2 = (1, 0, ω).

always enables a transition and is never consumed.) Now for any vertex on the
path from the root to Mω it is checked whether it is labelled by M ′

ω < Nω.
(Of course, ω is considered to be larger than any natural number.) In this case,
marking Nω is updated to N ′

ω, where an ω is introduced in any place s with
M ′

ω(s) < Nω(s). A new vertex labelled by N ′
ω is added to the tree and connected

with the vertex of Mω. The computation stops when no more new markings are
found. Figure 2.4 illustrate the procedure.

It can be shown that the coverability tree is always finite. To relate the states in
a Petri net with the labels in the coverability tree, we observe that any reachable
marking M in the net is covered by a label Mω in the tree, i.e., M ≤ Mω.
Conversely, if there is an Mω in the tree with entries ω for some places, then there
are markings where the amount of tokens in these places grows unboundedly.

We conclude with a remark on what can be decided with the help of the cover-
ability tree. Of course, finiteness of the state space and hence k-boundedness, and
termination. Moreover, it is decidable whether a given marking M is coverable,
i.e., a marking N is reachable with M ≤ N . In the tool Petruchio, we use this
procedure to compute the places that are markable simultaneously—a crucial
problem to be solved when computing the structural semantics (cf. Section 3.5).

In the literature, usually so called coverability graphs instead of coverability
trees are found, where vertices with identical labels are stored only once. We
chose coverability trees since they are easier to explain and fit better to the finite
reachability trees in Section 8.2.

48

3
A Structural Semantics for the

π-Calculus

Contents
3.1 Idea of the Structural Semantics 51

3.2 Restricted Form . 52

3.3 Structural Semantics 61

3.4 Full Retrievability and Full Abstraction 70

3.5 Implementation Issues 77

3.6 Related Work and Conclusion 78

We develop a new translation of π-Calculus processes into place/transition
Petri nets. For process algebras the investigation of automata-theoretic models
has a long standing tradition. The classical question was to find representations
that reflect the concurrency of processes (cf. [Old91] for an overview). Our
translation exploits the connections created by restricted names instead. We
view a process not as a group of sequential programs running concurrently, but
as a structured object, a graph where the references to restricted names connect
processes. We therefore call our translation a structural semantics to distinguish
it from classical concurrency semantics. As Chapter 4 shows, the benefit of taking
the viewpoint of structure instead of concurrency are finite net representations for
processes with unboundedly many restricted names and unbounded parallelism.

Technically, the definition of the structural semantics differs from semantics
known from the literature as follows. Concurrency semantics decompose pro-
cesses along the parallel composition operator, i.e., they represent the sequential
processes by places in the Petri net. We transform the process into a normal form
that we call restricted form. A process in restricted form is a parallel composition
of fragments, groups of processes connected by restricted names. We decompose
the process along the parallel composition of fragments, i.e., the fragments are
the places in our Petri net semantics.

49

Chapter 3 A Structural Semantics for the π-Calculus

In the introduction, we discussed the quality aspects we believe a Petri net
semantics has to satisfy to be useful for verification. In this section we establish
retrievability, i.e., the state space of the Petri net reflects the behaviour of the
process. More precisely, we show that the transition system of the process and
that of its Petri net representation are isomorphic. We also give the inverse of
the isomorphism. It reconstructs—up to structural congruence—from a Petri net
marking the corresponding reachable process. Hence, the translation not only
preserves the transition behaviour but also the term structure of the reachable
processes. We call this result, which we state in Theorem 3.4.3, full retrievab-
ility . To preserve the term structure of the reachable processes allows one to
reason about properties defined in spatial logics like [CC03] using our Petri net
representation.

The more information a semantics preserves about a process, the more memory
is needed to store it. We argue that our semantics preserves exactly the in-
formation required for model checking not only behavioural but also structural
properties. The descriptive power of spatial logics often coincides with structural
congruence, i.e., two processes satisfy the same formulas in a spatial logic if and
only if they are structurally congruent [San01, Hir04, CL04]. Our full abstraction
result in Proposition 3.4.4 shows that the structural semantics is as precise as
structural congruence, i.e., two processes are structurally congruent if and only
if they are mapped to the same Petri net. Combining both equivalences shows
that two processes satisfy the same spatial logic formulas if and only if they
are mapped to the same Petri net. Therefore we claim that our semantics is
appropriate for model checking spatial logics.

The chapter also contributes to the quality criterion we called analysability. A
semantics useful for verification should produce nets where required properties
can be inferred efficiently. In Lemma 3.3.11 we observe that closed processes
are mapped to communication-free Petri nets. The graph structure of these nets
allows one to conclude about their behaviour [Esp97b].

An analysable semantics also needs an efficient translation algorithm. We
comment on the implementation of the semantics by Tim Strazny [Str07]. While
the definition of the semantics is declarative, the implementation uses a fixed
point algorithm on the set of Petri nets.

To sum up, our contributions are as follows.

• We investigate the restricted form of processes, a new normal form under
structural congruence. It characterises structural congruence with a strong
equivalence relation called restricted equivalence.

• Based on the restricted form, we define the new semantical mapping of
π-Calculus into Petri nets. It reflects the connection structure of processes.
We prove full retrievability and full abstraction, and observe that closed
processes are mapped to communication-free Petri nets.

50

3.1 Idea of the Structural Semantics

• We explain the implementation of the semantics by Tim Strazny [Str07] in
the tool Petruchio [SM08].

The structure of the chapter is as follows. To begin with, we recall the inter-
pretation of π-Calculus processes as graphs along the lines of [Mil99, SW01] and
informally explain the idea of our semantics. We give it a rigorous formal defin-
ition in Section 3.3 based on the normal form for processes in Section 3.2. We
prove full retrievability and full abstraction in Section 3.4, before we comment
on the implementation in Section 3.5. Section 3.6, reviewing related work and
pointing out points for future research concludes the chapter.

3.1 Idea of the Structural Semantics

The graph interpretation of a π-Calculus process P is a hypergraph G[[P]], which
makes the use of active restricted names in sequential processes explicit. Technic-
ally, a hypergraph is a graph where several vertices may be connected with one
so-called hyperedge. We often refer to hypergraphs as graphs and to hyperedges
as edges. The graph interpretation of a process is obtained as follows. We draw
a vertex labelled by Q for every sequential process Q = M 6=0 or Q = K⌊ã⌋ in
S(P) and add a hyperedge labelled by a for every active restricted name νa. An
arc is inserted between a vertex Q and an edge a if the name is free in the pro-
cess, a ∈ fn(Q). Due to name passing, process creation, and process destruction,
this graph structure changes during system execution. As the graph interpreta-
tion only serves as intuition for the structural semantics, we illustrate it on an
example but defer its definition until Chapter 7.

Example 3.1.1 (Graph Interpretation of a Process)
Consider the process

P = νa.(a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋ | νd.K⌊d⌋).

It contains the three sequential processes a〈a〉.νb.b(x) + c〈c〉, c(x).K⌊a⌋, and
K⌊d⌋. The restricted names νa and νd are active while νb is covered by the
prefix a〈a〉. This explains the vertices and hyperedges in the hypergraph G[[P]]
in Figure 3.1. The name a is free in a〈a〉.νb.b(x) + c〈c〉 and in c(x).K⌊a⌋, thus
the corresponding vertices are connected with the hyperedge a. Similarly, the
vertex for K⌊d⌋ is connected with the edge d. Note that the choice composi-
tion a〈a〉.νb.b(x) + c〈c〉 is represented by one vertex which is connected with a,
although the alternative c〈c〉 does not contain a as a free name. The reason is
that only the free names in a sequential process determine the connections of a
vertex, not the operators. Furthermore, a〈a〉.νb.b(x) + c〈c〉 and c(x).K⌊a⌋ can
communicate on channel c but there is no hyperedge c as the name is free in the
process. ¨

51

Chapter 3 A Structural Semantics for the π-Calculus

.

.
F1

•a〈a〉.νb.b(x) + c〈c〉 •c(x).K⌊a⌋

F2

•K⌊d⌋a d

Figure 3.1: The graph interpretation G[[P]] of process P in Example 3.1.1.

The example shows that several unconnected graphs, F1 and F2 in the example,
represent one process. This means, DRS are modelled by independent parts
communicating over public channels only.

The idea of our semantics is to represent each such graph by a place in a Petri
net. We then obtain the overall process by putting tokens on the places, one
for each occurrence of the graph in the current process. For the process in the
previous example, we compute the Petri net depicted in Figure 3.2. It contains
F1 and F2 as places and both are marked by a token since they are present in
the initial process. The reaction

νa.(a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋) → νa.K⌊a⌋,

which transforms F1 into the graph F2 (up to α-conversion), is imitated by trans-
ition t in the net. The remainder of the net depends on the definition of K.

.

.
F1

•

F2

• . . .t

Figure 3.2:
Initial part of the structural semantics N [[P]] of process P in Example 3.1.1.
The remainder of the net is determined by the behaviour of F2.

Technically, we do not work at graph level but show that every process can
be assumed to be in restricted form, where so called fragments represent the
unconnected graphs F1 and F2 in the above example. Normal forms similar to
ours are defined in [EG99, EG04b], but with different aims. We discuss the
relationship to the work of Engelfriet and Gelsema in Section 3.6.

3.2 Restricted Form

With the restricted form, we capture the notion of unconnected graphs introduced
in the previous section. It serves us for the definition of our semantics and
also permits the definition of the characteristic functions depth and breadth in
Chapter 7. The idea of the restricted form is to minimise the scopes of active

52

3.2 Restricted Form

restricted names. Processes congruent with 0 are removed. This results in a
process, where the topmost parallel components are the unconnected graphs. We
call them fragments. The decomposition function that we define in Section 3.3
then counts how often a fragment occurs in a process in restricted form and serves
as marking in the the structural semantics.

Example 3.2.1 (Restricted Form)
Consider the process in Example 3.1.1:

νa. (a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋ | νd.K⌊d⌋)

≡ νa. (a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋) | νd.K⌊d⌋.

The latter process is in restricted form as the scopes of νa and νd are minimal.
Fragment νa.(a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋) corresponds to the graph to the
left in Figure 3.1, fragment νd.K⌊d⌋ is the graph depicted to the right. ¨

Formally, sequential processes, i.e., non-empty choices M 6=0 and calls to process
identifiers K⌊ã⌋, are fragments. On the graph level they are nodes. Restricting a
name in a parallel composition of fragments, νa.(F1 | . . . | Fn), is possible only if
the name is free in all fragments, a ∈ fn(Fi) for all i. This ensures the graphs of
all fragments Fi are connected with the hyperedge for the restricted name νa, and
so the graph of νa.(F1 | . . . | Fn) is connected. A process P rf in restricted form
is a parallel composition of fragments, P rf = Πi∈IFi. Since different fragments
do not share restricted names, P rf is represented by the graphs of the fragments
Fi, which are not connected.

Definition 3.2.2 (Fragments and Restricted Form)
Fragments, typically denoted by F, G, H, are defined inductively by

F ::= M 6=0
p K⌊ã⌋ p νa.(F1 | . . . | Fn),

where a ∈ fn(Fi) for all 1 ≤ i ≤ n. The set of all fragments is PF . A process
P rf = Πi∈IFi is in restricted form. The set of all processes in restricted form is
Prf with PF ⊆ Prf . ¨

Convention 3.2.3
The fragments that are sequential processes, i.e., F = K⌊ã⌋ or F = M 6=0, are
called elementary. To indicate that a fragment F is assumed to be elementary,
we denote it by F e. ¨

Note that the index set I may be empty in a process in restricted form P rf =
Πi∈IFi. By Convention 2.1.2, this means P rf = 0. So the stop process is in
restricted form, 0 ∈ Prf . We shall often need the set of fragments in a process
in restricted form, it is computed by the function fg .

53

Chapter 3 A Structural Semantics for the π-Calculus

rf (M=0) := 0 rf (M 6=0) = M 6=0 rf (K⌊ã⌋) := K⌊ã⌋

rf (P | Q) :=

8

>>><

>>>:

0, if rf (P) = 0 = rf (Q)

rf (P), if rf (P) 6= 0 = rf (Q)

rf (Q), if rf (P) = 0 6= rf (Q)

rf (P) | rf (Q), if rf (P) 6= 0 6= rf (Q)

rf (νa.P) :=

8

><

>:

rf (P), if a /∈ fn(P)

νa.rf (P), if a ∈ fn(P) and (1)

νa. (Πi∈IaFi) | Πi∈I\Ia
Fi, if a ∈ fn(P) and (2)

Table 3.1:
Definition of function rf . Let rf (P) = Πi∈I 6=∅Fi, condition (1) demands that
Ia = I, (2) states that Ia 6= I.

Definition 3.2.4 (fg : Prf → P(PF))
Let P rf ∈ Prf with P rf = Πi∈IFi. The function fg : Prf → P(PF), which returns
the set of fragments in P rf , is defined by fg

`
P rf

´
:=

S

i∈I{Fi}. ¨

For a process Πi∈IFi, we often refer (1) to the fragments Fi that contain some
name a and (2) to those that are structurally congruent with a given fragment
F . To determine these fragments, we define subsets Ia and IF of the index set I.

Definition 3.2.5 (Ia, IF)
Consider the process Πi∈IFi in Prf . For every name a ∈ N , we define the index
set Ia ⊆ I by i ∈ Ia if and only if a ∈ fn(Fi). For every fragment F ∈ PF , we
define IF ⊆ I by i ∈ IF if and only if F ≡ Fi. ¨

To transform a process into a process in restricted form via structural congru-
ence, we employ the recursive function rf : P → Prf . It uses the rule for scope
extrusion to shrink the scopes of restrictions and removes parallel compositions
of stop processes 0.

Definition 3.2.6 (rf : P → Prf)
The function rf in Table 3.1 computes for any process P ∈ P a process rf (P) in
restricted form, i.e., rf (P) ∈ Prf . We call rf (P) the restricted form of P . ¨

The following lemma states that rf (P) is in fact in restricted form and struc-
turally congruent with P . Furthermore, the function does not change processes

54

3.2 Restricted Form

in restricted form, i.e., rf (P rf) = P rf .

Lemma 3.2.7 (Properties of rf)
For a process P ∈ P we have rf (P) ∈ Prf , rf (P) ≡ P , S(rf (P)) = S(P), and
rf (Pσ) = rf (P)σ. For P rf ∈ Prf even rf (P rf) = P rf holds.

Proof

Properties of rf (P) By an induction on the structure of P we verify that
rf (P) is in restricted form, structurally congruent with P , that the sequential
processes are preserved, and that the function is compatible with the application
of substitutions.

Base Cases Like for the standard form in the proof of Lemma 2.1.28.

Induction Step Assume rf (P) ∈ Prf with rf (P) ≡ P , S(rf (P)) = S(P), and
rf (Pσ) = rf (P)σ and similar for Q.

Case P | Q We assume that rf (P) 6= 0 6= rf (Q), the remaining cases are
similar. That rf (P) ∈ Prf means rf (P) = Πi∈I 6=∅Fi. Similarly, we get rf (Q) =
Πj∈J 6=∅Gj . To show rf (P | Q) ∈ Prf we observe that

rf (P | Q) = rf (P) | rf (Q) = Πi∈I 6=∅Fi | Πj∈J 6=∅Gj ∈ Prf ,

where the first equation is the definition of rf and the second the assumption on
the form of rf (P) and rf (Q). Structural congruence, i.e., P | Q ≡ rf (P | Q),
follows from the hypothesis and the definition of rf :

P | Q ≡ rf (P) | rf (Q) = rf (P | Q).

That the sequential processes are preserved holds with the definitions of rf and
S, as well as the hypothesis:

S(rf (P | Q)) = S(rf (P)) ∪ S(rf (Q)) = S(P) ∪ S(Q) = S(P | Q).

For the application of substitutions we get

rf (P | Q)σ

(Def. rf , applic. σ) = rf (P)σ | rf (Q)σ

(Hypothesis) = rf (Pσ) | rf (Qσ)

(rf (P) 6= 0 implies rf (Pσ) 6= 0) = rf (Pσ | Qσ)

(Applic. σ) = rf ((P | Q)σ).

Case νa.P We distinguish between a ∈ fn(P) and a /∈ fn(P). While the latter
case is trivial, the former case requires another case distinction. Let rf (P) =

55

Chapter 3 A Structural Semantics for the π-Calculus

Πi∈I 6=∅Fi so that I = Ia. This means, a ∈ fn(Fi) for all i ∈ I. Since by
the hypothesis all Fi are fragments, νa.rf (P) is a fragment and thus in Prf .
Structural congruence immediately follows from the definition of rf (νa.P) and
the hypothesis that rf (P) ≡ P :

rf (νa.P) = νa.rf (P) ≡ νa.P.

We need to show that the sets of sequential processes coincide. Again, this follows
from the definition of rf , S, and the hypothesis:

S(rf (νa.P)) = S(νa.rf (P)) = S(rf (P)) = S(P) = S(νa.P).

The application of substitutions is similar. Note that by Convention 2.1.13 the
name a is neither in the domain nor codomain of σ:

rf (νa.P)σ = (νa.rf (P))σ = νa.(rf (P)σ) = νa.rf (Pσ) = rf ((νa.P)σ).

Finally, we consider rf (P) = Πi∈I 6=∅Fi so that I 6= Ia. Since we assume a ∈ fn(P)
we have a ∈ fn(rf (P)) with Lemma 2.1.19. Hence, there is a fragment Fi with
a ∈ fn(Fi) and thus Ia 6= ∅. Like in the case above, we observe that νa.(Πi∈IaFi)
is a fragment. Moreover, the remaining Fi with i ∈ I \ Ia are fragments. So
rf (νa.P) = νa.(Πi∈IaFi) | Πi∈I\Ia

Fi is a parallel composition of fragments, i.e.,
rf (νa.P) ∈ Prf . To show rf (νa.P) ≡ νa.P , we argue

rf (νa.P)

(Def. rf) = νa.(Πi∈IaFi) | Πi∈I\Ia
Fi

(Scope extr., a /∈ fn(Fi) with i ∈ I \ Ia) ≡ νa.(Πi∈IaFi | Πi∈I\Ia
Fi)

(Commut. and assoc. | , Ia ⊆ I) ≡ νa.(Πi∈IFi)

(Πi∈IFi = rf (P)) = νa.rf (P)

(Hypothesis) ≡ νa.P.

To show that the sequential processes are preserved, we compute

S(rf (νa.P))

(Def. rf) = S(νa.(Πi∈IaFi) | Πi∈I\Ia
Fi)

(Def. S) =
S

i∈Ia
S(Fi) ∪

S

i∈I\Ia
S(Fi)

(Commut. and assoc. ∪, Ia ⊆ I) ≡
S

i∈I S(Fi)

(Def. S) = S(Πi∈IFi)

(Πi∈IFi = rf (P)) = S(rf (P))

(Hypothesis) = S(P)

(Def. S) ≡ S(νa.P).

56

3.2 Restricted Form

We finally need to consider the application of substitutions:

rf ((νa.P)σ)

(Applic σ) = rf (νa.(Pσ))

(Explained below) = νa.(Πi∈Ia(Fiσ)) | Πi∈I\Ia
(Fiσ)

(Applic. σ) = (νa.(Πi∈IaFi) | Πi∈I\Ia
Fi)σ

(Def. rf , comment below) = rf (νa.P)σ.

We have rf (Pσ) = rf (P)σ = Πi∈I(Fiσ) by the hypothesis and the definition of
substitution application. The equation then holds with the definition of rf . In
the last equation, we exploit that a ∈ fn(Fi) iff a ∈ fn(Fiσ), which means that
the index set Ia of fragments having a as free name is equal for rf (Pσ) and rf (P).

Identity on P rf We need to show that rf does not change processes P rf in
restricted form. It is sufficient to show that rf is the identity on fragments. For
a process P rf = Πi∈IFi this implies

rf (P rf) = rf (Πi∈IFi) = Πi∈Irf (Fi) = Πi∈IFi = P rf .

The base case where fragments are sequential processes is trivial. Assume the
equality rf (Fi) = Fi holds for 1 ≤ i ≤ n and consider F = νa.(Πn

i=1Fi). By
definition, rf (F) computes the restricted form of Πn

i=1Fi. With the definition
of rf and the hypothesis, this is rf (Πn

i=1Fi) = Πn
i=1rf (Fi) = Πn

i=1Fi. We then
compute the index set Ia. Since νa.(Πn

i=1Fi) is a fragment, a ∈ fn(Fi) for all i.
Thus, Ia = {1, . . . , n} and rf (F) = νa.(Πn

i=1Fi) = F . ¥

The restricted form is only invariant under structural congruence up to re-
ordering and rewriting of fragments, i.e., P ≡ Q does not imply rf (P) = rf (Q)
but it implies rf (P) ≡rf rf (Q), where we define the relation ≡rf as follows.

Definition 3.2.8 (Restricted Equivalence)
The restricted equivalence relation ≡rf ⊆ Prf × Prf is the smallest equivalence
on processes in restricted form that satisfies commutativity and associativity of
parallel compositions,

P rf
1 | P rf

2 ≡rf P rf
2 | P rf

1 P rf
1 | (P rf

2 | P rf
3) ≡rf (P rf

1 | P rf
2) | P rf

3 ,

and permits replacing fragments by structurally congruent ones,

F | P rf ≡rf G | P rf ,

where F ≡ G and P rf is optional. ¨

57

Chapter 3 A Structural Semantics for the π-Calculus

Since processes in restricted form do not contain parallel compositions of 0,
the processes P rf in each of the axioms above are different from 0. For example,
K⌊ã⌋ | 0 6≡rf 0 | K⌊ã⌋ as both processes are not in restricted form, i.e., not in
Prf . By reflexivity, 0 is only equivalent to itself.

We illustrate the indicated relationship between P ≡ Q and rf (P) and rf (Q)
on an example.

Example 3.2.9 (Invariance of rf under ≡ up to ≡rf)
Consider process P in Example 3.1.1 and a structurally congruent process Q:

P = νa.(a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋ | νd.K⌊d⌋)

≡ νa.(c(x).K⌊a⌋ | a〈a〉.νb.b(x) + c〈c〉 | νd.K⌊d⌋) = Q.

The restricted form of P is the process in Example 3.2.1. We compare it with
the restricted form of Q:

rf (P) = νa.(a〈a〉.νb.b(x) + c〈c〉 | c(x).K⌊a⌋) | νd.K⌊d⌋

≡rf νa.(c(x).K⌊a⌋ | a〈a〉.νb.b(x) + c〈c〉) | νd.K⌊d⌋ = rf (Q).

Since νa.(a〈a〉.νb.b(x)+c〈c〉 | c(x).K⌊a⌋) and νa.(c(x).K⌊a⌋ | a〈a〉.νb.b(x)+c〈c〉)
are not syntactically equal but structurally congruent fragments, rf (P) 6= rf (Q)
but rf (P) ≡rf rf (Q) holds. ¨

Proposition 3.2.10 states the discussed invariance of the restricted form up to
≡rf , P ≡ Q implies rf (P) ≡rf rf (Q). In fact, the restricted equivalence relation
characterises structural congruence, i.e., also rf (P) ≡rf rf (Q) implies P ≡ Q.

Proposition 3.2.10 (Characterisation of ≡ with ≡rf)
For P, Q ∈ P the following holds: P ≡ Q if and only if rf (P) ≡rf rf (Q).

Proof
⇐ To show the implication from right to left we observe that all rules making
up the equivalence ≡rf also hold for structural congruence. Thus, rf (P) ≡rf

rf (Q) implies rf (P) ≡ rf (Q). Combined with P ≡ rf (P) from Lemma 3.2.7, we
get P ≡ Q with the transitivity of structural congruence.

⇒ The proof of the reverse direction is by induction on the derivations of
structural congruence. Since it contains several case distinctions (for Ia = ∅ or
Ia = I), we remark that in all cases that are not considered here the proofs are
either trivial or similar to the presented proofs.

Base Cases We prove that the restricted equivalence holds for the axioms.

58

3.2 Restricted Form

Case α-conversion For input prefixes, the proof is trivial as α-conversion yields
structurally congruent fragments. Consider νa.P ≡ νb.(P{b/a}), where b is a
fresh name, i.e., b /∈ (fn(P)∪ bn(P)). Let a ∈ fn(P) and rf (P) = Πi∈I 6=∅Fi with
Ia 6= I.

rf (P)

(Def. rf) = νa.(Πi∈IaFi) | Πi∈I\Ia
Fi

≡rf νb.(Πi∈IaFi{b/a}) | Πi∈I\Ia
Fi

With α-conversion, we have νa.(Πi∈IaFi) ≡ νb.(Πi∈IaFi{b/a}). Since a ∈ fn(Fi),
we have b ∈ fn(Fi{b/a}) for all i ∈ Ia. So νb.(Πi∈IaFi{b/a}) is a fragment which
we replace for the fragment νa.(Πi∈IaFi) with the last axiom in the definition of
≡rf . We continue the equation with Fi{b/a} = Fi if a /∈ fn(Fi), which means
i ∈ I \ Ia:

(Fi{b/a} = Fi since a /∈ fn(Fi)) = νb.(Πi∈Ia(Fi{b/a})) | Πi∈I\Ia
(Fi{b/a})

(a ∈ fn(Fi) iff b ∈ fn(Fi{b/a})) = νb.(Πi∈Ib
(Fi{b/a})) | Πi∈I\Ib

(Fi{b/a})

= rf (νb.(P{b/a})).

For the last equation, we argue rf (P{b/a}) = rf (P){b/a} = (Πi∈IFi){b/a} =
Πi∈I(Fi{b/a}) with Lemma 3.2.7 and the definition of substitution application.

Case +, | , and νa.0 ≡ 0 The proofs are straightforward.

Case νa.νb.P ≡ νb.νa.P Let rf (P) = Πi∈I 6=∅Fi with Ia 6= ∅ 6= Ib. Let
I 6= Ia ∪ Ib, we distinguish between Ia ∩ Ib = ∅ and Ia ∩ Ib 6= ∅. In the first case,
we get

rf (νa.νb.P) = νa. (Πi∈IaFi) | νb. (Πi∈Ib
Fi) | Πi∈I\(Ia∪Ib)Fi

≡rf νb. (Πi∈Ib
Fi) | νa. (Πi∈IaFi) | Πi∈I\(Ia∪Ib)Fi = rf (νb.νa.P).

The equations holds because Ia ∩ Ib = ∅. Consider Ia ∩ Ib 6= ∅. By definition,
rf (νb.P) = νb.(Πi∈Ib

Fi) | Πi∈I\Ib
Fi. Thus, the restricted form of νa.νb.P is

rf (νa.νb.P) = νa.
`
νb. (Πi∈Ib

Fi) | Πi∈Ia\Ib
Fi

´
| Πi∈I\(Ia∪Ib)Fi

≡rf νb.
`
νa. (Πi∈IaFi) | Πi∈Ib\Ia

Fi

´
| Πi∈I\(Ia∪Ib)Fi

= rf (νb.νa.P).

For ≡rf we argue as follows:

νa.
`
νb. (Πi∈Ib

Fi) | Πi∈Ia\Ib
Fi

´
≡ νa.νb. (Πi∈Ia∪Ib

Fi)

≡ νb.
`
νa. (Πi∈IaFi) | Πi∈Ib\Ia

Fi

´
.

59

Chapter 3 A Structural Semantics for the π-Calculus

Since the first and last element are fragments, restricted equivalence holds.

Case Scope Extrusion We prove rf (νa.(P | Q)) ≡rf rf (P | νa.Q), if a /∈ fn(P).
Let rf (P) = Πi∈I 6=∅Fi and rf (Q) = Πj∈J 6=∅Gj with ∅ 6= Ja 6= J .

rf (νa.(P | Q))

(a /∈ fn(P) implies a /∈ fn(Fi)) = νa.(Πj∈JaGj) | Πi∈IFi | Πj∈J\Ja
Gj

(Commut. and assoc. | in ≡rf) ≡rf Πi∈IFi | νa.(Πj∈JaGj) | Πj∈J\Ja
Gj

(Def. rf) = rf (P | νa.Q).

Induction Step Assume that P ≡ Q implies rf (P) ≡rf rf (Q) and similar for
Q ≡ R. It is immediate to see that rf (Q) ≡rf rf (P) and rf (P) ≡rf rf (R) since
≡rf is an equivalence. Let rf (P) = Πi∈IFi ≡rf Πj∈JGj = rf (Q). Note that ≡rf

implies |I| = |J |. Without loss of generality, we assume I = J = {1, . . . , n} 6= ∅
and that both sets are ordered so that Fi ≡ Gi. If both restricted forms are 0,
i.e., I = J = ∅, the following proofs become trivial.

Case π.P + M ≡ π.Q + M By definition of rf , we get:

rf (π.P + M) = π.P + M ≡ π.Q + M = rf (π.Q + M).

Since both are fragments, rf (π.P + M) ≡rf rf (π.Q + M) holds.

Case P | R ≡ Q | R Let rf (R) 6= 0, the first and last of the following equations
hold by definition of rf :

rf (P | R) = rf (P) | rf (R) ≡rf rf (Q) | rf (R) = rf (Q | R).

To show ≡rf , recall that we can assume I and J ordered so that Fi ≡ Gi:

rf (P) | rf (R)

(rf (P) = Πn
i=1Fi) = F1 | Πn

i=2Fi | rf (R)

(Fi ≡ Gi, def. ≡rf) ≡rf G1 | Πn
i=2Fi | rf (R)

(Commut. and assoc. | in ≡rf) ≡rf F2 | G1 | Πn
i=3Fi | rf (R)

(Replace remaining Fi) ≡rf Πn
i=1Gi | rf (R)

(Πn
i=1Gi = rf (Q)) = rf (Q) | rf (R).

Case νa.P ≡ νa.Q We consider the case that ∅ 6= Ia 6= I = J . Since free
names are preserved by structural congruence, we have a ∈ fn(Fi) if and only if
a ∈ fn(Gi). We compute:

rf (νa.P) = νa.(Πi∈IaFi) | Πi∈I\Ia
Fi ≡rf νa.(Πi∈IaGi) | Πi∈I\Ia

Gi = rf (νa.Q).

Since Fi ≡ Gi for all i ∈ Ia, we get νa.(Πi∈IaFi) ≡ νa.(Πi∈IaGi). Both are
fragments, so ≡rf holds. The remaining Fi are replaced by structurally congruent
Gi like in the case of parallel composition. ¥

60

3.3 Structural Semantics

We will often combine Lemma 3.2.7 and Proposition 3.2.10, to strengthen the
relation rf (P) ≡ rf (Q) to rf (P) ≡rf rf (Q).

Corollary 3.2.11 (≡ and ≡rf coincide on Prf)
For P rf , Qrf ∈ Prf we have P rf ≡ Qrf if and only if P rf ≡rf Qrf .

Proof
With Proposition 3.2.10, we have P rf ≡ Qrf if and only if rf (P rf) ≡rf rf (Qrf).
With Lemma 3.2.7, we get rf (P rf) = P rf and similar for Qrf . Hence rf (P rf) ≡rf

rf (Qrf) if and only if P rf ≡rf Qrf . ¥

3.3 Structural Semantics

In this section, we define a Petri net semantics for the π-Calculus, i.e., a mapping
N : P → PN that assigns to every process P a Petri net N [[P]]. Example 3.3.8,
which we discuss later in this section, illustrates the translation. The places of the
net are the fragments of all processes reachable from P by the reaction relation.
More precisely, we deal with classes of fragments under structural congruence.

We use two disjoint sets of transitions. Transitions of the first kind are pairs
([F], [Q]) of places [F] and processes [Q], with the condition that F reacts to
Q. These transitions represent reactions inside fragments. The second set of
transitions contains pairs ([F1 | F2], [Q]) where [F1] and [F2] are places and F1 | F2

reacts to Q. These transitions represent communications between fragments
using public channels.

There is an arc from place [G] to transition ([F], [Q]) if G is structurally con-
gruent with F , i.e., [G] = [F]. If G is structurally congruent with F1 and F2,
there is an arc weighted two from place [G] to transition ([F1 | F2], [Q]). In this
case, fragment F1 communicates with the structurally congruent fragment F2 on
a public channel. If G is structurally congruent with F1 or F2, there is an arc
weighted one from place [G] to transition ([F1 | F2], [Q]). There is no arc, if G is
neither structurally congruent with F1 nor with F2.

The number of arcs from ([F], [Q]) to place [G] (or from ([F1 | F2], [Q]) to
place [G], respectively) is determined by the number of occurrences of G in the
decomposition of Q. Similarly, the initial marking of the net is determined by
the decomposition of the initial process P .

To formally capture the notion of a process decomposition, we define the func-
tion dec(P rf). As was explained in Section 3.1, the structural semantics counts
how often an unconnected graph occurs in the current process. Since unconnec-
ted graphs are represented by fragments [F], the decomposition function dec(P rf)
counts how many fragments of class [F] are present in process P rf . For example,

61

Chapter 3 A Structural Semantics for the π-Calculus

for P rf = F | G | F ′ with F ≡ F ′ and F 6≡ G we have (dec(P rf))([F]) = 2,
(dec(P rf))([G]) = 1, and (dec(P rf))([H]) = 0 with F 6≡ H 6≡ G.

Definition 3.3.1 (dec : Prf → N
PF/≡)

Consider P rf = Πi∈IFi. We assign to P rf the function dec(P rf) : PF/≡ → N via
(dec(P rf))([F]) := |IF |. ¨

By definition, dec is compatible with parallel compositions. Furthermore, the
support of dec(P rf) equals the set of fragments in P rf , factorised by structural
congruence. Both properties are important in the proof of full retrievability.

Lemma 3.3.2 (Properties of dec)
Consider P rf , Qrf ∈ Prf . The equalities dec(P rf | Qrf) = dec(P rf) + dec(Qrf)
and supp(dec(P rf)) = fg

`
P rf

´
/≡ hold.

Proof
Let P rf = Πi∈IFi and Qrf = Πj∈JGj . We then have for any fragment F ∈ PF :

(dec(P rf | Qrf))([F])

(Def. dec, form of P rf and Qrf) = |IF + JF |

(IF ∩ JF = ∅) = |IF | + |JF |

(Def. dec, form of P rf and Qrf) = (dec(P rf))([F]) + (dec(Qrf))([F]).

Hence, the two functions are equal. To show that the support and the factorised
fragment set coincide, we observe

[F] ∈ supp(dec(P rf))

(Def. supp) ⇔ (dec(P rf))([F]) > 0

(Def. (dec(P rf))([F])) ⇔ |IF | > 0

(Def. IF) ⇔ P rf = P rf
1 | G | P rf

2 with G ≡ F and P rf
i optional

(Def. fg) ⇔ G ∈ fg
“

P rf
”

with G ≡ F

(Def. −/≡) ⇔ [F] = [G] ∈ fg
“

P rf
”

/≡.

This proves the equality. ¥

The second statement in the previous lemma implies that the support of
dec(P rf) is always finite. This ensures that the process

Π[H]∈supp(dec(P rf))Π
(dec(P rf))([H])H

62

3.3 Structural Semantics

is defined.1 Intuitively, we construct the term from a given process P rf as follows.
We choose a representative for each fragment and then rearrange the fragments
so that the same representatives lie next to each other.

Example 3.3.3 (Elementary Equivalence)
For the process P rf = F | G | F ′ with F ≡ F ′ and F 6≡ G we choose F as
representative for F ≡ F ′ and let G represent itself. We then rearrange F | G | F
to F | F | G = Π2F | Π1G. By definition of dec(P rf), exactly (dec(P rf))([F]) = 2
fragments F lie next to each other. The same holds for G. Hence, we have the
equivalence

F | G | F ′ ≡rf Π2F | Π1G = Π(dec(P rf))([F])F | Π(dec(P rf))([G])G.

The proof of Lemma 3.3.4 shows that in fact all transformations preserve restric-
ted equivalence. ¨

Lemma 3.3.4 (Elementary Equivalence)
For every process P rf ∈ Prf the equivalence

P rf ≡rf Π[H]∈supp(dec(P rf))Π
(dec(P rf))([H])H

holds.

Proof
Consider P rf = Πi∈IFi with fg

`
P rf

´
/≡ = {[H1], . . . , [Hp]} for some representat-

ives H1, . . . , Hp. We replace every fragment Fi by its representative Hφ(i), i.e.,
we use a function φ : I → {1, . . . , p} with Fi ≡ Hφ(i). That this replacement is
possible under restricted equivalence follows from the proof of Proposition 3.2.10.
We then reorder the fragments H using associativity and commutativity of par-
allel composition. Since IH ⊆ I is defined by i ∈ IH iff H ≡ Fi, there are |IH |
fragments Fi which are mapped to H. We compute:

P rf

(Form of P rf) = Πi∈IFi

(Replace Fi by representative Hφ(i)) ≡rf Πi∈IHφ(i)

(Ass. commut. | , discussion) ≡rf Π[H]∈fg(P rf)/≡
Π|IH |H

(Def. (dec(P rf))([H])) = Π[H]∈fg(P rf)/≡
Π(dec(P rf))([H])H

(fg
`
P rf

´
/≡ = supp(dec(P rf))) = Π[H]∈supp(dec(P rf))Π

(dec(P rf))([H])H.

This concludes the proof, restricted equivalence holds. ¥

1Technically, we also have to assume that the fragments in the support of dec(P rf) are
ordered. Since different orderings yield processes that are restricted equivalent, we omit
this detail.

63

Chapter 3 A Structural Semantics for the π-Calculus

That dec is invariant under restricted equivalence, i.e., P rf ≡rf Qrf implies
dec(P rf) = dec(Qrf), ensures the structural semantics is well-defined. That it
characterises restricted equivalence, dec(P rf) = dec(Qrf) also implies P rf ≡rf

Qrf , is exploited in the proof of Theorem 3.4.3. We remark that the latter im-
plication has a short and elegant proof which exploits the elementary equivalence
in Lemma 3.3.4.

Lemma 3.3.5 (Characterisation of ≡rf by =)
Consider P rf , Qrf ∈ Prf , then P rf ≡rf Qrf if and only if dec(P rf) = dec(Qrf).

Before we establish the lemma, we state a corollary that allows us to switch
freely between structural congruence of processes, restricted equivalence of the
standard forms, and equality of the decomposition functions.

Corollary 3.3.6
The following statements are equivalent:

(1) P ≡ Q (2) rf (P) ≡ rf (Q)

(3) rf (P) ≡rf rf (Q) (4) dec(rf (P)) = dec(rf (Q)).

Proof
Equivalence of (1) and (3) is Proposition 3.2.10. That (3) and (2) are equivalent
is Corollary 3.2.11. Equivalence between (3) and (4) is Lemma 3.3.5. ¥

Proof (of Lemma 3.3.5)
We start with the direction from right to left:

P rf

(Lemma 3.3.4) ≡rf Π[H]∈supp(dec(P rf))Π
(dec(P rf))([H])H

(dec(P rf) = dec(Qrf)) = Π[H]∈supp(dec(Qrf))Π
(dec(Qrf))([H])H

(Lemma 3.3.4) ≡rf Qrf .

By transitivity P rf ≡rf Qrf holds.
The direction from left to right requires an induction on the derivations of

restricted equivalence. For commutativity and associativity of parallel composi-
tion, the proof is immediate with Lemma 3.3.2. We consider the rule F | P rf ≡rf

G | P rf with F ≡ G. Let P rf = Πi∈IFi. For the class [F], we get

(dec(F | P rf))([F]) = 1 + |IF | = (dec(G | P rf))([F]).

For G 6≡ H 6≡ F , we have (dec(F | P rf))([H]) = |IH | = (dec(G | P rf))([H]).
Thus, dec(F | P rf) and dec(G | P rf) are equal. The induction step is trivial. ¥

64

3.3 Structural Semantics

We are now prepared to define our structural semantics.

Definition 3.3.7 (Structural Semantics N : P → PN)
The structural semantics is a mapping N : P → PN that yields a Petri net
N [[P]] for every process P as defined in Table 3.2. We call N [[P]] the structural
semantics of process P . ¨

S := fg (rf (Reach(P)))/≡

T := {([F], [Q]) ∈ S × P/≡ p F → Q}

∪ {([F1 | F2], [Q]) ∈ P/≡ × P/≡ p [F1], [F2] ∈ S and F1 | F2 → Q}

M0 := dec(rf (P)).

Consider place [G] ∈ S and two transitions ([F], [Q]), ([F1 | F2], [Q]) ∈ T . The
weight function W is defined as follows:

W ([G], ([F], [Q])) := (dec(F))([G])

W ([G], ([F1 | F2], [Q])) := (dec(F1 | F2))([G])

W (([F], [Q]), [G]) := (dec(rf (Q)))([G])

W (([F1 | F2], [Q]), [G]) := (dec(rf (Q)))([G]).

Table 3.2:
Definition of the structural semantics N [[P]] = (S, T, W, M0) of process P .

We briefly discuss the definition. The structural semantics has the reachable
fragments of P as set of places, S = fg (rf (Reach(P)))/≡. The set S is a subset
of all fragment classes, S ⊆ PF/≡. Furthermore, (dec(rf (P)))([F]) = 0 for all
fragments that are not in S. Hence, dec(rf (P)) is a correct initial marking of
N [[P]] by Convention 2.2.5.

The weight W ([G], ([F], [Q])) is defined by

(dec(F))([G]) =

(

1, if [F] = [G]

0, otherwise.

This means, there is an arc weighted one from place [G] to transition ([F], [Q])
if the classes [F] and [G] coincide. In all other cases there is no arc. We prefer
the technical definition to a case distinction because it is more convenient in the

65

Chapter 3 A Structural Semantics for the π-Calculus

proofs (cf. proof of Lemma 3.4.5). Similarly, W ([G], ([F1 | F2], [Q])) is

(dec(F1 | F2))([G]) =

8

><

>:

2, if [F1] = [G] = [F2]

0, if [F1] 6= [G] 6= [F2]

1, otherwise.

Since fragments are different from 0, a process P ≡ 0 is mapped to the empty
net without places and transitions.

Consider a fragment F1 that reacts to Q. This reaction is modelled by a
transition ([F1], [Q]). But F1 | F2 also reacts to Q | F2 for every fragment F2.
Thus, we additionally get a transition ([F1 | F2], [Q | F2]) for every reachable
fragment [F2], cf. Figure 3.3. Since only a loop reproducing a token on place

.

.

[F1] [F2]

. . .

([F1], [Q]) ([F1 | F2], [Q | F2])

supp(dec(rf (Q)))

Figure 3.3:
Illustration of the transitions ([F1], [Q]) and ([F1 | F2], [Q | F2]). Dashed lines
indicate that ([F1 | F2], [Q | F2]) (with the corresponding arcs) is not computed
as it does not change the transition system.

[F2] differentiates ([F1 | F2], [Q | F2]) from ([F1], [Q]), the additional transitions
do not change the transition system and we do not compute them. We do not
exclude them by a side condition as this complicates the proof of Theorem 3.4.3.

Example 3.3.8 (Structural Semantics)
We illustrate our translation on a small example. Consider the process

P = Π2a(x).x(y).y(z).a〈d〉 + a〈b〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x)).

The semantics N [[P]] is depicted in Figure 3.4. To begin with, we compute all
reachable fragments. They are given by the reaction sequence

Π2a(x).x(y).y(z).a〈d〉 + a〈b〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x))

→ b(y).y(z).a〈d〉 | νh.b〈h〉.h〈b〉.(c(x) | c(x))

→ νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x)))

→ a〈d〉 | c(x) | c(x).

66

3.3 Structural Semantics

All processes in this reaction sequence are in restricted form. We take the frag-
ments as the set of places, cf. Figure 3.4. The transitions are computed as follows.
Fragment F1 reacts with a structurally congruent fragment to F2. This yields
t1 = ([F1 | F1], [F2]). Both processes, F1 | F1 and F2, are in restricted form.
Thus, the decompositions are (dec(F1 | F1))([F1]) = 2 and (dec(F1 | F1))([F]) =
0 otherwise. Similarly, (dec(F2))([F2]) = 1 and (dec(F2))([F]) = 0 otherwise.
This explains the arc weights.

Fragment F3 passes the restricted name h to F2, which results in the frag-
ment F4 = νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x))). The two processes h(z).a〈d〉 and
h〈b〉.(c(x) | c(x)) inside F4 share the restricted name h, so F4 is in restricted form.
Transition t2 = ([F2 | F3], [F4]) models the communication. It demonstrates how
the scope of restricted names influences our Petri net semantics. A pair of pro-
cesses is represented by one token on place [F4]. All semantics known from the
literature (cf. Section 3.6) represent the processes h(z).a〈d〉 and h〈b〉.(c(x) | c(x))
inside F4 by separate places, each carrying a token.

Fragment F4 performs an internal reaction. The two processes it consists
of communicate on the restricted channel h. The fragment reacts to process
Q = a〈d〉 | c(x) | c(x) = F6 | F5 | F5. By definition, we get the transition
t3 = ([F4], [Q]). There is an arc weighted one from place [F4] to t3. The process
Q is in restricted form. Its decomposition is dec(Q) with (dec(Q))([F5]) = 2,
(dec(Q))([F6]) = 1, and (dec(Q))([F]) = 0 otherwise. The transition shows how
fragments consisting of several processes break up when restricted names are
forgotten.

The definition of the set of transitions does not take the overall process be-
haviour into account. The Petri net may contain transitions that are never
enabled. Transition t4 illustrates this fact. The fragments F1 and F6 react to
G = d(y).y(z).a〈d〉. This results in t4 = ([F1 | F6], [G]). The transition is never
executed since the reaction is not possible in the process P . Since G is no reach-
able fragment, (dec(G))([F]) = 0 for all places [F], so transition t4 has no places
in its postset. Fragment G with (dec(G))([G]) = 1 is not considered.

The process P is in restricted form. The initial marking is given by the de-
composition of P , which is defined by (dec(P))([F1]) = 2, (dec(P))([F3]) = 1,
and (dec(P))([F]) = 0 otherwise. ¨

The example suggests the following rules of thumb for the structural semantics.

Remark 3.3.9 (Merging and Splitting of Fragments)
Passing of restricted names merges fragments. More precisely, if fragment F
passes a restricted name νa to fragment G, this may result in a new frag-
ment νa.(F ′ | G′) and we have a transition from places [F] and [G] to place
[νa.(F ′ | G′)]. Confer to transition t2 in Example 3.3.8.

Oblivion of restricted names splits fragments. If fragment F forgets the restric-

67

Chapter 3 A Structural Semantics for the π-Calculus

.

.

•• [F1]

[F2]

• [F3][F4]

[F5]

[F6] t1

t2

t3

t4

2

2

F1 = a(x).x(y).y(z).a〈d〉 + a〈b〉 F2 = b(y).y(z).a〈d〉

F3 = νh.b〈h〉.h〈b〉.(c(x) | c(x)) F4 = νh.(h(z).a〈d〉 | h〈b〉.(c(x) | c(x)))

F5 = c(x) F6 = a〈d〉

Figure 3.4:
The structural semantics N [[P]] of process P in Example 3.3.8. For the sake
of readability, the fragments are named F1 to F6 as defined below the figure.
The meaning of transitions is explained in the text.

ted name a when it evolves to F ′, fragment νa.(F | G) reacts to F ′ | νa.G. This
results in a transition with [νa.(F | G)] in its preset and [F ′] and [νa.G] in its
postset. Transition t3 in Example 3.3.8 illustrates this behaviour. The transition
also shows that splitting (and merging) of fragments can be more complicated if
F ′ consist of several fragments or F and G both forget the name νa. ¨

The example—in particular the computation of transition t4—indicates that
the set of places determines the size of the structural semantics. We defer the
discussion of how the size of N [[P]] is related to the size of process P until
Chapter 4, where we investigate those processes that are finitely represented
under the structural semantics.

Lemma 3.3.10 (Finiteness)
The Petri net N [[P]] of a process P ∈ P is finite if and only if the set of places in
N [[P]] is finite.

Proof
We show that finiteness of the set of places implies finiteness of the set of trans-
itions. Let the places be [F1], . . . , [Fn]. For every F and every pair F1, F2 there
are up to structural congruence finitely many processes Q with F → Q and

68

3.3 Structural Semantics

F1 | F2 → Q because the reaction relation is image-finite up to structural con-
gruence, Lemma 2.1.39. Thus, there are finitely many combinations ([F], [Q])
and ([F1 | F2], [Q]), respectively. The set of transitions is finite. ¥

Example 3.3.8 also reveals that a communication between two fragments re-
quires a public channel. The Petri net of a closed process without public names
has transitions of the form ([F], [Q]) only, which means it is communication-free.
Figure 3.5 shows the structural semantics of a closed process. In fact, each trans-
ition has a single place in its preset and the arcs leading to the transitions are
weighted by one. The arcs from transitions to places in the semantics of a closed
process may be weighted arbitrarily.

.

.

•

[G1] [G2] [G3]

[G4]

[G5]

([G1], [G2]) ([G2], [G3])

([G3], [G4 | G5])

G1 = νa, b, c, d.(F1 | F1 | F3) G2 = νa, b, c, d.(F2 | F3)

G3 = νa, b, c, d.F4 G4 = νc.(F5 | F5)

G5 = νa, d.F6

Figure 3.5:
The structural semantics N [[νa, b, c, d.P]] of the closed version of process P in
Example 3.3.8. Transition ([G3], [G4 | G5]) shows that the number of tokens
in the semantics of a closed process need not be constant or bounded.

Lemma 3.3.11
If P ∈ P is a closed process then N [[P]] is a communication-free Petri net.

Proof
Consider the structural semantics N [[P]] = (S, T, W, M0) of a closed process P .
Assume there is a transition of the form ([F1 | F2], Q) ∈ T . From this fact we
derive that there is a free name in F1 and that F1 is closed, a contradiction.
Hence the assumption that such a transition exists has to be false.

By definition of T , we have F1 | F2 → Q. Let sf (F1) = νã1.P
6=ν
1 and

sf (F2) = νã2.P
6=ν
2 . With Rule (Struct), sf (F1 | F2) = νã1.νã2.(P

6=ν
1 | P 6=ν

2)

69

Chapter 3 A Structural Semantics for the π-Calculus

reacts to Q. With Proposition 2.1.38, either a τ -action is consumed, a process
identifier is called, or two sequential processes in P 6=ν

1 | P 6=ν
2 communicate. Calls

to process identifiers and τ -actions give rise to transitions ([F], [Q]), similarly
communications between two processes that are located in P 6=ν

1 or P 6=ν
2 . Since

we have a transition ([F1 | F2], [Q]), we have a communication between a process
M1 + x〈z〉.P1 + N1 within P 6=ν

1 and a process M2 + x(y).P2 + N2 within P 6=ν
2 .

Assume now that x ∈ ã1. Then x is bound in F1, which means it is neither free
nor bound in F2 with Convention 2.1.11. Consequently x is not contained in
νã2.P

6=ν
2 , a contradiction. Hence, x ∈ fn(νã1.P

6=ν
1) = fn(F1).

We now show that at the same time fn(F1) = ∅, which contradicts x ∈ fn(F1).
Since [F1] ∈ S there is a reachable process Q with [F1] ∈ fg (rf (Q))/≡. Since
P is closed, Q is closed by Lemma 2.1.37. With the definition of fn and the
invariance of fn under structural congruence, we derive the following inclusion:
fn(F1) ⊆ fn(rf (Q)) = fn(Q) = ∅. Fragment F1 is closed. ¥

3.4 Full Retrievability and Full Abstraction

To ensure that our semantics is a suitable representation of π-Calculus processes,
we show that we can retrieve all information about a process and its reactions
from the semantics. To relate a marking in the Petri net N [[P]] and a process, we
define the function retrieve : Reach(N [[P]]) → P/≡. It constructs a process from
a marking by composing (1) the fragments that are marked in parallel (2) as often
as demanded by the marking. This mimics the construction in the elementary
equivalence. In fact, Lemma 3.3.4 is crucial in the proof of full retrievability.

Definition 3.4.1 (retrieve : Reach(N [[P]]) → P/≡)
Given a process P ∈ P, the function retrieve : Reach(N [[P]]) → P/≡ associates
with every marking reachable in the structural semantics, M ∈ Reach(N [[P]]), a
process class [Q] ∈ P/≡ as follows:

retrieve (M) := [Π[H]∈supp(M)Π
M([H])H].

¨

The support of the reachable marking M has to be finite to ensure retrieve (M)
is a process. Since the structural semantics N [[P]] may be an infinite net, finite-
ness of the support is not obvious. We state it in the following lemma.

Lemma 3.4.2
For every process P ∈ P and every marking M ∈ Reach(N [[P]]) the support of
M , supp(M), is a finite set.

70

3.4 Full Retrievability and Full Abstraction

Proof
Consider an arbitrary process P ∈ P. The initial marking is M0 = dec(P). With
supp(dec(P)) = fg (P)/≡ we conclude that the support of dec(P) is finite.

Assume that the support of Mn is finite. We have Mn → Mn+1 if there is a
transition t = ([F], [Q]) or t = ([F1 | F2], [Q]) with Mn[t〉Mn+1. The postset of t
are the fragments in the decomposition of Q, i.e., t• = supp(dec(Q)). Hence, the
support of Mn+1 is included in supp(M) ∪ supp(dec(Q)), which is finite. ¥

The transition systems of a π-Calculus process and its Petri net semantics are
isomorphic. Furthermore, the states in both transition systems correspond using
the retrieve function. For the process P = F1 | F1 | F3 in Example 3.3.8, this
relationship is illustrated in Figure 3.6.

[F5 | F5 | F6]

[F4]

[F2 | F3]

[F1 | F1 | F3]

(0, 0, 0, 0, 2, 1)

(0, 0, 0, 1, 0, 0)

(0, 1, 1, 0, 0, 0)

(2, 0, 1, 0, 0, 0)
iso

Figure 3.6:
Illustration of the transition system isomorphism in Theorem 3.4.3. The trans-
ition system T (P) of process P in Example 3.3.8 is depicted to the left, the
transition system T (N [[P]]) of the structural semantics is depicted to the right.
The isomorphism iso : Reach(P)/≡ → Reach(N [[P]]) is represented by dot-
ted arrows, where the source is a process [Q] and the target is the marking
iso([Q]) = dec(rf (Q)). We denote dec(rf (Q)) as vector where entry i the value
of the decomposition function for fragment Fi, i.e., (dec(rf (Q)))([Fi]).

Theorem 3.4.3 (Full Retrievability)
The transition systems of a process P ∈ P and that of its structural semantics
N [[P]] are isomorphic. The isomorphism iso : Reach(P)/≡ → Reach(N [[P]]) maps
[Q] to dec(rf (Q)). The function retrieve is the inverse of iso, i.e., a process is
reconstructed from a marking by retrieve (iso([Q])) = [Q].

Before we turn to the proof of the theorem, we state our full abstraction result
as a first pleasant consequence. According to Theorem 3.4.3, the structural
semantics preserves up to structural congruence all information about a process,
i.e., N [[P]] = N [[Q]] implies P ≡ Q. In fact, it describes a process as precise

71

Chapter 3 A Structural Semantics for the π-Calculus

as structural congruence, i.e., also the reverse direction of the implication holds.
This follows from the closure of the reaction relation under structural congruence
and the definition of the set of places.

Proposition 3.4.4 (Full Abstraction)
Consider P, Q ∈ P. Then P ≡ Q if and only if N [[P]] = N [[Q]].

Proof
From P ≡ Q we have Reach(P) = Reach(Q) with Rule (Struct). Thus, the
reachable fragments coincide, fg (rf (Reach(P))) = fg (rf (Reach(Q))). With this,
SN [[P]] = fg (rf (Reach(P)))/≡ equals SN [[Q]] = fg (rf (Reach(Q)))/≡. Since the
transition sets as well as the weight functions depend on S only, the equalities
TN [[P]] = TN [[Q]] and WN [[P]] = WN [[Q]] hold. With Corollary 3.3.6, P ≡ Q implies
dec(rf (P)) = dec(rf (Q)). Thus, the initial markings coincide, the nets are equal.

The reverse holds with Theorem 3.4.3. Let M0,P =M0,Q be the initial markings
in N [[P]]=N [[Q]]. Then [P] = retrieve (M0,P) = retrieve (M0,Q) = [Q]. ¥

We spend the remainder of the section proving Theorem 3.4.3. To show that
iso is well-defined, we observe that [Q] = [R] implies iso([Q]) = dec(rf (Q)) =
dec(rf (R)) = iso([R]) with Corollary 3.3.6. Since the domain of the decompos-
ition functions is PF/≡, we also need to ensure that for any reachable process
[Q] the function iso([Q]) = dec(rf (Q)) is a valid marking of N [[P]] with Conven-
tion 2.2.5. This means, we have to prove (dec(rf (Q)))([F]) = 0 for all [F] /∈ S.
With Lemma 3.3.2, supp(dec(rf (Q))) = fg (rf (Q))/≡. Since Q is reachable, we
get fg (rf (Q))/≡ ⊆ fg (rf (Reach(P)))/≡ = S. Hence, supp(dec(rf (Q))) ⊆ S.

To prove the theorem we show that retrieve is the inverse of iso and that iso is
an isomorphism between the transition systems, i.e., iso maps the initial process
to the initial marking, iso is bijective, and iso is a strong graph homomorphism.
A strong graph homomorphism demands that transition [P1] → [P2] exists in
the transition system of process P if and only if transition iso([P1]) → iso([P2])
exists in the transition system of the Petri net N [[P]]. Lemma 3.4.5 eases the
proof of this equivalence as it shows that taking transitions in the Petri net is
closely related with performing reactions in the process.

Lemma 3.4.5
Take iso : Reach(P)/≡ → Reach(N [[P]]) from Theorem 3.4.3. For M1 = iso([P1])
and M2 = iso([P2]) the following (1) and (2) as well as (3) and (4) are equivalent:

(1) ∃t = ([F], [Q]) ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t
and M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

(2) ∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q
and P1 ≡ F | P ′ and P2 ≡ Q | P ′

72

3.4 Full Retrievability and Full Abstraction

(3) ∃t = ([F1 | F2], [Q]) ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t
and M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

(4) ∃F1, F2 ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F1 | F2 → Q
and P1 ≡ F1 | F2 | P ′ and P2 ≡ Q | P ′.

Proof
We prove equivalence of (1) and (2) directly via a chain of equivalences. The
proof for (3) and (4) is similar:

∃t = ([F], [Q]) ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t

∧ M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

⇔ (Def. W)

∃t = ([F], [Q]) ∈ T : M1([F]) ≥ W ([F], ([F], [Q])) = 1

∧ M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

⇔ (Def. iso, Mi = iso([Pi]); S = fg (Reach(rf (P)))/≡)

∃([F], [Q]) ∈ T : (dec(rf (P1)))([F]) ≥ 1

∧ (dec(rf (P2)))([G]) = (dec(rf (P1)))([G])

− W ([G], ([F], [Q])) + W (([F], [Q]), [G]), for all [G] ∈ S

⇔ (Def. W)

∃([F], [Q]) ∈ T : (dec(rf (P1)))([F]) ≥ 1

∧ (dec(rf (P2)))([G]) = (dec(rf (P1)))([G])

− (dec(F))([G]) + (dec(rf (Q)))([G]), for all [G] ∈ S

⇔ (Def. (dec(rf (P1)))([F]))

∃([F], [Q]) ∈ T, P ′ ∈ P : rf (P1) ≡ F | P ′

∧ (dec(rf (P2)))([G]) = (dec(rf (P1)))([G])

− (dec(F))([G]) + (dec(rf (Q)))([G]), for all [G] ∈ S

⇔ (Def. T)

∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q ∧ rf (P1) ≡ F | P ′

∧ (dec(rf (P2)))([G]) = (dec(rf (P1)))([G])

− (dec(F))([G]) + (dec(rf (Q)))([G]), for all [G] ∈ S.

All fragments in F , rf (Q), rf (P1), rf (P2) are in S. Hence, for all fragments

73

Chapter 3 A Structural Semantics for the π-Calculus

[G] /∈ S we get (dec(F))([G]) = (dec(rf (Q)))([G]) = (dec(rf (Pi)))([G]) = 0.
Thus, the equality (dec(rf (P2)))([G]) = (dec(rf (P1)))([G]) − (dec(F))([G]) +
(dec(rf (Q)))([G]) holds for all [G] ∈ PF/≡, the functions are equal:

⇔ ∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q ∧ rf (P1) ≡ F | P ′

∧ dec(rf (P2)) = dec(rf (P1)) − dec(F) + dec(rf (Q)).

We now observe that rf (P1) ≡ F | P ′ implies dec(rf (P1)) = dec(rf (F | P ′))
with Corollary 3.3.6. Since we preserve the premise of the implication, i.e., the
statement rf (P1) ≡ F | P ′, we can make use of the equality and still get an
equivalent statement:

⇔ ∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q ∧ rf (P1) ≡ F | P ′

∧ dec(rf (P2)) = dec(rf (F | P ′)) − dec(F) + dec(rf (Q))

⇔ (dec(rf (F | P ′)) = dec(F) + dec(rf (P ′)) explained below)

∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q ∧ rf (P1) ≡ F | P ′

∧ dec(rf (P2)) = dec(F) + dec(rf (P ′)) − dec(F) + dec(rf (Q))

⇔ (dec(rf (P ′)) + dec(rf (Q)) = dec(rf (P ′ | Q)) explained below)

∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q ∧ rf (P1) ≡ F | P ′

∧ dec(rf (P2)) = dec(rf (P ′ | Q))

⇔ (Corollary 3.3.6: dec(rf (P2)) = dec(rf (P ′ | Q)) iff P2 ≡ P ′ | Q)

∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q

∧ P1 ≡ F | P ′ ∧ P2 ≡ P ′ | Q.

The equations rely on the definition of rf and Lemma 3.3.2. They in particular
hold for rf (P ′) = 0 or rf (Q) = 0. The last equivalence also needs rf (P1) ≡ P1

in Lemma 3.2.7. This concludes the proof. ¥

Proof (of Theorem 3.4.3)

Initial States The initial states coincide by the definition of N and the defini-
tion of iso since M0 := dec(rf (P)) =: iso([P]).

Strong Graph Homomorphism Let P1 and P2 be two reachable processes and
M1 = iso([P1]), M2 = iso([P2]). We show M1 → M2 if and only if [P1] → [P2].
The proof amounts to applying Lemma 3.4.5 to switch from Petri net to process
level. We then need the fact that at most two processes are involved in a reaction.

M1 → M2

74

3.4 Full Retrievability and Full Abstraction

(Def. →) ⇔ ∃t ∈ T : M1[t〉M2

(Def. [t〉) ⇔ ∃t ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t

∧ M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

(Def. T) ⇔ ∃t = ([F], [Q]) ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t

∧ M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

∨ ∃t = ([F1 | F2], [Q]) ∈ T : M1(s) ≥ W (s, t), for all s ∈ •t

∧ M2(s) = M1(s) − W (s, t) + W (t, s), for all s ∈ S

(Lemma 3.4.5) ⇔ ∃F ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F → Q

∧ P1 ≡ F | P ′ ∧ P2 ≡ Q | P ′

∨ ∃F1, F2 ∈ fg (rf (Reach(P))) , Q, P ′ ∈ P : F1 | F2 → Q

∧ P1 ≡ F1 | F2 | P ′ ∧ P2 ≡ Q | P ′.

The following implication from left to right holds with the Rules (Par) and
(Struct). The reverse direction is a consequence of Proposition 2.1.38, which
reveals that at most two sequential processes are involved in a reaction. Since a
sequential process is located in exactly one fragment, reactions require at most
two fragments.

⇔ P1 → P2

(Def. →T) ⇔ [P1] →T [P2].

Hence, function iso is a strong graph homomorphism.

Codomain We already argued that the functions iso([Q]) = dec(rf (Q)) can
be understood as markings in N

S . We still need to ensure iso([Q]) is a reach-
able marking. This follows from the previous two statements. Technically,
we do an induction on the reachable processes. The base case is [P] with
iso([P]) = M0 ∈ Reach(N [[P]]).

Let [Pn] ∈ Reach(P)/≡ with iso([Pn]) ∈ Reach(N [[P]]). Consider [Pn+1] with
[Pn] →T [Pn+1]. Since [Pn+1] is a reachable process, it is mapped by iso to
a marking iso([Pn+1]). Since iso is a strong graph homomorphism, [Pn] →T

[Pn+1] now implies iso([Pn]) →T iso([Pn+1]) in N [[P]]. Since by the hypothesis
iso([Pn]) ∈ Reach(N [[P]]), we conclude iso([Pn+1]) ∈ Reach(N [[P]]), which closes
the induction.

Injectivity Let [Q1], [Q2] ∈ Reach(P)/≡. With Corollary 3.3.6, Q1 6≡ Q2 im-
plies dec(rf (Q1)) 6= dec(rf (Q2)). Since iso([Q1]) = dec(rf (Q1)) 6= dec(rf (Q2)) =
iso([Q2]), function iso is injective.

Surjectivity Let M be a reachable marking. We have to show that a process
[Q] is reachable with iso([Q]) = M . We prove this by induction on the length of

75

Chapter 3 A Structural Semantics for the π-Calculus

the transition sequences. In the base case, we consider the empty sequence, i.e.,
we reach M0 in the Petri net. We already observed M0 = iso([P]).

Assume for Mn we have the reachable process [Pn] with iso([Pn]) = Mn.
Consider Mn+1 with Mn[t〉Mn+1. We prove the existence of [Pn+1] with Pn →
Pn+1 and iso([Pn+1]) = Mn+1. By definition of the transition relation for Petri
nets we have

Mn[t〉Mn+1

⇔ Mn(s) ≥ W (s, t), for all s ∈ •t and

Mn+1(s) = Mn(s) − W (s, t) + W (t, s), for all s ∈ S.

Two kinds of transitions exist, t = ([F], [Q]) with F → Q and t = ([F1 | F2], [Q])
with F1 | F2 → Q. We consider the first case, the second is similar. Since the
places in S are classes of reachable fragments, we denote them by [G]:

Mn([G]) ≥ W ([G], ([F], [Q])), for all [G] ∈ •([F], [Q])

(Def. W) ⇒ Mn([F]) ≥ W ([F], ([F], [Q])) = 1

(Mn = iso([Pn])) ⇒ (dec(rf (Pn)))([F]) ≥ 1

(Def. dec(rf (Pn))) ⇒ ∃P ′ ∈ P : rf (Pn) ≡ F | P ′

(Def. t) ⇒ ∃P ′ ∈ P : Pn ≡ rf (Pn) ≡ F | P ′ → Q | P ′.

This means Pn → Q | P ′. It remains to be shown that [Q | P ′] is mapped
to Mn+1, i.e., iso([Q | P ′]) = dec(rf (Q | P ′)) = Mn+1. The domain of the
decomposition function is PF/≡ while the domain of Mn+1 is the subset S =
fg (rf (Reach(P)))/≡. Since Q | P ′ is a reachable process, we already showed
that it maps all fragments outside S to zero, hence it is correct to understand it
as a marking in N

S with Convention 2.2.5. We now show that dec(rf (Q | P ′))
and Mn+1 coincide on the fragments [G] ∈ S:

(dec(rf (Q | P ′)))([G])

= (dec(rf (Q)))([G]) + (dec(rf (P ′)))([G])

= (dec(rf (P ′)) = dec(rf (Pn)) − dec(F) explained below)

(dec(rf (Q)))([G]) + (dec(rf (Pn)))([G]) − (dec(F))([G])

= (Def. W , dec(rf (Pn)) = iso([Pn]) = Mn)

W (([F], [Q]), [G]) + Mn([G]) − W ([G], ([F], [Q]))

= (Def. Mn[([F], [Q])〉Mn+1)

Mn+1([G]).

76

3.5 Implementation Issues

With Corollary 3.3.6, the congruence Pn ≡ F | P ′ implies the first of the fol-
lowing equations: dec(rf (Pn)) = dec(rf (F | P ′)) = dec(F) + dec(rf (P ′)). The
second exploits the definition of rf and Lemma 3.3.2. It is immediate to check
that it also holds in case rf (P ′) = 0. Rewriting the equation yields the equality
dec(rf (P ′)) = dec(rf (Pn)) − dec(F) used above and concludes the proof that
iso([Q | P ′]) = Mn+1 in case t = ([F], [Q]). The proof for t = ([F1 | F2], [Q]) is
similar. Function iso is surjective.

Retrievability We derive retrieve (iso([Q])) = [Q] with the following equalities:

[Q]

(Lemma 3.2.7) = [rf (Q)]

(Lemma 3.3.4) = [Π[H]∈supp(dec(rf (Q)))Π
(dec(rf (Q)))([H])H]

(Def. iso, def. retrieve) = retrieve (iso([Q])) .

This concludes the proof of Theorem 3.4.3. ¥

The definition of the structural semantics is declarative as it refers to the set of
all reachable fragments and adds transitions where appropriate. In the following
section, we comment on the implementation.

3.5 Implementation Issues

We implemented the translation in the tool Petruchio [Str07, SM08]. Since the
set of places in the Petri net N [[P]] is based on the set of reachable fragments
fg (rf (Reach(P))) and since the set of reachable processes Reach(P) is defined
inductively, our algorithm computes the Petri net N [[P]] inductively as follows.
We determine a sequence of nets N0, N1, N2, . . . with Nk = (Sk, Tk, Wk, M0).
The initial net is N0 = (fg (rf (P))/≡, ∅, ∅, dec(rf (P))), i.e., the places are the
fragments in the initial process, S0 = fg (rf (P))/≡, the initial transition set is
empty, T0 = ∅, and so is the initial weight function, W0 = ∅. The initial marking
is M0 = dec(rf (P)).

Assume we computed the net Nk = (Sk, Tk, Wk, M0). For every place [F] ∈
Sk that has an internal reaction, i.e., F → Q, we add a transition ([F], [Q]).
Similarly, for two places [F1], [F2] ∈ Sk that are (1) simultaneously markable and
(2) able to communicate, i.e., F1 | F2 → Q, we add a transition ([F1 | F2], [Q]).
This yields the new transition set Tk+1. The postset of a transition is the set of
fragments in the restricted form of process Q, fg (rf (Q))/≡. The new fragments
are added to Sk giving the new set of places Sk+1. We get the new weight function
Wk+1 from Wk by adding arcs between the new transitions and the (old and new)
places according to Definition 3.3.7. The initial marking M0 does not change.

77

Chapter 3 A Structural Semantics for the π-Calculus

The computation stops if there are no more transitions to add, i.e., Nk+1 = Nk.
We then have Nk = N [[P]] as we computed exactly the reachable fragments.2

The critical issue in the implementation of the semantics is to determine the
places [F1], [F2] ∈ Sk, which can be marked simultaneously. We solve the problem
by computing the coverability graph Cov(Nk) of the nets Nk. To avoid recomput-
ing Cov(Nk) for every net Nk, Tim Strazny showed that the coverability graph
Cov(Nk+1) is an extension of Cov(Nk) [Str07].

To make use of today’s multi-core computers, the compiler is implemented in
a dual-threaded software architecture. The first thread updates the coverability
graph and the second thread computes the Petri net as described above.

Note that it is not necessary to compute the coverability graph if P is a closed
process. By Lemma 3.3.11, N [[P]] is a communication-free net, i.e., it only con-
tains transitions ([F], [Q]), which depend on a single place that is markable.

Due to memory limitations, the coverability graph of a subnet of N [[P]] may not
be computable in practice. In this case, we add the transition ([F1 | F2], [Q]) if
the places [F1] and [F2] can communicate, i.e., F1 | F2 → Q, regardless of whether
they can be marked simultaneously. This results in a Petri net NNoCov [[P]] which
subsumes N [[P]], i.e., N [[P]] = (S, T, W, M0) and NNoCov [[P]] = (S′, T ′, W ′, M ′

0)
with S ⊆ S′, T ⊆ T ′, W ⊆ W ′, and M0 = M ′

0. The transition systems
of N [[P]] and NNoCov [[P]] are still isomorphic. The reason is that a transition
([F1 | F2], [Q]), which is added although the places [F1] and [F2] are not sim-
ultaneously markable, is never enabled. A negative effect of this inaccuracy is
that NNoCov [[P]] is often much larger than N [[P]] and may even become infinite
although N [[P]] is finite.

3.6 Related Work and Conclusion

We first review the operational semantics of the π-Calculus, then we discuss the
relationship with work on structural congruence relations, which led to normal
forms related to ours.

Operational Semantics To begin with, we discuss the automata-theoretic
semantics that reflect process behaviour. All of them explicitly represent the
concurrency of sequential processes in the following sense. A state (place) of
the associated automaton (or Petri net) represents a derivative of a sequential
process [Eng96, BG95, AM02, DKK06a, MP01]. Thus, processes are split along
the parallel composition operator in contrast with our semantics decomposing
along fragments, i.e., along substructures induced by the scopes of restricted
names. Subsequently, we discuss a semantics that also represents structural
information [MP95b].

2More precisely, Nk equals N [[P]] without dead transitions like t4 in Example 3.3.8.

78

3.6 Related Work and Conclusion

In [Eng96], a Petri net semantics is defined for the small π-Calculus, which
does not contain choice compositions and uses replication instead of recursion.
The proposed semantics reflects the reaction relation. Name creation is handled
by using fresh global names, bound names in input prefixes are replaced by de
Bruijn indices, and replication is modelled by countably infinite union. In sub-
sequent papers [EG99, EG04b], Engelfriet and Gelsema show that the discrim-
inating power of their semantics corresponds to extended and decidable versions
of structural congruence. Due to their focus on structural congruence, the au-
thors are not concerned with finiteness of the resulting Petri nets. In fact, the
semantics immediately yields (1) infinite nets with (2) arcs that have countably
infinite weights (denoted by ω), and (3) infinite markings (ω-tokens are allowed),
which makes it unusable for automatic verification of the system behaviour.

A translation of the π-Calculus into potentially infinite place/transition Petri
nets with inhibitor arcs is presented in [BG95]. It models the early transition
relation. Inhibitor arcs are employed in two ways. They check for the presence
of restrictions on names and allow for replacing choices by parallel compositions.
In a recent paper, the authors show that for so-called finite net processes the
resulting inhibitor nets are finite and primitive [BG09]. Primitive inhibitor nets
enjoy the property that an inhibiting place can never be emptied, if a marking
exceeds a certain bound. A result by Busi [Bus02] shows that important prop-
erties of finite primitive inhibitor nets—including model checking of linear-time
µ-Calculus—are decidable. The crucial characteristics of finite net processes is
that they generate a bounded number of restricted names. We shall study this
class of processes in Chapter 9 under the name of restriction-bounded processes.
We show that they also have a finite place/transition Petri net representation.

The main contribution in [BG09] is the study of non-interleaving and causal
semantics for the π-Calculus. The authors argue that it is impossible to give
a semantics in terms of standard place/transition Petri nets, which reflects the
intended causality of processes. As our structural semantics reflects the inter-
leaving behaviour of processes, it is coarser than the mentioned causal semantics
and so their impossibility result does not apply here.

The control reachability problem (CRP) asks for the reachability of a process
containing a given process identifier [AM02]. The authors prove decidability for
input bounded systems with unique receiver. A system is input bounded if the
continuation of a name generating process is uniquely determined. The unique
receiver condition demands that only the creating process listens on a restricted
name. Combined, the conditions give an upper bound on the restricted names
actually used for communication. Dead restricted names are replaced by gen-
eric ones. Decidability is obtained via a reduction to the coverability problem of
Petri nets with transfer. We observe that CRP is decidable for the structurally
stationary processes we study in the following chapter. The relationship of in-
put bounded and unique receiver processes with our work will become clear in
Chapter 9.

79

Chapter 3 A Structural Semantics for the π-Calculus

In [DKK06a, DKK06b, DKK08], a translation into finite high-level Petri nets
with read arcs is presented. The transitions of the net reflect strongly bisim-
ilar the indexed transition system of the π-Calculus. A process is first translated
into a context-based representation which removes restrictions. From this repres-
entation the high-level nets are obtained compositionally, i.e., for all remaining
operators there is a corresponding net operator. Different instances of recursive
processes are distinguished via invocation trails. Invocation itself is handled via
marking equivalence. The authors aim at using the translation for automatic
verification and report on successful first experiments [KKN06].

History-Dependent automata (HD-automata) [MP95a, Pis99, MP01] handle
restricted names explicitly by associating to each state a set of names. Functions
on transitions relate the names in label, source, and target states. HD-automata
come equipped with bisimulation theory and techniques for computing irredund-
ant and minimal representations. The ground and early π-Calculus semantics are
translated into HD-automata. Depending on the translation, bisimilarity on the
automata coincides with the corresponding bisimilarity on processes. Further-
more, bisimilarity on the automata coincides with isomorphism of the minimal
representations. Finite HD-automata are gained for finitary processes. This cov-
ers the well-known finite control processes [Dam96], where parallel composition
is not used within recursions. In the following chapter, we show that finitary
processes are also finitely represented under our structural semantics.

The only semantics reflecting a notion of structure as discussed in Section 3.1
is the graph rewriting semantics in [MP95b]. A hypergraph is constructed by
mapping names to vertices and sequential processes to hyperedges. An arc in-
dicates that a name is free in a process. The early transition relation of the
π-Calculus is mimicked by a finite number of graph rewriting rules. The authors
investigate observational equivalences based on their semantics.

Normal Forms Engelfriet and Gelsema use normal forms similar to ours (but
for the small π-Calculus) in the proofs of their decidability and correspondence
results [EG99, EG04b]. In the subconnected normal form replications are moved
inwards. Like our restricted form, the cell normal form strives for innermost
restrictions, but also under prefixes. Our work differs in the way the normal
form is exploited. While Engelfriet and Gelsema use it as technical tool, we use
fragments as places in our semantics, i.e., we exploit the structure to finitely
represent the process behaviour.

Recently, the authors investigated the structural congruence in [Mil99] but for
the small π-Calculus. For the class of replication restricted processes, they prove
decidability via a reduction to linear equations with natural coefficients [EG04a].
It is based on a normal form that finds the connected subprocesses. These webs
differ from our fragments in that they have outermost restrictions. In [EG07],
the authors show decidability for restriction-free processes by a translation to

80

3.6 Related Work and Conclusion

reversible Petri nets. The transitions of the net model applications of the replic-
ation law !P ≡ P | !P . This semantics does not reflect any behavioural relation
of processes.

Conclusion and Future Work We presented a Petri net semantics that re-
flects the reaction relation of the monadic π-Calculus with recursion. It is based
on a normal form, which computes groups of connected process that we call
fragments. Since fragments only depend on the restricted names that sequential
processes share, we note that the extension of the so-called restricted form and
thus of the semantics to the polyadic π-Calculus is straightforward [Str07].

Theorem 3.4.3 shows that the structural semantics satisfies the request for
retrievability : the transition systems of the Petri net and the process are iso-
morphic and the structure of the reachable processes is preserved by the mark-
ings. As a consequence, verification results obtained for the Petri net carry over
to the process under study. We also argued that the semantics is analysable:
Lemma 3.3.11 shows that closed processes are translated to communication-free
Petri nets, where behavioural properties can be inferred efficiently [Esp97b].

We implemented the semantics in our tool Petruchio [Str07, SM08]. The
implementation relies on the coverability graph to detect the places that are
markable simultaneously. As the size of the coverability graph is not bounded by
a primitive recursive function in the size of the net, we plan to use more compact
structures like unfolding prefixes to decide simultaneous reachability.

81

82

4 Structural Stationarity

Contents
4.1 Structural Stationarity and Finiteness 85

4.2 Derivatives . 86

4.3 A First Characterisation of Structural Stationarity 91

4.4 Finite Handler Processes 97

4.5 Complexity- and Decidability-theoretic Aspects . . 107

4.5.1 From Petri nets to Structural Stationarity 108

4.5.2 Size of the Structural Semantics 114

4.6 Related Work and Conclusion 117

In the previous chapter, we proposed a Petri net semantics for the π-Calculus
that highlights the connection structure of processes. With this new viewpoint,
processes are finitely represented if and only if there are finitely many substruc-
tures (or fragments) every reachable process consists of.1 In particular, unboun-
ded name creation and unbounded process creation do not necessarily imply
infinite automata-theoretic representations. Recall that finiteness is one of the
quality aspects a Petri net semantics for verification has to satisfy, since all auto-
mated verification methods rely on this constraint.

Processes that reach finitely many fragments are called structurally stationary.
Since the definition refers to the precise form of fragments, it is hard to prove that
a given process is structurally stationary. We present a complete characterisa-
tion, which refers to the parallel composition operator: a process is structurally
stationary if and only if the number of sequential processes in all reachable frag-
ments is bounded. The corresponding Theorem 4.3.2 is a powerful tool to prove
structural stationarity and thus our semantics is suitable to finitely represent

1Since the π-Calculus is Turing complete but finite place/transition Petri nets are not, the
semantics has to yield infinite nets for some processes.

83

Chapter 4 Structural Stationarity

the process. For example, it shows that structurally stationary processes unify
the classes of finitary processes (that are finitely represented by HD-automata)
[Dam96, Cai04, Pis99, MP01, FGMP03] and restriction-free processes (which are
finitely represented by different concurrency semantics [BG95, AM02, BG09]).

The systems we aim to verify typically have a client-server architecture, and we
design the syntactic class of finite handler processes to model them. An applic-
ation of the characterisation shows that finite handler processes are structurally
stationary. Combined with the unification of the process classes, this demon-
strates the expressiveness of structurally stationary processes, i.e., the structural
semantics is usable for the verification of a wide range of systems.

Finally, we show that Petri nets can be represented by structurally stationary
processes. This translation reveals complexity-theoretic aspects of the structural
semantics. It shows that the size is in general not bounded by a primitive recurs-
ive function in the size of the process. Moreover, it indicates undecidability or
decidability but EXPSpace-hardness of several verification problems for struc-
turally stationary processes.

To sum up, our contributions are as follows.

• We define the semantical property of structural stationarity and show that
it completely characterises the processes that are mapped to finite Petri
nets by the structural semantics.

• We give a complete characterisation of structural stationarity. It reveals
that important classes of processes in the literature are structurally sta-
tionary and implies a new method for the computation of the structural
semantics.

• We design a rich syntactic class, called finite handler processes, that we
prove to be structurally stationary.

• We investigate the representation of Petri nets as structurally stationary
processes and draw complexity- as well as decidability-theoretic conclu-
sions.

The chapter is organised as follows. Section 4.1 defines structural stationar-
ity and characterises finiteness of the structural semantics. Section 4.2 defines
derivatives, the technical tool for the proof of the complete characterisation of
structural stationarity in Section 4.3. We exploit the characterisation in Sec-
tion 4.4, where we show that the syntactic class of finite handler processes is
structurally stationary. In Section 4.5, we investigate the representation of Petri
nets as structurally stationary processes, before we discuss related work and
points of future research in Section 4.6.

84

4.1 Structural Stationarity and Finiteness

4.1 Structural Stationarity and Finiteness

Intuitively, a process is structurally stationary if there is a finite number of types
of fragments in the system. Technically, there are finitely many fragments so that
the restricted form of all reachable processes is a parallel composition of those
fragments.

Definition 4.1.1 (Structural Stationarity)
A process P ∈ P is structurally stationary if there is a finite set of fragments
such that the fragments of all reachable processes are up to structural congruence
included in that set:

∃{F1, . . . , Fn} : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ∃i : F ≡ Fi.

The set of all structurally stationary processes is PFG<∞. ¨

Lemma 4.1.2 states the equivalence between finiteness of the structural se-
mantics and structural stationarity mentioned in the introduction.

Lemma 4.1.2 (Finiteness)
The structural semantics N [[P]] is finite if and only if the process P is structurally
stationary, i.e., P ∈ PFG<∞.

Proof
With Lemma 3.3.10, the finiteness of N [[P]] is equivalent to the finiteness of
the set of places, fg (rf (Reach(P)))/≡. The finiteness of fg (rf (Reach(P)))/≡ is
equivalent to structural stationarity. ¥

With Lemma 4.1.2, the computation of the structural semantics in our tool
Petruchio terminates exactly if the process is structurally stationary. For the
user, an algorithm would be desirable that checks before the compilation whether
the process is structurally stationary. Unfortunately, the property is undecidable.
We state the result here but delay the proof until Chapter 8, where we study
several undecidability results.

Lemma 4.1.3
For a process P ∈ P it is undecidable whether P is structurally stationary, i.e.,
whether P ∈ PFG<∞ holds.

Since we cannot rely on an algorithm to decide termination of our translation,
it is important to know in advance that a process of interest is structurally
stationary. To prove structural stationarity means to come up with a concrete

85

Chapter 4 Structural Stationarity

set of fragments and then to show that it includes all reachable fragments. For
terminating processes, we can just take the set of all reachable fragments, which
is a finite by König’s lemma.2

Lemma 4.1.4 (Terminating Processes are Structurally Stationary)
If P ∈ P terminates then it is structurally stationary, i.e., P ∈ PFG<∞.

For arbitrary processes, finding a suitable set of fragments is far from trivial.
The characterisation in Section 4.3 reduces this task to finding a bound on
the number of sequential processes in every reachable fragment. To establish
completeness of this characterisation, i.e., to prove structural stationarity from
boundedness, we in fact have to construct a finite set of fragments. The benefit
is that we do this construction once when proving Theorem 4.3.2. After it is
established, we simply apply the characterisation whenever we show structural
stationarity.

Technically, the construction of the reachable fragments relies on the notion
of derivatives, a finite set of processes computed from a given process P . The
main result in the following Section 4.2 shows that all processes reachable from P
are created from elements in derivatives(P) via parallel composition, restriction,
and substitution. The corresponding Proposition 4.2.2 is crucial in the proof of
Theorem 4.3.2.

4.2 Derivatives

The idea to construct the set of derivatives of process P is to recursively remove
all prefixes as if they were consumed in communications. If a process identifier
K is called, directly in P or indirectly in a defining equation, we also add the
derivatives of the process defining K. So, for the process b(y).y〈b〉.K⌊a⌋ with
K(x) := x〈x〉 we get the derivatives b(y).y〈b〉.K⌊a⌋, y〈b〉.K⌊a⌋, K⌊a⌋, and x〈x〉.

Definition 4.2.1 (derivatives : P → P(P))
To define the derivatives of a process we need the function der : P → P(P):

der(0) := ∅ der(K⌊ã⌋) := {K⌊ã⌋}

der(π.P) := {π.P} ∪ der(P) der(M + N) := {M + N} ∪ der(M) ∪ der(N)

der(P | Q) := der(P) ∪ der(Q) der(νa.P) := der(P).

Consider P ∈ P. The set of derivatives of P , denoted by derivatives(P), is the
smallest set so that (1) der(P) ⊆ derivatives(P) and (2) if K⌊ã⌋ ∈ derivatives(P)
then der(Q) ⊆ derivatives(P), where K(x̃) := Q. ¨

2König’s lemma says that every tree of finite degree is either finite or contains an infinite
path.

86

4.2 Derivatives

There are two differences between the derivatives and the processes obtained
with the reaction relation. Names y that are replaced by received names when
an action b(y) is consumed remain unchanged in the derivatives. Parameters x̃
that are replaced by ã when an identifier K⌊ã⌋ is called are not replaced in the
derivatives. Both shortcomings are corrected by substitutions applied to the free
names in the derivatives. Proposition 4.2.2 shows that this yields all reachable
processes.

Proposition 4.2.2
Let P ∈ P. Every Q ∈ Reach(P) and every F ∈ fg (rf (Q)) is structurally
congruent with a process νã.Q 6=ν in standard form so that Q 6=ν = Πi∈IQiσi with
Qi ∈ derivatives(P) and σi : fn(Qi) → fn(P) ∪ ã.

Example 4.2.3 gives an intuitive understanding to this technical statement.

Example 4.2.3 (Derivatives)
Consider P = νb.a〈b〉.b(x) | a(y).K⌊a, y⌋, where K(a, y) := y〈a〉. The only
reaction sequence is

νb.a〈b〉.b(x) | a(y).K⌊a, y⌋ → νb.(b(x) | K⌊a, b⌋) → νb.(b(x) | b〈a〉) → 0.

We compute the set of derivatives:

derivatives(P) = {a〈b〉.b(x), b(x), a(y).K⌊a, y⌋, K⌊a, y⌋, y〈a〉}.

The following congruences show that every reachable fragment can be constructed
from the derivatives as stated in Proposition 4.2.2. The reachable fragments are
depicted to the left, the constructed processes to the right:

νb.a〈b〉.b(x) ≡ νb.((a〈b〉.b(x)){a, b/a, b})

a(y).K⌊a, y⌋ ≡ (a(y).K⌊a, y⌋){a/a}

νb.(b(x) | K⌊a, b⌋) ≡ νb.(b(x){b/b} | K⌊a, y⌋{a, b/a, y})

νb.(b(x) | b〈a〉) ≡ νb.(b(x){b/b} | y〈a〉{b, a/y, a}).

The stop process 0 is represented by a parallel composition with empty index
set, Πi∈∅Pi. ¨

We now turn to the proof of Proposition 4.2.2. It exploits two important
inclusions. First, der(P) always includes the sequential processes in P . Second,
if we have a process Q in the derivatives of P then we already know that the
set der(Q) is included in the derivatives of P . The second inclusion relies on the
fact that Q ∈ der(P) implies der(Q) ⊆ der(P).

87

Chapter 4 Structural Stationarity

Lemma 4.2.4
For two process P, Q ∈ P the following statements hold: (1) S(P) ⊆ der(P),
(2) Q ∈ der(P) implies der(Q) ⊆ der(P), and (3) Q ∈ derivatives(P) implies
der(Q) ⊆ derivatives(P).

Proof
The proof of the first property is a straightforward induction on the structure of
P .

Property (2) We use induction on the structure of process P , i.e., we show
for all Q ∈ der(P) that der(Q) ⊆ der(P) holds.

Base Cases The base cases are P = 0 for which the proof is trivial and
P = K⌊ã⌋. In this case, Q ∈ der(P) = {K⌊ã⌋} implies Q = K⌊ã⌋. Thus,
der(Q) = der(P) holds.

Induction Step Assume the property holds for P ∈ P. We only show the case
π.P , the remaining cases M +N , P | Q, and νa.P are similar. If Q ∈ der(π.P) =
{π.P} ∪ der(P) then either Q = π.P and the property is trivial or Q ∈ der(P).
In this case, the hypothesis yields der(Q) ⊆ der(P) ⊆ der(π.P).

Property (3) The third property follows immediately from the second. If we
have R ∈ derivatives(P), then either R ∈ der(P) ⊆ derivatives(P) or there
is an identifier K⌊ã⌋ ∈ derivatives(P) with K(x̃) := Q and R ∈ der(Q) ⊆
derivatives(P). In both cases, the second statement yields der(R) ⊆ der(P)
and der(R) ⊆ der(Q), which ensures inclusion of der(R) in derivatives(P) and
concludes the proof. ¥

Proof (of Proposition 4.2.2)
If we can show that for a reachable process Q ∈ Reach(P) we have Q ≡ νã.Q 6=ν

with Q 6=ν = Πi∈IQiσi, then the scope of the substitutions σi has to be fn(P)∪ ã.
To see this, it suffices to show fn(Qiσi) ⊆ fn(P)∪ ã with Lemma 2.1.15. Consider
a name a ∈ fn(Qiσi), which is not in ã. Then a ∈ fn(νã.Q 6=ν) by definition of
fn. By the invariance of fn under structural congruence, we get

fn(νã.Q 6=ν) = fn(Q) ⊆ fn(P).

The inclusion holds with Lemma 2.1.37. A similar argumentation holds for the
reachable fragments. We now prove the congruence for Q ∈ Reach(P) via an
induction on the length of the reaction sequences. The statement for F follows
as a corollary.

Base Case The base case is the empty sequence, i.e., Q0 = P . By Lemma 2.1.28,
P ≡ sf (P). For sf (P) = 0, the claim is trivial. Let sf (P) = νã.P 6=ν where

88

4.2 Derivatives

P 6=ν = Πi∈IPi = Πi∈IPiid and id is the identity function. To see that the Pi are
in derivatives(P), we check

Pi ∈
S

i∈I{Pi}

(Def. S, sf (P) = νã.(Πi∈IPi)) = S(sf (P))

(Lemma 2.1.28) = S(P)

(Lemma 4.2.4 (1)) ⊆ der(P)

(Def. derivatives) ⊆ derivatives(P).

Induction Step Let Qn ≡ νã.R 6=ν in standard form so that R 6=ν = Πi∈IRiσi

with Ri ∈ derivatives(P) and σi : fn(Ri) → fn(P) ∪ ã. If Qn → Qn+1, then we
derive the reaction νã.R 6=ν → Qn+1 with Rule (Struct). According to Proposi-
tion 2.1.38, there are three possible reactions for νã.R 6=ν . Either a communication
takes place between two processes, say R1σ1 and R2σ2, a τ -prefix is consumed in
a process like R1σ1 = M1σ1 + τ.(R′

1σ1) + N1σ1, or a process identifier is called,
which means R1σ1 = K⌊x̃⌋σ1. We consider the first case, the remaining proofs
are similar. Let νã.R 6=ν = νã.(R1σ1 | R2σ2 | R 6=ν

rem), where

R1σ1 = M1σ1 + x1σ1〈y1σ1〉.(R
′
1σ1) + N1σ1 = M1σ1 + a〈b〉.(R′

1σ1) + N1σ1

R2σ2 = M2σ2 + x2σ2(y2).(R
′
2σ2) + N2σ2 = M2σ2 + a(y2).(R

′
2σ2) + N2σ2.

The index rem stands for remainder and denotes the remaining processes in the
parallel composition R 6=ν . With Proposition 2.1.38, we have

Qn+1 ≡ νã.(R′
1σ1 | R′

2σ2{y1σ1/y2} | R 6=ν
rem).

We transform the latter process into the required form. With Lemma 2.1.28, we
compute R′

2σ2{y1σ1/y2} ≡ sf (R′
2σ2{y1σ1/y2}). If the standard form is 0, the

proposition immediately follows. We consider sf (R′
2σ2{y1σ1/y2}) = νã2.R

6=ν
2

where R 6=ν
2 = Πj∈JR2,j and ã2 ⊆ arn(R′

2σ2{y1σ1/y2}). Since we assume the
bound names to be disjoint from the free names in Convention 2.1.11, the in-
clusion implies ã2 ∩ (fn(R′

1σ1) ∪ fn(R 6=ν
rem)) = ∅. We need this disjointness later.

To see that the R2,j are processes in derivatives(P) to which substitutions are
applied, we observe:

R2,j ∈
S

j∈J{R2,j}

(Def. S, sf (R′
2σ2{y1σ1/y2}) = νã2.R

6=ν
2) = S(sf (R′

2σ2{y1σ1/y2}))

(Properties sf , Lemma 2.1.28) = S(R′
2σ2{y1σ1/y2})

(Compatible S and σ, Lemma 2.1.21) = S(R′
2σ2){y1σ1/y2}

(Compatible S and σ, Lemma 2.1.21) = S(R′
2)σ2{y1σ1/y2}

(Lemma 4.2.4 (1)) ⊆ der(R′
2)σ2{y1σ1/y2}

(R′
2 ∈ der(R2), Lemma 4.2.4 (2)) ⊆ der(R2)σ2{y1σ1/y2}

89

Chapter 4 Structural Stationarity

(R2 ∈ derivatives(P), Lemma 4.2.4 (3)) ⊆ derivatives(P)σ2{y1σ1/y2},

where in the last step R2 ∈ derivatives(P) holds by the hypothesis. With this
argumentation, we have R2,j ∈ derivatives(P)σ2{y1σ1/y2}, i.e., there is a process
P2,j ∈ derivatives(P) with R2,j = P2,jσ2{y1σ1/y2}. To sum up, we now have the
following congruences:

Qn+1

(Proposition 2.1.38) ≡ νã.(R′
1σ1 | R′

2σ2{y1σ1/y2} | R 6=ν
rem)

(Standard form) ≡ νã.(R′
1σ1 | νã2.(Πj∈JR2,j) | R 6=ν

rem)

(R2,j = P2,jσ2{y1σ1/y2}) = νã.(R′
1σ1 | νã2.(Πj∈JP2,jσ2{y1σ1/y2}) | R 6=ν

rem)

(Scope ext., disjoint) ≡ νã, ã2.(R
′
1σ1 | Πj∈JP2,jσ2{y1σ1/y2} | R 6=ν

rem)

(νa.P ≡ P if a /∈ fn(P)) ≡ νã′, ã2.(R
′
1σ1 | Πj∈JP2,jσ2{y1σ1/y2} | R 6=ν

rem).

In the last step, we remove unused names from ã, i.e.,

ã′ := ã ∩ fn(R′
1σ1 | Πj∈JP2,jσ2{y1σ1/y2} | R 6=ν

rem).

By construction, we have ã2 ⊆ fn(Πj∈JP2,jσ2{y1σ1/y2}), and we do not remove
names from this set. We handle R1σ1 similarly and get the following process
that is structurally congruent with Qn+1 and of the desired form:

νã′, ã1, ã2.(Πj∈J1
P1,jσ1 | Πj∈J2

P2,jσ2{y1σ1/y2} | R 6=ν
rem).

Statement for F Consider F ∈ fg (rf (Q)). The first part gives Q ≡ νã.Q 6=ν

so that Q 6=ν = Πi∈IQiσi with Qi ∈ derivatives(P) and σi : fn(Qi) → fn(P) ∪ ã.
With Proposition 3.2.10, we have rf (Q) ≡rf rf (νã.Q 6=ν), i.e., F ≡ G where G is
a fragment in fg

`
rf (νã.Q 6=ν)

´
. We observe that

S(G) ⊆ S(rf (νã.Q 6=ν)) = S(νã.Q 6=ν) =
S

i∈I{Qiσi}

by definition of S, Lemma 3.2.7, and the form of Q 6=ν . Computing the stand-
ard form with Lemma 2.1.28 yields G ≡ sf (G) = νã′.(Πj∈JRj) with Rj ∈
S(G) ⊆

S

i∈I{Qiσi}. With F ≡ G we derive F ≡ νã′.(Πj∈JQjσj) with Qj ∈
derivatives(P). ¥

In the proof of Theorem 4.3.2, finiteness of the set of derivatives is import-
ant. There we construct for a given process P a finite set of fragments FG
using derivatives(P). An application of Proposition 4.2.2 then shows that every
fragment reachable from P is structurally congruent with a fragment in FG.

Lemma 4.2.5
The set derivatives(P) is finite for all P ∈ P.

90

4.3 A First Characterisation of Structural Stationarity

Proof
An induction on the structure of processes shows that der(P) is finite. Since every
process relies on finitely many defining equations, finiteness of derivatives(P)
follows immediately. ¥

4.3 A First Characterisation of Structural Stationarity

In this section, we provide the characterisation of structural stationarity men-
tioned above: structural stationarity is equivalent to boundedness of all reach-
able fragments in the number of sequential processes. As the name indicates,
we restrict the use of the parallel operator to compose sequential processes. In
Chapter 7, we prove a second characterisation of structural stationarity, which
restricts the use of the operator ν instead. While this characterisation gives a
handle to establish structural stationarity, the second characterisation explains
which processes fail to be structurally stationary.

Definition 4.3.1 (PS<∞)
A process P ∈ P is bounded in the sequential processes, if there is a bound on
the number of sequential processes in all reachable fragments, i.e.,

∃kS ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||S ≤ kS .

The set of all processes that are bounded in the sequential processes is PS<∞. ¨

We state the characterisation via boundedness of || − ||S in Theorem 4.3.2.
Several well-known subclasses of π-Calculus are immediately shown to be struc-
turally stationary with an application of this result. Furthermore, the proofs of
Theorem 4.4.8 and Theorem 7.2.8 in this thesis underline its importance.

Theorem 4.3.2 (Characterisation of Structural Stationarity via |)
PFG<∞ = PS<∞.

Boundedness follows immediately from structural stationarity. To establish
completeness, i.e., to show structural stationarity from boundedness in ||−||S , we
construct a finite set of fragments FG, which includes up to structural congruence
every reachable fragment. More precisely, we show that for every Q ∈ Reach(P)
and every fragment F ∈ fg (rf (Q)) there is a fragment G ∈ FG with G ≡ F .

We first explain the idea underlying the construction of the fragments in FG
and then turn to the technicalities. The set FG is the union of sets FGi that
contain fragments with i sequential processes. To build the fragments in FGi, we

91

Chapter 4 Structural Stationarity

consider processes νã.(Πi
j=1Qjσ

′
j) of the form in Proposition 4.2.2, i.e., the Qj

are derivatives of P and the σ′
j are substitutions mapping fn(Qj) into fn(P)∪ ã.

We rename the names ã to a bounded set of unique names ũi, parameterised
by the number of processes i. This ensures we only need to consider finitely
many substitutions σj for every derivative Qj . We add the restricted form
rf (νũi.(Π

i
j=1Qjσj)) to FGi, if it is a fragment.

Let kS ∈ N be a bound on the number of sequential processes in all reachable
fragments. Lemma 4.2.5 gives the finiteness of derivatives(P). Thus the max-
imum maxFN := max{|fn(Q)| p Q ∈ derivatives(P)} on the number of free
names in derivatives exists. Let ũi := u1, . . . , ui·maxFN be unique names distinct
from the free names in P . For every i ∈ N, we define

FGi :=
˘
rf (νũi.(Π

i
j=1Qjσj)) p Qj ∈ derivatives(P), σj : fn(Qj) → fn(P) ∪ ũi,

and rf (νũi.(Π
i
j=1Qjσj)) is a fragment

¯
.

The set FG is the union of all sets FGi with i ≤ kS . This means, the fragments
in FG have at most kS sequential processes:

FG := FG1 ∪ . . . ∪ FGkS .

With Proposition 4.2.2, it is easy to show that every reachable fragment F is
structurally congruent with a fragment rf (νũ|I|.(Πi∈IQiσi)) in FG |I|. To prove
the theorem, the inclusion FG |I| ⊆ FG remains to be shown. This follows with
|I| = ||F ||S ≤ kS , which holds with the invariance of || − ||S under structural
congruence, Lemma 2.1.24, and the assumption. We explain the construction of
FG on an example and then give the full proof that we just sketched.

Example 4.3.3 (FG)
Consider P = νb.a〈b〉.b(x) | a(y).K⌊a, y⌋ with K(a, y) := y〈a〉. In Example 4.2.3,
we computed the reachable fragments:

νb.a〈b〉.b(x), a(y).K⌊a, y⌋, νb.(b(x) | K⌊a, b⌋), νb.(b(x) | b〈a〉).

The number of sequential processes in all reachable fragments is bounded by
kS = 2, which equals, e.g. ||νb.(b(x) | K⌊a, b⌋)||S . The set FG is therefore defined
by FG = FG1 ∪ FG2. The set of derivatives is

derivatives(P) = {a〈b〉.b(x), b(x), a(y).K⌊a, y⌋, K⌊a, y⌋, y〈a〉}.

The maximal number of free names in derivatives is maxFN = 2, e.g. given by
|fn(a〈b〉.b(x))|. Thus, FG1 and FG2 contain fragments

rf (νu1, u2.(Qσ)) and rf (νu1, . . . , u4.(Q1σ1 | Q2σ2)),

92

4.3 A First Characterisation of Structural Stationarity

where Q ∈ derivatives(P) with σ : fn(Q) → {u1, u2, a} and Qj ∈ derivatives(P)
with σj : fn(Qj) → {u1, . . . , u4, a}, for j = 1, 2. As an example, consider pro-
cess Q = a〈b〉.b(x) ∈ derivatives(P). Applying all substitutions σ : {a, b} →
{u1, u2, a} yields the following fragments in FG1, where structurally congruent
ones are omitted:

a〈b〉.b(x){a, a/a, b} = a〈a〉.a(x)

νu1.((a〈b〉.b(x)){u1, u1/a, b}) = νu1.u1〈u1〉.u1(x)

νu1.((a〈b〉.b(x)){a, u1/a, b}) = νu1.a〈u1〉.u1(x)

νu1.((a〈b〉.b(x)){u1, a/a, b}) = νu1.u1〈a〉.a(x)

νu1, u2.((a〈b〉.b(x)){u1, u2/a, b}) = νu1, u2.u1〈u2〉.u2(x).

The reachable fragment νb.a〈b〉.b(x) is structurally congruent with the element
νu1.a〈u1〉.u1(x) ∈ FG1 ⊆ FG. ¨

Proof (of Theorem 4.3.2)
⇐ Consider P ∈ PS<∞, where kS ∈ N is a bound on the number of se-
quential processes in all reachable fragments. We show structural stationarity,
P ∈ PFG<∞.

To begin with, we argue that FGj is finite for every j ∈ N. The finiteness of
FG follows immediately. There are finitely many derivatives P ′ ∈ derivatives(P)
by Lemma 4.2.5. Every process has finitely many free names, thus fn(P ′) and
fn(P) are finite. The set ũj = u1, . . . , uj·maxFN also is finite. This shows there
are finitely many mappings σ : fn(P ′) → fn(P) ∪ ũj for every P ′. We conclude
that FGj is finite. It remains to be shown that up to structural congruence every
reachable fragment is included in FG.

Consider Q ∈ Reach(P) and F ∈ fg (rf (Q)). With Proposition 4.2.2, fragment
F is structurally congruent with a process νã.Q 6=ν so that Q 6=ν = Πi∈IQiσi with
Qi ∈ derivatives(P) and σi : fn(Qi) → fn(P) ∪ ã. We show that

(1) F is structurally congruent with a fragment in FG |I| and

(2) |I| ≤ kS .

This proves the theorem as it shows that F is structurally congruent with a
fragment in FG. Since νã.Q 6=ν is in standard form, we have ã ⊆ fn(Q6=ν). We
need that the number of elements in ã is bounded by |I| · maxFN :

|ã|

(ã ⊆ fn(Q6=ν)) ≤ |fn(Q6=ν)|

(Def. fn, Q6=ν = Πi∈IQiσi) = |
S

i∈I fn(Qiσi)|

≤ Σi∈I |fn(Qiσi)|

(σi may identify names) ≤ Σi∈I |fn(Qi)|

93

Chapter 4 Structural Stationarity

(Def. maxFN) ≤ Σi∈ImaxFN

= |I| · maxFN .

With α-conversion we rename the names in ã to names in ũ|I|:

νã.(Πi∈IQiσi)

(ã = a1, . . . , al) ≡ νu1, . . . , ul.(Πi∈IQiσi{ul/al} . . . {u1/a1}).

Define σ′
i by aσ′

i := aσi{ul/al} . . . {u1/a1}. Since |ã| ≤ |I| · maxFN , we add the
missing names in ũ|I|, exploiting the congruence νa.P ≡ P if a /∈ fn(P):

(Def. σ′) = νu1, . . . , ul.(Πi∈IQiσ
′
i)

(Add missing names) ≡ νũ|I|.(Πi∈IQiσ
′
i).

We now have F ≡ νã.Q 6=ν ≡ νũ|I|.(Πi∈IQiσ
′
i). With Lemma 3.2.7 and Proposi-

tion 3.2.10 it follows that

F = rf (F) ≡rf rf (νũ|I|.(Πi∈IQiσ
′
i)).

As F is a fragment, restricted equivalence implies rf (νũ|I|.(Πi∈IQiσ
′
i)) is a frag-

ment and thus in FG |I|. With |I| ≤ kS the inclusion FG |I| ⊆ FG holds:

kS

(Assumption F ∈ PS<∞) ≥ ||F ||S

(|| − ||S invariant under ≡) = ||νã.Q 6=ν ||S

(Def. || − ||S , Q 6=ν = Πi∈IQiσi) = Σi∈I ||Qiσi||S

(|| − ||S invariant under σ) = Σi∈I ||Qi||S

(Qi ∈ derivatives(P)) = |I|.

⇒ Conversely, if P is structurally stationary, all reachable processes are made
up of finitely many fragments F1, . . . , Fn. Thus, the number of sequential pro-
cesses in all reachable fragments is bounded by

max{||Fi||S p 1 ≤ i ≤ n}.

This concludes the proof. ¥

Although the characterisation of structural stationarity in Theorem 4.3.2 is
semantical in the sense that it refers to all reachable fragments, it has import-
ant implications. The first and unconventional application of the theorem is an
algorithm to compute the structural semantics without using the coverability
graph. The idea is to compute a Petri net NFG [[P]], which has the set FG in
the proof of Theorem 4.3.2 as places. Transitions, arcs, and the initial marking

94

4.3 A First Characterisation of Structural Stationarity

are added according to Definition 3.3.7. Since FG contains all reachable frag-
ments, the Petri net NFG [[P]] subsumes N [[P]]. Like for NNoCov [[P]] in Section 3.5,
the transition systems of NFG [[P]] and N [[P]] are isomorphic but NFG [[P]] may
contain places which are not markable, i.e., which are not in N [[P]]. We plan a
prototypical implementation of NFG in our tool Petruchio. The crucial issue in
the implementation is to limit the size of the set FG. Static analysis techniques
like [BDNN98] may be helpful to solve this problem. We defer the discussion of
the work of Bodei et. al. until Section 4.6.

As second application, Theorem 4.3.2 yields structural stationarity of import-
ant classes of processes known from the literature, starting with the syntactic
class of restriction-free processes [AM02]. Although Lemma 4.3.4 follows from
our work on finite handler processes in the next section, we give a direct proof
here to illustrate the application of Theorem 4.3.2.

Lemma 4.3.4 (Restriction-free Processes are Structurally Stationary)
If P ∈ P is restriction-free, then P ∈ PFG<∞.

Proof
If process P ∈ P is defined without the restriction operator (cf. Definition 2.1.3),
all reachable fragments are sequential processes. Thus, ||F ||S ≤ 1 and therefore
P ∈ PS<∞ = PFG<∞ with Theorem 4.3.2. ¥

Also the syntactic class of finite control processes (FCPs) [Dam96] is a subclass
of PFG<∞. Consider the FCP νã.(P1 | . . . | Pn), where the processes Pi do not
use the parallel composition operator (cf. Definition 2.1.5). It is immediate
to show that the number of sequential processes in all reachable fragments is
bounded by n, the degree of parallelism in the initial process. Finite control
processes are generalised by the semantic class of finitary processes defined by
Montanari and Pistore. We establish the stronger result that all finitary processes
are structurally stationary.

Definition 4.3.5 (Finitary Processes [MP95a, Pis99, MP01])
A process P ∈ P is finitary, if there is a bound on the number of sequential
processes in every reachable process, i.e.,

∃kS : ∀Q ∈ Reach(P) : ||Q||S ≤ kS .

¨

Lemma 4.3.6 (Finitary Processes are Structurally Stationary)
If P ∈ P is a finitary process then P ∈ PFG<∞.

95

Chapter 4 Structural Stationarity

Proof
Consider the finitary process P ∈ P, where kS bounds the number of sequential
processes in all reachable processes Q. We show that kS bounds the number of
sequential processes in all reachable fragments as well. Consider F ∈ fg (rf (Q)),
by definition rf (Q) is a parallel composition rf (Q) = Πi∈IFi | F | Πj∈JFj , where
both index sets may be empty. We check that

||F ||S ≤ ||rf (Q)||S = ||Q||S ≤ kS

by definition of || − ||S , invariance of || − ||S under structural congruence, and the
assumption that P is finitary. Thus, the inclusion P ∈ PS<∞ = PFG<∞ holds
with Theorem 4.3.2. ¥

Remark 4.3.7
The structural semantics is—to the best of our knowledge—the first automata-
theoretic translation that finitely represents both, the class of restriction-free
processes and the class of finitary processes. This is even more surprising, as the
proofs of Lemma 4.3.4 and Lemma 4.3.6 are simple and straightforward. ¨

Example 4.3.8 (Structurally Stationary Processes)
We present three examples that separate the process classes.

1. Consider K1⌊a⌋ with K1(x) := K1⌊x⌋ | K1⌊x⌋. The only reaction sequence
of the process is

K1⌊a⌋ → K1⌊a⌋ | K1⌊a⌋ → Π3K1⌊a⌋ → . . .

Clearly, the process is restriction-free but not finitary as the number of
sequential processes grows unboundedly. As every fragment consists of a
single process K1⌊a⌋, the process is structurally stationary.

2. The process νa.K2⌊a⌋ with K2(x) := νb.K2⌊b⌋ is not restriction-free but
finitary as each of the following processes consists of a single sequential
process:

νa.K2⌊a⌋ → νb.K2⌊b⌋ → νc.K2⌊c⌋ → . . .

The number of sequential processes in fragments is bounded by one as well,
so νa.K2⌊a⌋ is structurally stationary.

3. Consider νa.K3⌊a⌋ with K3(x) := K3⌊x⌋ | νb.K3⌊b⌋ and the reaction se-
quence

νa.K3⌊a⌋ → νa.K3⌊a⌋ | νb.K3⌊b⌋ → νa.K3⌊a⌋ | νb.K3⌊b⌋ | νc.K3⌊c⌋ → . . .

Of course, νa.K3⌊a⌋ is neither restriction-free nor finitary. Again, the num-
ber of sequential processes in fragments is bounded by one, i.e., the process
is structurally stationary with Theorem 4.3.2.

96

4.4 Finite Handler Processes

This illustrates the differences between restriction-free and finitary processes, and
shows that they are generalised by structurally stationary processes. Processes
at the borderline of structural stationarity are subject to Chapter 7, 8, and 9. ¨

The present section identified the properties that lead to finiteness and in-
finity of the structural semantics. In the following Section 4.4, we apply these
insights to design a syntactic class of processes for modelling client-server ar-
chitectures. The main theorem states that all processes in the new class are
structurally stationary, i.e., finitely represented under the structural semantics.
Again, Theorem 4.3.2 is a helpful tool in the proof.

4.4 Finite Handler Processes

We start with a sketch of the idea underlying our syntactic class of finite handler
processes, the explanation is illustrated in Figure 4.1. Afterwards, we turn to the
definition. A handler process listens on a set of channels represented by distin-
guished public names. The analogy is a server located at an IP address listening
on a set of ports, part (a) in the figure. To register at a handler, participant
processes send a restricted name over one of the distinguished channels. This
mimics a client that passes its own IP address when contacting a server, (b) and
(c). The handler introduces the participants to each other and by this creates
fragments, Figure 4.1 (d). No protocol is specified for finite handler processes.
The crucial restriction in the communication is that handler processes receive
finitely many messages from participants per session. In particular, only finitely
many participants can register at a handler. At some point, the handler loses
connection to the fragment and restarts listening on the distinguished channels,
Figure 4.1 (e). This ensures boundedness of the fragments in the number of
processes.

The set of distinguished public names is NP ⊆ N . We use the letter p for
names in NP , whereas a, b, x, y refer to names in N \NP . To syntactically detect
the use of distinguished public names we define receiving prefixes πR. They differ
from prefixes π in the ability to receive on distinguished names, πR = p(x). An
arbitrary prefix πRS also allows for sending on distinguished names, πRS = p〈x〉:

π ::= x〈y〉 p x(y) p τ πR ::= π p p(x) πRS := πR
p p〈x〉.

The formalisation of participants requires some explanation. A participant is a
process of the form

νã.MPT with MPT = p1〈a1〉.SQ1 + . . . + pn〈an〉.SQn,

which satisfies fn(νã.MPT) ⊆ NP . To register at a handler process, a participant
sends a name ai ∈ N \NP over a distinguished channel pi ∈ NP using the choice

97

Chapter 4 Structural Stationarity

.

.

ip ip ip′

(a) (b) (c)

(d) (e)

loc

ip ip′

loc

:= Handler

:= Participant

Figure 4.1: Illustration of the behaviour of finite handler processes.

composition MPT . The side condition that all free names are in NP ensures
ai is restricted, i.e., ai ∈ ã. After the registration, the participant becomes a
process SQ , which is sequential in the sense that it does not contain the parallel
composition operator. Hence, communications with participants do not increase
the number of sequential processes within fragments. Furthermore, SQ processes
do not use distinguished channels. So a participant registers at precisely one
handler process.

Definition 4.4.1 (Participants)
To define participants, we first require processes SQ that do not contain the
parallel composition operator and do not use distinguished names in NP :

MSQ ::= 0 p π.SQ p MSQ
1 + MSQ

2

SQ ::= MSQ
p K SQ⌊ã ∪ p̃⌋ p KPT ⌊p̃⌋ p νa.SQ .

An identifier K SQ is defined by an SQ process and an identifiers KPT by a process
PT below. For K SQ⌊ã ∪ p̃⌋ with K SQ(x̃a ∪ x̃p) := SQ we additionally require
that for all x ∈ fn(SQ) we have x ∈ x̃p if and only if x ∈ NP .

The set of participants PPT with typical elements PT is defined by

MPT ::= 0 p p〈a〉.SQ p MPT
1 + MPT

2

PT ::= νã.MPT
p KPT ⌊p̃⌋ p PT 1 | PT 2,

where fn(νã.MPT) ⊆ NP . ¨

98

4.4 Finite Handler Processes

The side condition on the defining equation of K SQ⌊ã ∪ p̃⌋ ensures that the
parameters p̃ serve as parameters of further calls K SQ⌊ã ∪ p̃⌋ or calls KPT ⌊p̃⌋
but are not used anywhere else.

Example 4.4.2 (Participant)
The client in Figure 4.1 may be formalised by C ⌊url⌋ with

C (url) := νip.url〈ip〉.ip(loc).T⌊loc, url⌋.

The identifier T stands for talk and is assumed to be defined by an SQ process.
If we choose NP = {url} as distinguished names, the process C ⌊url⌋ is a

participant in PPT . It corresponds to KPT ⌊p̃⌋ in Definition 4.4.1. To see this,
we check that the defining process is in PPT . The only free name is url . The
send action url〈ip〉 is the registration at the handler, denoted by MPT = MPT

1 +
p〈a〉.SQ + MPT

2 in Definition 4.4.1. Then the free agent becomes an SQ process
as it avoids the parallel composition. ¨

A handler process is a parallel composition of connector processes CN . To
enable participants to register, CN contains receiving prefixes πR = p(x). Fol-
lowing the explanation above, the connector should receive messages from finitely
many participants. Therefore, we exclude recursive calls between CN processes,
i.e., there is no process identifier KCN defined by a CN process (cf. process
identifiers K SQ in Definition 4.4.1). To make sure a CN process communicates
with registered participants only, we add the side condition that the free names
in CN are in NP . This implies that all names—except those for registration
purposes—are bound.

Definition 4.4.3 (Handler)
The set of handler processes PHD with HD ∈ PHD is defined inductively:

MCN ::= 0 p πR.CN p MCN
1 + MCN

2

CN ::= MCN
p KHD⌊p̃⌋ p νa.CN

HD ::= CNNP p KHD⌊p̃⌋ p HD1 | HD2,

where CNNP is a connector process CN that satisfies fn(CNNP) ⊆ NP . A
process identifier KHD is defined by a handler process HD ∈ PHD. ¨

Example 4.4.4 (Handler)
The server in the explanation above is S⌊url⌋ with

S⌊url⌋ := url(x).url(y).νloc.x〈loc〉.y〈loc〉.S⌊url⌋.

Let again NP = {url}. To see that S⌊url⌋ is a handler process of the form
KHD⌊p̃⌋, consider the process defining S . It is a CN process that receives twice

99

Chapter 4 Structural Stationarity

on the distinguished name url . All other names are bound, i.e., the side condition
that the free names are in NP holds. Hence, S⌊url⌋ is a process in PHD. ¨

Finite handler processes, denoted by FH , are built from participants and hand-
ler processes using choice composition, MFH

1 + MFH
2 , and parallel composition,

FH 1 | FH 2. Restricted names occur in participants and handler processes only.
Therefore, their use is well-controlled as a participant sends restricted names to
a handler who distributes them among the other participants that are registered.

Definition 4.4.5 (Finite Handler Process)
The set of finite handler processes PFH with elements FH ∈ PFH is defined by

MFH ::= 0 p π.FH p MFH
1 + MFH

2

FH ::= PT p HD p MFH
p KFH ⌊ã ∪ p̃⌋ p FH 1 | FH 2,

where PT ∈ PPT , HD ∈ PHD, and KFH is defined by KFH (x̃a, x̃p) := FH .
Again, we require for x ∈ fn(FH) that x ∈ x̃p if and only if x ∈ NP . ¨

Example 4.4.6 concludes the explanation that the client-server system is a
finite handler process. The case study shows that finite handler processes may
have an infinite number of reachable processes. Furthermore, there is no bound
on the number of restricted names.

Example 4.4.6 (Finite Handler Process)
Let NP = {url}. We already observed that C ⌊url⌋ ∈ PPT and S⌊url⌋ ∈ PHD

holds. Let the environment process ENV ⌊url⌋ generate clients, i.e., we define
ENV (url) := ENV ⌊url⌋ | C ⌊url⌋. The process is of the form KFH ⌊ã∪ p̃⌋ ∈ PFH,
so we conclude that ENV ⌊url⌋ | S⌊url⌋ is a finite handler process in PFH. ¨

Although the class of finite handler processes may seem tailored towards client-
server applications, the syntactic restrictions are not severe. Finite handler pro-
cesses truly generalise the class of restriction-free processes (cf. Definition 2.1.3).
These correspond to finite handler processes without handlers and participants.

Lemma 4.4.7 (Restriction-free processes are Finite Handler Processes)
If P ∈ P is restriction-free then P ∈ PFH.

We now turn to our main result that finite handler processes are finitely rep-
resented under the structural semantics.

Theorem 4.4.8 (Finite Handler Processes are Structurally Stationary)
PFH ⊆ PFG<∞.

100

4.4 Finite Handler Processes

To establish the theorem, we show that all fragments reachable from a fi-
nite handler process consist of a bounded number of sequential processes. The
maximal nesting of prefixes that receive on distinguished channels ||P ||NP serves
as the bound. For example, the function yields ||p(x).a(y).p(z) + p〈a〉||NP =
max{2, 0} = 2.

Definition 4.4.9 (|| − ||NP : P → N)
For every process P ∈ P, the maximal nesting of prefixes that receive on distin-
guished channels, i.e., prefixes p(x), is given by ||P ||NP :

||πRS ||NP :=

(

1, if πRS = p(x)

0, otherwise
||K⌊ã⌋||NP := 0

||πRS .P ||NP := ||πRS ||NP + ||P ||NP ||M + N ||NP := max{||M ||NP , ||N ||NP }

||P | Q||NP := max{||P ||NP , ||Q||NP } ||νa.P ||NP := ||P ||NP .

Let P rely on the n defining equations Ki(x̃i) := Pi. Taking them into account,
we define ||P ||maxNP

:= max{||P ||NP , ||P1||NP , . . . , ||Pn||NP }. ¨

To prove the indicated boundedness requires a deeper understanding of the
behaviour of finite handler processes. An induction on the reaction sequences
reveals that every fragment reachable from FH ∈ PFH satisfies the constraints
given by Definition 4.4.10. It is a process identifier, a participant νã.MPT ready
to register at a connector, or a finite handler process MFH communicating on
public channels. In any other case, the fragment is a parallel composition of
SQ processes with at most one CN process, F ≡ νã.(SQ1 | . . . | SQn | CN).
Moreover, the number of sequential processes in this fragment satisfies ||F ||S +
||F ||NP ≤ ||FH ||maxNP

+1. The inequality is crucial in the proof of Theorem 4.4.8,
we explain it after the definition.

Definition 4.4.10 (Finite Handler Form)
A fragment F ∈ PF reachable from FH ∈ PFH is in finite handler form (fhf) if

(1) either F is structurally congruent with one of the following fragments:

KPT ⌊p̃⌋ p KHD⌊p̃⌋ p KFH ⌊ã ∪ p̃⌋ p MFH
p νã.MPT

with fn(νã.MPT) ⊆ NP ,

(2) or F ≡ νã.(SQ1 | . . . | SQn | CN) in standard form where the parallel
composition of either the SQ i or CN may be missing, fn(F) ⊆ NP , and

||F ||S + ||F ||NP ≤ ||FH ||maxNP
+ 1.

101

Chapter 4 Structural Stationarity

Note that MPT as well as MFH are non-empty and that not both, the SQ i and
CN , may be omitted since F is a fragment. ¨

Consider fragment F ≡ νã.(SQ1 | . . . | SQn | CN) created by connector CN .
Since neither the connector CN nor registered participants SQ i contain parallel
compositions, ||F ||S does not increase by internal communications. Registered
participants and connector communicate on restricted names. The free names of
the fragment are the input prefixes of CN , which are in NP . As input prefixes
do not match, the fragment does not merge with a fragment or a connector.
Sequential processes MFH do not use names in NP . Hence, the only way to
increase the number of processes in F is a communication between CN and a
participant νã.MPT .

The connector process receives finitely many participants it may add to F .
Every such communication decreases ||CN ||NP = ||F ||NP by one and increases
||F ||S by at most one. Initially, ||CN ||NP ≤ ||FH ||maxNP

and all fragments consist
of one process, i.e., ||F ||S = 1. We conclude ||F ||NP + ||F ||S ≤ ||FH ||maxNP

+ 1.

Lemma 4.4.11
If FH ∈ PFH, then every reachable fragment is in finite handler form, i.e.,

∀Q ∈ Reach(FH) : ∀F ∈ fg (rf (Q)) : F is in fhf .

Before we continue with the proof of Lemma 4.4.11, we prove Theorem 4.4.8
as a corollary of the lemma and Theorem 4.3.2.

Proof (of Theorem 4.4.8)
Consider FH ∈ PFH and let F be a reachable fragment. With Lemma 4.4.11, we
get the inequality ||F ||S+||F ||NP ≤ ||FH ||maxNP

+1. Thus, ||F ||S ≤ ||FH ||maxNP
+1,

which means FH is bounded in the sequential processes, FH ∈ PS<∞. The-
orem 4.3.2 yields FH ∈ PFG<∞. ¥

To establish Lemma 4.4.11, we do an induction on the length of the reaction
sequence leading to the reachable process Q. We have to show that the fragments
in fg (rf (Q)) are in fhf . The following Lemma 4.4.12 handles the base case, i.e.,
Q0 = FH . It is also used in the induction step when a process identifier is called
or processes in PFH communicate.

Lemma 4.4.12
For every participant PT ∈ PPT , handler HD ∈ PHD, and finite handler process
FH ∈ PFH the fragments of the restricted form are in fhf , i.e., every fragment
F ∈ fg (rf (PT)), F ∈ fg (rf (HD)), and F ∈ fg (rf (FH)) is in fhf .

102

4.4 Finite Handler Processes

Proof
We establish the statement for PT ∈ PPT , the proofs for HD ∈ PHD and
FH ∈ PFH are similar.

Base Cases Consider KPT ⌊p̃⌋ and νã.MPT with fn(νã.MPT) ⊆ NP . The re-
stricted form does not change process identifiers, i.e., rf (KPT ⌊p̃⌋) = KPT ⌊p̃⌋.
Thus, fg

`
rf (KPT ⌊p̃⌋)

´
= {KPT ⌊p̃⌋} which is a fragment in fhf . For an empty

choice composition, the proof is trivial as rf (νã.MPT) = 0 does not contain any
fragments. If the choice is non-empty, the restricted form removes those names
from ã that are not in fn(MPT). We get fg

`
rf (νã.MPT)

´
= {νã′.MPT} with

ã′ ⊆ ã. As only superfluous restrictions are removed, the free names remain in
NP and we have a fragment in fhf .

Induction Step Assume that all F ∈ fg (rf (PT i)) are in fhf with i = 1, 2.
Without loss of generality let rf (PT i) 6= 0. By definition, rf (PT 1 | PT 2) =
rf (PT 1) | rf (PT 2). Thus, F ∈ fg (rf (PT 1 | PT 2)) if and only if F ∈ fg (rf (PT 1))
or F ∈ fg (rf (PT 2)). In both cases, the hypothesis shows that F is in fhf . ¥

Lemma 4.4.13 handles the induction step in the proof of Lemma 4.4.11 in case
a participant registers at a connector process or a fragment consisting of several
processes performs a reaction.

Lemma 4.4.13
Consider FH ∈ PFH with F ≡ νãF .(SQ1 | . . . | SQn | CN) and G ≡ νãG.MPT

reachable fragments in fhf . Let F → R and F | G → R. In either case, the
restricted form of R is a parallel composition of fragments in fhf : rf (R) = Πi∈IFi

with Fi in fhf for all i ∈ I.

Proof
Statement for F Since F ≡ νãF .(SQ1 | . . . | SQn | CN), the reaction F → R
implies νãF .(SQ1 | . . . | SQn | CN) → R with Rule (Struct). Without loss of
generality, we assume that SQi as well as CN are present. According to Propos-
ition 2.1.38, there are three possible reactions for νãF .(SQ1 | . . . | SQn | CN).
A process SQ1 = M1 + τ.SQ ′

1 + N1 or the process CN consumes a τ -prefix, a
process K SQ⌊ã ∪ p̃⌋ calls its defining equation, or two processes, say SQ1 and
SQ2 or process SQ1 and CN , communicate. We consider the first case where
SQ1 = M1 + τ.SQ ′

1 + N1 consumes a τ -prefix. The remaining cases are similar
but notationally less convenient as the require dealing with substitutions. With
Proposition 2.1.38, we get

R ≡ νãF .(SQ ′
1 | Πn

i=2SQ i | CN).

Since the free names in M1 and N1 are lost, we have fn(SQ ′
1) ⊆ fn(SQ1). Con-

103

Chapter 4 Structural Stationarity

sequently, the restricted form of νãF .(SQ ′
1 | Πn

i=2SQ i | CN) may consist of
several fragments:

rf (νãF .(SQ ′
1 | Πn

i=2SQ i | CN)) = Πi∈IFi.

Case SQ ′
1 = KPT ⌊p̃⌋ Since ãF ⊆ N \ NP , we have p̃ ∩ ãF = ∅. When we

now compute the restricted from of νãF .(KPT ⌊p̃⌋ | Πn
i=2SQ i | CN), the process

KPT ⌊p̃⌋ forms a fragment on its own, i.e., there is a fragment Fi in Πi∈IFi with
Fi = SQ ′

1 = KPT ⌊p̃⌋. This fragment is obviously in fhf .

Case SQ ′
1 6= KPT ⌊p̃⌋ and remaining fragments Consider a fragment Fi in the

restricted form Πi∈IFi = rf (νãF .(SQ ′
1 | Πn

i=2SQ i | CN)). By definition of rf ,
the standard form of Fi is a parallel composition of processes SQj with at most
one process CN ,

Fi ≡ sf (Fi) = νã.(SQj1
| . . . | SQjn

| CN).

Either the SQj or CN may be missing. We check the free names as follows:

fn(Fi) ⊆ fn(Πi∈IFi) = fn(R) ⊆ fn(F) ⊆ NP .

The first inclusion holds by definition of fn, the following equation with R ≡
Πi∈IFi and the invariance of fn under structural congruence, the next inclusion
holds with Lemma 2.1.37, and the last is the assumption that F is in fhf . We
prove the inequality to conclude Fi is in fhf . Note that ||Fi||NP = 0 if CN is not
in Fi and ||Fi||NP = ||F ||NP otherwise:

||Fi||S + ||Fi||NP

(Explained above) ≤ ||Fi||S + ||F ||NP

(||Fi||S ≤ ||Πi∈IFi||S) ≤ ||rf (νãF .(SQ ′
1 | Πn

i=2SQ i | CN))||S + ||F ||NP

(Invariance || − ||S under ≡) = ||νãF .(SQ ′
1 | Πn

i=2SQ i | CN)||S + ||F ||NP

(Case SQ ′
1 = 0) ≤ ||νãF .(SQ1 | Πn

i=2SQ i | CN)||S + ||F ||NP

(Invariance || − ||S under ≡) = ||F ||S + ||F ||NP

(Assumption F in fhf) ≤ ||FH ||maxNP
+ 1.

We now have R ≡ νãF .(SQ ′
1 | Πn

i=2SQ i | CN), which implies restricted equival-
ence with Proposition 3.2.10:

rf (R) ≡rf rf (νãF .(SQ ′
1 | Πn

i=2SQ i | CN)) = Πi∈IFi.

By definition of restricted equivalence, for every fragment G in rf (R) there is a
fragment Fi in Πi∈IFi so that G ≡ Fi. We just showed that all Fi are in finite
handler form, hence G is in fhf as well.

104

4.4 Finite Handler Processes

Statement for F | G Since F | G → R, with Rule (Struct) also the standard
form of process νãF .(SQ1 | . . . | SQn | CN) | νãG.MPT reacts to R:

νãF .νãG.(SQ1 | . . . | SQn | CN | MPT) → R.

We already handled reactions within F in the previous statement. Therefore, we
now only consider a reaction between MPT = MPT

1 + p〈a〉.SQ + MPT
2 and the

process CN = MCN
1 + p(x).CN ′ + MCN

2 . Proposition 2.1.38 yields

R ≡ νãF .νãG.(SQ1 | . . . | SQn | CN ′{a/x} | SQ).

We compute the restricted form

rf (νãF .νãG.(SQ1 | . . . | SQn | CN ′{a/x} | SQ)) = Πi∈IFi. (4.1)

Like in the previous case, we check that

Fi ≡ sf (Fi) = νã.(SQj1
| . . . | SQjn

| SQ | CN ′{a/x}),

where we assume that the fragment contains SQ as well as CN ′{a/x}. The
remaining cases follow from this one. Note that we have to do case distinctions
for SQ = KPT ⌊p̃⌋ and additionally for CN ′ = KHD⌊p̃⌋, but both are similar to
the previous case. We now check the free Names:

fn(Fi) ⊆ fn(R) ⊆ fn(F | G) = fn(F) ∪ fn(G) ⊆ NP .

The first inclusion holds by definition of fn and R ≡ Πi∈IFi, the second follows
with F | G → R and Lemma 2.1.37, the next equation is again the definition of
fn, and the final inclusion holds with the assumption that F and G are in fhf ,
and hence fn(F) ⊆ NP ⊇ fn(G). We still need to show the inequality:

||Fi||S + ||Fi||NP

(Def. || − ||NP) = ||Fi||S + ||CN ′{a/x}||NP

(Def. || − ||NP) ≤ ||Fi||S + ||CN ||NP − 1

(See below) ≤ ||νãF .νãG.(SQ1 | . . . | SQn | CN ′{a/x} | SQ)||S +

||CN ||NP − 1

(See below) ≤ ||F ||S + 1 + ||CN ||NP − 1

(F in fhf) ≤ ||FH ||maxNP
+ 1.

The second inequality requires some consideration. Since Fi is a fragment in
Πi∈IFi, we have ||Fi||S ≤ Σi∈I ||Fi||S = ||Πi∈IFi||S . With Equation (4.1), rf (P) ≡
P , and the invariance of || − ||S under structural congruence we get the stated
inequality. For the third inequality we compute

||νãF .νãG.(SQ1 | . . . | SQn | CN ′{a/x} | SQ)||S

105

Chapter 4 Structural Stationarity

(Def. || − ||S) = ||νãF .(SQ1 | . . . | SQn | CN ′{a/x} | SQ)||S

(SQ may be 0) ≤ ||νãF .(SQ1 | . . . | SQn | CN ′{a/x})||S + 1

(CN ′{a/x} may be 0) ≤ ||νãF .(SQ1 | . . . | SQn | CN)||S + 1

≤ ||F ||S + 1.

The last inequality holds with the invariance of ||−||S under structural congruence
and concludes the proof. ¥

In the proof of Lemma 4.4.11, the induction hypothesis assumes that all frag-
ments in fg (rf (Qn)) are in fhf . We distinguish all possible fragments in Defini-
tion 4.4.10 and all reactions Qn → Qn+1. Lemma 4.4.12 and Lemma 4.4.13 show
that the resulting fragments in fg (rf (Qn+1)) are in fhf .

Proof (of Lemma 4.4.11)
Let FH ∈ PFH. We proceed by induction on the length of the reaction se-
quences. For the base case Q0 = FH , all fragments in fg (rf (Q0)) are in fhf by
Lemma 4.4.12.

Induction Step Assume that all fragments in fg (rf (Qn)) are in fhf , where Qn

is reachable from FH with n ∈ N reactions. We have

Qn → Qn+1 ⇔ ∃F ∈ fg (rf (Qn)) , R, Q′
n ∈ P : F → R

∧ Qn ≡ F | Q′
n ∧ Qn+1 ≡ R | Q′

n

∨ ∃F1, F2 ∈ fg (rf (Qn)) , R, Q′
n ∈ P : F1 | F2 → R

∧ Qn ≡ F1 | F2 | Q′
n ∧ Qn+1 ≡ R | Q′

n.

We distinguish the cases and show that the fragments F ∈ fg (rf (R)) are in fhf .
This proves the induction step as F ∈ fg (rf (Q′

n)) is in fhf by the hypothesis.
We begin with reactions F → R.

Case KPT ⌊p̃⌋ p KHD⌊p̃⌋ p KFH ⌊ã ∪ p̃⌋ Lemma 4.4.12 shows that the frag-
ments in rf (R) are in fhf .

Case MFH A process MFH = MFH
1 + π.FH + MFH

2 reacts to FH if and only
if π = τ . Lemma 4.4.12 shows that the fragments in fg (rf (FH)) are in fhf .

Case νã.MPT A process νã.MPT = νã.(MPT
1 + p〈a〉.SQ + MPT

2) has no reac-
tions.

Case νã.(SQ1 | . . . | SQn | CN) By the hypothesis, F is in fhf . Lemma 4.4.13
shows that the restricted form of R is a parallel composition of fragments in fhf .

106

4.5 Complexity- and Decidability-theoretic Aspects

We now turn to reactions between fragments F1 and F2, i.e., F1 | F2 → R.

Case F1 ≡ KPT ⌊p̃⌋, F1 ≡ KHD⌊p̃⌋, F1 ≡ KFH ⌊ã ∪ p̃⌋ Calls to process identi-
fiers do not react with other fragments.

Case F1 ≡ νã.MPT = νã.(MPT
1 + p〈a〉.SQ + MPT

2) This fragments sends on
a distinguished channel. The only fragments that listen on these channels are
fragments F2 ≡ νã.(SQ1 | . . . | SQn | CN), which contain a connector process
CN . Since by the hypothesis F1 and F2 are in fhf , Lemma 4.4.13 shows that the
restricted form of R is a parallel composition of fragments in fhf .

Case F1 ≡ νã.(SQ1 | . . . | SQn | CN) Since fn(F1) ⊆ NP , the fragment only
listens on distinguished channels. Since only fragments νã.MPT send on these
channels, we are back in the previous case.

Case F1 ≡ MFH A fragment MFH = MFH
1 +a〈b〉.FH 1+NFH

1 sends on a public
channel. Only fragments of the same form listen on public channels. Thus, we
have a reaction MFH

1 + a〈b〉.FH 1 + NFH
1 | MFH

2 + a(x).FH 2 + NFH
2 → R. With

Proposition 2.1.38, we get

R ≡ FH 1 | FH 2{b/x}.

For the resulting fragments, it holds F ∈ fg (rf (FH 1 | FH 2{b/x})) if and only if
F ∈ fg (rf (FH 1)) or F ∈ fg (rf (FH 2{b/x})). In both cases, Lemma 4.4.12 states
that F is in fhf . ¥

The client-server example indicates that finite handler processes naturally arise
when modelling systems with central control units. Also the larger car platoon
case study we investigate in Chapter 6 is a finite handler process and demon-
strates the applicability of this system class. Theorem 4.4.8 ensures the property
of structural stationarity holds for finite handler systems. We also observed in
Section 4.3 that various and important subclasses of the π-Calculus known from
the literature are structurally stationary. This implies that the constraint in The-
orem 4.3.2 is frequently satisfied. Structural stationarity is a common property
of π-Calculus processes. We continue with an investigation of how Petri nets
relate to structurally stationary systems.

4.5 Complexity- and Decidability-theoretic Aspects

We investigate the translation of Petri nets back into structurally stationary pro-
cesses. We start with an adaptation of a translation of Amadio and Meyssonnier
[AM02], which yields a restriction-free process PPN [[N]] that is linear in the size

107

Chapter 4 Structural Stationarity

of the translated net N . The transition systems of the Petri net and the process
are isomorphic. This relation strongly indicates that model checking structurally
stationary processes against branching-time logics is undecidable, as it is unde-
cidable for Petri nets. On the other hand, the relation shows decidability but
EXPSpace-hardness of reachability and model checking linear-time action-based
logics for structurally stationary processes.

We then change the translation to PF
PN , which has the following property.

In PF
PN [[N]], every reachable process—which represents a reachable marking of

N—is a single fragment. Hence, the number of reachable fragments in PF
PN [[N]],

and consequently the size of the structural semantics N [[PF
PN [[N]]]], is determined

by the number of reachable markings of N . It is well-known that this number
is not bounded by a primitive recursive function [MM81] in the size of the net.
Hence, the size of our structural semantics is not bounded by a primitive recursive
function in the size of the process.

The section is written in semi-formal style. The aim is to give strong indications
for the mentioned undecidability results without formally defining the respective
equivalences and logics.

4.5.1 From Petri nets to Structural Stationarity

We define a translation of Petri nets into processes along the lines of [AM02].
Consider the Petri net N = (S, T, W, M0), the idea to represent it by a process
PPN [[N]] is as follows. The places s ∈ S are modelled by public names s ∈ N . A
marking with k tokens on s is reflected by the parallel composition of k processes
s. While Petri net transitions read from arbitrarily many places at once, at most
two processes communicate in a reaction. The solution to this problem is to
serialise the reading of tokens. Let transition t take three tokens from place s1

and one token from s3, and produce two tokens on s2. We represent it by a
process identifier act .Kt⌊act , s1, s3, s2⌋ that is defined by

Kt(act , s1, s3, s2) := s1.s1.s1.s3.(act | act .Kt⌊act , s1, s2, s3⌋ | s2 | s2).

The action act , which has to be received before the series of actions s1.s1.s1.s3 can
be communicated, ensures that the firing of transitions does not interfere. This
action is missing in [AM02] and facilitates the proof that the transition systems
are isomorphic modulo deadlocks, a result that does not hold in [AM02]. Only
with this isomorphism one can conclude about undecidability of model checking.
The translation is illustrated in Figure 4.2.

Definition 4.5.1 (PPN : PN → PFG<∞)
Consider a Petri net N = (S, T, W, M0). The π-Calculus semantics of the Petri

108

4.5 Complexity- and Decidability-theoretic Aspects

.

.

N
•

s1 s2

t1 t2 t3

PPN [[N]] = act | act .Kt1⌊act , s1⌋ | act .Kt2⌊act , s1, s2⌋ | act .Kt3⌊act , s2, s2⌋ | s1

Kt1(act , s1) := s1.(act | act .Kt1⌊act , s1⌋)

Kt2(act , s1, s2) := s1.(act | act .Kt2⌊act , s1, s2⌋ | s2)

Kt3(act , s2, s
′
2) := s2.(act | act .Kt3⌊act , s2, s

′
2⌋ | s′2).

Figure 4.2:
Translation of a Petri net N into the restriction-free process PPN [[N]]. Note
that s2 and s′2 in the defining equation of Kt3 are instantiated by the same
free name s2, so the term is correct.

net is the process

PPN [[N]] := act | Πt∈T act .Kt⌊act ,
•t, t•⌋ | Πs∈supp(M0)Π

M0(s)s.

The defining equation of Kt with •t = {s1, . . . , sn} is

Kt(act ,
•t, t•) := •s1 . . . • sn.(act | act .Kt⌊act ,

•t, t•⌋ | Πs∈t•ΠW (t,s)s).

Here, •s abbreviates a sequence of W (s, t) receive actions s, •s := s . . . s. ¨

We observe that the size of the process is linear in the size of the Petri net.
This becomes important in the following section where we investigate the size of
the structural semantics.

Lemma 4.5.2 (Size of PPN [[N]])
For every N ∈ PN we have ||PPN [[N]]|| ≤ 15||N || + 3.

Proof
Consider N = (S, T, W, M0). We start with the length of the main process:

len(act .0 | Πt∈T act .Kt⌊act ,
•t, t•⌋ | Πs∈supp(M0)Π

M0(s)s.0)

= 3 + 5|T | + Σt∈T (|•t| + |t•|) + 4(Σs∈supp(M0)M0(s))

= 3 + 5|T | + Σt∈T (|•t| + |t•|) + 4(Σs∈SM0(s)).

The last equation holds since s /∈ supp(M0) means M0(s) = 0. We now consider
the defining equation of every transition t ∈ T :

len(Kt(act ,
•t, t•) := •s1 . . . • sn.

109

Chapter 4 Structural Stationarity

(act .0 | act .Kt⌊act ,
•t, t•⌋ | Πs∈t•ΠW (t,s)s.0))

= 10 + 2|•t| + 2|t•| + 2(Σs∈•tW (s, t)) + 4(Σs∈t•W (t, s))

= 10 + Σs∈•t(2W (s, t) + 2) + Σs∈t•(4W (t, s) + 2).

In the last equation, we join the terms 2|•t| and 2(Σs∈•tW (s, t)) as follows:

2|•t| + 2(Σs∈•tW (s, t)) = (Σs∈•t2) + Σs∈•t2W (s, t) = Σs∈•t(2W (s, t) + 2).

Summing up the length of the main process and the length of all defining equa-
tions yields

3 + 5|T | + Σt∈T (|•t| + |t•|) + 4(Σs∈SM0(s)) +

Σt∈T

`
10 + Σs∈•t(2W (s, t) + 2) + Σs∈t•(4W (t, s) + 2)

´

= 3 + 15|T | + 4(Σs∈SM0(s)) +

Σt∈T

`
Σs∈•t(2W (s, t) + 3) + Σs∈t•(4W (t, s) + 3)

´
.

We now approximate this term with the size of N . We first observe that

Σs∈•t(2W (s, t) + 3) ≤ Σs∈•t5W (s, t),

since s ∈ •t implies W (s, t) ≥ 1. We apply this approximation also to the sum
over the places in the postset of t, which yields the following inequality:

≤ 3 + 15|T | + 4(Σs∈SM0(s)) + Σt∈T

`
Σs∈•t5W (s, t) + Σs∈t•7W (t, s)

´

≤ 3 + 15|T | + 4(Σs∈SM0(s)) + 7
`
Σt∈T

`
Σs∈•tW (s, t) + Σs∈t•W (t, s)

´´

= 3 + 15|T | + 4(Σs∈SM0(s)) + 7
`
Σt∈T Σs∈S

`
W (s, t) + W (t, s)

´´
.

The last equation exploits that W (s, t) = 0 if s /∈ •t and similar for W (t, s). We
raise all coefficients to their maximum max{15, 4, 7} = 15 and factor it out:

≤ 3 + 15
`
|T | + Σs∈SM0(s) + Σt∈T Σs∈S

`
W (s, t) + W (t, s)

´´

≤ 15||N || + 3.

In the last step, we have an inequality since the definition of ||N || also has a term
|S|. This concludes the proof. ¥

The transition systems of the Petri net and that of its process coincide in the
following sense. If the Petri net fires a transition from one marking to another,
the process representation will do several reactions from one process that contains
the send action act to another process with this action. We call these processes
valid and denote the set of all valid reachable processes by ReachV (PPN [[N]]).

Conversely, in a valid process P the process identifier Kt of any transition
may attempt to execute its transition. It removes the act action to block the
other transitions and starts to consume send actions according to its defining

110

4.5 Complexity- and Decidability-theoretic Aspects

equation (cf. Definition 4.5.1). If there are enough send actions, it reaches
another valid process. In Petri net terms, transition t is enabled in the marking
that corresponds to P . If there are not enough send actions, process P deadlocks
after a few steps and does not reach a valid state. Hence, one valid process reacts
to another one with a call to process identifier Kt if and only if transition t is
enabled in the corresponding marking. We explain the deadlock behaviour on an
example.

Example 4.5.3 (Deadlocks in PPN [[N]])
Consider the Petri net N in Figure 4.2. Transition t3 is not enabled in the initial
marking. We show that a call to Kt3 leads to a deadlock in the process PPN [[N]]:

act | act .Kt1⌊act , s1⌋ | act .Kt2⌊act , s1, s2⌋ | act .Kt3⌊act , s2, s2⌋ | s1

→ act .Kt1⌊act , s1⌋ | act .Kt2⌊act , s1, s2⌋ | Kt3⌊act , s2, s2⌋ | s1

→ act .Kt1⌊act , s1⌋ | act .Kt2⌊act , s1, s2⌋ | s2.(act | act .Kt3⌊act , s2, s2⌋ | s2) | s1.

The process is in a deadlock, since Kt3 tries to consume s2 but fails as the action
is not present and since the remaining transitions are blocked. ¨

T (N)

(1, 0) (0, 0)(0, 1)

T (PPN [[N]])

[P0]

ut

[P1]

ut utut

[P2]

ut ut

iso

:= Valid

:= Intermediate
ut := Deadlock

P0 = act | Tr | s1 P1 = act | Tr

P2 = act | Tr | s2

Tr = act .Kt1⌊act , s1⌋ | act .Kt2⌊act , s1, s2⌋ |

act .Kt3⌊act , s2, s2⌋.

Figure 4.3:
Illustration of the isomorphism between the transition systems of the Petri net
N in Figure 4.2 and the transition system of PPN [[N]]. Note that iso relates
markings to valid processes, only.

The explanation above indicates that the transition systems of the Petri net
and that of its process representation are isomorphic, if we contract the sev-
eral steps leading from one valid process to another one, cf. Figure 4.3. Tech-
nically, the contraction is done by the relation →V

T ⊆ ReachV (PPN [[N]])/≡ ×

111

Chapter 4 Structural Stationarity

ReachV (PPN [[N]])/≡. It is defined by

[P] →V
T [Q] iff [P] →T [P1] →T . . . →T [Pn] →T [Q],

where all intermediate processes Pi are not valid. If we define the valid process
transition system to be TV (PPN [[N]]) := (ReachV (PPN [[N]])/≡,→V

T ,PPN [[N]]),
we can formulate the first proposition in this section. The transition system of
the Petri net N coincides with the valid process transition system of PPN [[N]].

Proposition 4.5.4
For every Petri net N ∈ PN , the transition systems T (N) and TV (PPN [[N]])
are isomorphic.

Proof
The isomorphism iso : Reach(N) → ReachV (PPN [[N]]) maps M to

[act | Πt∈T act .Kt⌊act ,
•t, t•⌋ | Πs∈supp(M)Π

M(s)s].

We do not check every detail, but just consider the crucial point that iso is a
strong graph homomorphism. Let M → M ′ by firing transition t. We show that
we also have a reaction iso(M) →V

T iso(M ′). With the shortcut

rem := Πt′∈T\{t}act .Kt′⌊act ,
•t′, t′•⌋ | Πs∈supp(M)Π

M(s)s,

we compute the following reaction:

act | act .Kt⌊act ,
•t, t•⌋ | rem

→ Kt⌊act ,
•t, t•⌋ | rem

→ •s1 . . . • sn.(act | act .Kt⌊act ,
•t, t•⌋ | Πs∈t•ΠW (t,s)s) | rem.

That t is enabled in M means M(s) ≥ W (s, t) for all s ∈ •t. Hence, there are
more than W (s, t) actions s composed in parallel in Πs∈supp(M)Π

M(s)s and we can
communicate •s1 . . . • sn. We also resolve rem and integrate act .Kt⌊act ,

•t, t•⌋
into the parallel composition of all transitions:

→∗ act | Πt∈T act .Kt⌊act ,
•t, t•⌋ | Πs∈supp(M)Π

M(s)−W (s,t)s | Πs∈t•ΠW (t,s)s

≡ iso(M ′).

The last congruence holds with the equation M ′(s) = M(s) + W (s, t) + W (t, s)
for all s ∈ S in the definition of the Petri net transition relation. Since all
intermediate processes are not valid, we have iso(M) →V

T iso(M ′).
The reverse direction, i.e., iso(M) → iso(M ′) implies M → M ′, is simpler.

Since we can consume the sequence of receive actions •s1 . . . • sn, we know that
M(s) ≥ W (s, t) for all s ∈ •t. Hence, t is enabled and fires to a marking M ′′ for
which M ′′(s) = M(s) − W (s, t) + W (t, s) holds. This means M ′′ = M ′. ¥

112

4.5 Complexity- and Decidability-theoretic Aspects

The relationship in Proposition 4.5.4 has several complexity- and decidability-
theoretic consequences.

Remark 4.5.5 (Complexity- and Decidability-theoretic Conclusions)
Consider a structurally stationary process P ∈ PFG<∞.

Reachability is decidable but EXPSpace-hard for structurally stationary pro-
cesses. To decide whether R is reachable from P , it is sufficient to construct N [[P]]
and decide whether dec(rf (R)) is a reachable marking, Theorem 3.4.3.

To show EXPSpace-hardness we reduce the reachability problem for Petri
nets, using the translation of Petri nets into processes in the present section.
With Proposition 4.5.4, a marking M is reachable in N if and only if process

[act | Πt∈T act .Kt⌊act ,
•t, t•⌋ | Πs∈supp(M)Π

M(s)s]

is reachable in T (PPN [[N]]). Since reachability is EXPSpace-hard for Petri nets
and since the translation PPN is linear, reachability in structurally stationary
processes is EXPSpace-hard.

Model checking action-based linear-time logics should be decidable but
EXPSpace-hard. Consider the problem whether P satisfies a formula ϕP in
an action-based linear-time logic. To argue why this problem should be decid-
able, we have to make the notion of actions precise. We assume that actions
are communications between sequential processes M 6=0 | N 6=0 → R or between
fragments F | G → R. We first compute the structural semantics N [[P]]. From
the π-Calculus formula ϕP , we compute a formula θPN (ϕP) in a linear-time lo-
gic for Petri nets, where the actions are transition names. To reduce the model
checking problem from processes to Petri nets, the translation θPN has to satisfy
the relationship

P |= ϕP if and only if N [[P]] |= θPN (ϕP).

We briefly comment on how to define θPN to achieve this. Of course, θPN

depends on whether we choose fragments or sequential processes as actions. If
the actions in ϕP are fragment communications F | G → R, we just replace
the action by the transition name ([F | G], [R]). If we consider communications
M 6=0 | N 6=0 → R, the translation θPN has to consider each transition ([F], [Q])
where F contains M 6=0 and N 6=0 and every transition ([F1 | F2], [Q]) where
F1 contains M 6=0 and F2 contains N 6=0. In both cases, Q should contain R.
Since there are finitely many transitions in the structural semantics, θPN (φP)
will be a finite formula. Even for unbounded Petri nets, it is decidable whether
N [[P]] |= θPN (ϕP) holds [Esp94]. With the equivalence above, this decides the
model checking problem for structurally stationary processes.

113

Chapter 4 Structural Stationarity

Model checking unbounded Petri nets against action-based linear-time logics
is EXPSpace-hard [Hab97] in the size of the net. We observe that PPN [[P]]
reflects isomorphically even the labelled transition system of a Petri net. If M
fires transition t to marking M ′, i.e., M [t〉M ′, then the process

act | act .Kt⌊act ,
•t, t•⌋ | Πt′∈T\{t}act .Kt′⌊act ,

•t′, t′•⌋ | Πs∈supp(M)Π
M(s)s

that corresponds to M chooses the communication

act | act .Kt⌊act ,
•t, t•⌋ → Kt⌊act ,

•t, t•⌋.

From Kt⌊act ,
•t, t•⌋ we deterministically reach a process corresponding to M ′.

A net formula ϕPN over transition names t is now translated into a π-Calculus
formula θP(ϕPN) over reactions act | act .Kt⌊act ,

•t, t•⌋ → Kt⌊act ,
•t, t•⌋ so that

N |= ϕPN if and only if PPN [[N]] |= θP(ϕPN).

Since the translation of Petri net and formula are linear, model checking structur-
ally stationary processes against action-based linear-time logics should be EX-

PSpace-hard.

Model checking branching-time action-based logics should be undecid-
able for structurally stationary processes. Esparza showed that even the weakest
action-based branching-time logics are undecidable for Petri nets [Esp97a]. The
above reduction to show EXPSpace-hardness for model checking linear-time
logics still holds for branching-time logics and yields the undecidability result.
The reason is that transition system isomorphism also preserves satisfaction of
branching-time formulas.

Model checking state-based temporal logics should also be undecidable
for the same reason. ¨

4.5.2 Size of the Structural Semantics

If the Petri net terminates, we can adapt the translation to processes so that
every reachable process is a single fragment. This changed translation, which
we denote by PF

PN , shows that the size of the structural semantics N [[P]] is in
general not bounded by a primitive recursive function in the size of the process
P—the main result in this section. The only difference in PF

PN is that act is
restricted. To ensure that also send actions are connected with the name act , we
replace s by s〈act〉:

PF
PN [[N]] := νact .(act | Πt∈T act .Kt⌊act ,

•t, t•⌋ | Πs∈supp(M0)Π
M0(s)s〈act〉).

114

4.5 Complexity- and Decidability-theoretic Aspects

The defining equations are of Kt are changed accordingly

Kt(act ,
•t, t•) := •s1(y1) . . . • sn(yn).

(act | act .Kt⌊act ,
•t, t•⌋ | Πs∈t•ΠW (t,s)s〈act〉).

It should be clear that the reachable processes in PPN [[N]] and PF
PN [[N]] can be

identified. A process P reachable from PPN [[N]] corresponds to νact .P ′ reachable
from PF

PN [[N]], where all send actions s in P are replaced by s〈act〉 in P ′ and
similar for receive actions.

Of course, the size of PF
PN [[N]] is bounded by 15||N || + 4. The prefix νact

increases the constant, but remember that s stands for s〈s〉, hence s and s〈act〉
both have size two. We now formally state that every reachable process is a
single fragment.

Lemma 4.5.6
Consider a Petri net N ∈ PN . The restricted form of every Q ∈ Reach(PF

PN [[N]])
is a single fragment, i.e., rf (Q) ∈ PF .

Proof
By induction on the length of the reaction sequence, we show that every reachable
process is either of the form νact .P ′ where P ′ is valid, or an intermediate process

νact .(Πt′∈T\{t}act .Kt′⌊act ,
•t′, t′•⌋ | Πi∈Is〈act〉 | R)

where R is of the following form:

s(x1) . . . s(xm) • si(yi) . . . • sn(yn).

(act | act .Kt⌊act ,
•t, t•⌋ | Πs∈t•ΠW (s,t)s〈act〉).

In both cases, computing the restricted form yields the process itself, which is a
fragment. ¥

We did not introduce PF
PN in the previous section, since it does not yield

structurally stationary processes for arbitrary Petri nets, but only for bounded
ones (with a finite state space). This is explained by the following lemma. It
shows that the number of reachable fragments in PF

PN [[N]] is larger than the
number of reachable states in N . Hence any Petri net with an infinite state
space has infinitely many reachable fragments, and is therefore not structurally
stationary.

Lemma 4.5.7
For any net N ∈ PN , we get |Reach(N)| ≤ |fg

`
rf (Reach(PF

PN [[N]]))
´
/≡|.

115

Chapter 4 Structural Stationarity

Proof
With Proposition 4.5.4, there is an isomorphism between T (N) and TV (PPN [[N]]).
Hence, we have

|Reach(N)| = |ReachV (PPN [[N]])/≡|.

Consider two different markings M 6= M ′ in Reach(N). By definition of function
equality, this means M(s) 6= M ′(s) for at least one place s. Consider the two
classes iso(M) = [P] 6= [Q] = iso(M ′) in ReachV (N)/≡. We show that [P] 6=
[Q] give rise to different classes in Reach(PF

PN [[N]])/≡. By definition of iso,
the number of send actions s is different in P and Q. We observed that P is
represented by νact .P ′ in Reach(PF

PN [[N]]) and Q corresponds to νact .Q′, where
the send actions s are changed to s〈act〉 in P ′ and Q′. As these are the only
prefixes sending on the public channel s, νact .P ′ and νact .Q′ have a different
number of prefixes sending on the free name s. Since this number is invariant
under structural congruence, we get νact .P ′ 6≡ νact .Q′ and conclude

|ReachV (PPN [[N]])/≡| ≤ |Reach(PF
PN [[N]])/≡|.

With Lemma 3.2.7 and Lemma 4.5.6 above, we have

Reach(PF
PN [[N]])/≡ = rf (Reach(PF

PN [[N]]))/≡ = fg
“

rf (Reach(PF
PN [[N]]))

”

/≡.

This proves the inequality. ¥

We now state our main result. In the class of structurally stationary processes,
there is a sequence of processes P1, P2, . . . where the size ||Pi|| grows linearly but
the size of the structural semantics ||N [[Pi]]|| grows faster than any primitive
recursive function.

Theorem 4.5.8 (Size of the Structural Semantics)
For terminating processes P ∈ PFG<∞ the size of N [[P]] is not bounded by a
primitive recursive function in the size of P .

Proof
In [MM81], Mayr and Meyer define a sequence of terminating nets N1,N2,N3, . . .
where the size increases linearly, but the number of reachable states Reach(Nk)
exceeds the value A(k) of the following function A : N → N. Consider for every
n ∈ N the auxiliary functions An := N → N defined by

A0(x) := 2x + 1 An+1(0) := 1 An+1(x + 1) := An(An+1(x)).

Then, function A is defined by A(n) := An(2). It can be shown that it dominates
the primitive recursive functions, i.e., for every primitive recursive function f
there is an index n0 ∈ N so that A(n) > f(n) for all n ≥ n0.

116

4.6 Related Work and Conclusion

The function PF
PN is also linear in the size of the net. With the cited result,

we obtain a sequence of processes PF
PN [[N1]],P

F
PN [[N2]],P

F
PN [[N3]], . . . where the

size increases linearly and additionally

A(k) ≤ |Reach(Nk)| ≤ |fg
“

rf (Reach(PF
PN [[Nk]]))

”

/≡|

holds with Lemma 4.5.7. Since the processes PF
PN [[Nn]] terminate, they are

structurally stationary with Lemma 4.1.4. The reachable fragments form the
places in the structural semantics, which yields the following inequality

|fg
“

rf (Reach(PF
PN [[Nn]]))

”

/≡| ≤ ||N [[PF
PN [[Nn]]]]||.

We conclude that the size of the structural semantics ||N [[P]]|| of terminating
processes P ∈ PFG<∞ can not be bounded by a primitive recursive function in
the size of the process. ¥

One may be tempted to argue that this is a negative result for the structural
semantics, which shows that our translation is not usable for practical verific-
ation purposes. But this argumentation is not justified. Theorem 4.5.8 proves
that in the large class of structurally stationary processes there are processes for
which the translation behaves badly. This statement of existence does not imply
that the structural semantics yields in general large Petri nets. Stated positively,
the theorem demonstrates that processes with complex behaviour are still struc-
turally stationary. It would be interesting to see how the size of the structural
semantics behaves for subclasses of structurally stationary processes. We leave
this as a point for future work.

4.6 Related Work and Conclusion

The structural semantics maps π-Calculus processes into place/transition Petri
nets. For automatic verification purposes, finiteness of the semantic image is a
prerequisite. In Lemma 4.1.2, we prove that exactly the structurally stationary
processes have a finite Petri net representation under the structural semantics.

For the applicability of our semantics, it is important that the class of struc-
turally stationary processes is expressive. Theorem 4.3.2 completely charac-
terises structural stationarity and shows that important classes of processes
have this property. For example, an application of the theorem immediately
yields structural stationarity of finite control processes [Dam96], finitary pro-
cesses [MP95a, Pis99, MP01], and restriction-free processes [AM02]. We stress
that the structural semantics is the first translation that finitely represents both,
finitary and restriction-free processes.

117

Chapter 4 Structural Stationarity

Recursion-free

Terminating

Finite Control

Finitary

Bounded

Restriction-free

PFH

Theorem 4.3.2: PFG<∞ = PS<∞

Obvious

König’s lemma

[Cai04]

By definition

Lemma 4.3.6

Lemma 4.4.7

Theorem 4.4.8

:= Syntactic class := Semantic class := Set inclusion ⊆

Figure 4.4: A first hierarchy of processes.

Figure 4.4 summarises the relationships between the process classes. For com-
pleteness reasons, we added the class of bounded processes defined by Caires in
[Cai04]. A process is bounded if the state space of every syntactic subprocess is
finite. Caires shows that Dam’s finite control processes satisfy this constraint.
We observe that by definition bounded processes are finitary. The restriction-
bounded processes of Busi and Gorrieri [BG09], which we discussed in the previ-
ous chapter, are missing in Figure 4.4. It turns out that they are incomparable
with structurally stationary processes and that both classes can be unified. We
elaborate on this relationship in Chapter 9 and update the picture accordingly.

With the aim of modelling client-server systems, we defined the class of finite
handler processes. Its usefulness is demonstrated in Chapter 6, where we model
a larger case study from the traffic control domain. Again Theorem 4.3.2 proves
structural stationarity for finite handler processes (cf. Theorem 4.4.8).

Astonishingly, the theorem also suggests a different technique for computing
the structural semantics (cf. Section 3.5). If the bound kS on the number of
sequential processes in fragments is known, the set FG can be used as places in a
Petri net NFG [[P]], which subsumes the structural semantics N [[P]]. To compute
NFG [[P]] efficiently, precise approximations to the bound kS and to the set of
substitutions, which are applied to derivatives, need to be computed statically
from the process P . In [BDNN98], a control flow analysis for the π-Calculus
has been proposed that over-approximates (1) for ever channel the set of names

118

4.6 Related Work and Conclusion

that may be sent on it and (2) for every input prefix the channels which it may
receive. It should be possible to adapt the technique to compute the required
approximations.

A translation of Petri nets back into structurally stationary processes proved
that both models are computationally equivalent. The main finding is that for
terminating Petri nets, a structurally stationary process can be constructed that
has one fragment for every reachable marking. A classical result from Petri net
theory now shows that the size of the structural semantics is not bounded by
any primitive recursive function in the size of the process. Although this is a
negative result, one should keep in mind that structurally stationary processes
are a very general class. For restriction-free processes, for example, we conjecture
that the structural semantics is polynomial and similarly, for finite handler and
finite control processes it should be exponential, but this is future work.

Our translation of Petri nets into processes is inspired by a proposal of Amadio
and Meyssonnier [AM02], which in turn is closely related to [BRdS86]. The
motivation of Boudol et. al. was to study algebraic operators to construct
Petri nets in a systematic way, and may be compared with the achievements
for the Petri Box Calculus of Best et. al. [BDK01]. Motivated by the research
on structural subclasses of Petri nets, a different translation into processes was
proposed by Dietz and Schreiber [DS94]. They decompose a net (with binary
synchronisation) into communication-free parts that synchronise. Inspired by the
idea of unfoldings (cf. Section 2.2.3), the process translation highlights the flow
of tokens in these subnets.

To conclude, we remark that structural stationarity is a non-compositional
property. If P and Q are structurally stationary, then π.P is structurally sta-
tionary but P | Q and νa.P need not be. To enlarge the class of structurally
stationary processes, it would be interesting to find compositional subclasses.

119

120

Part II

Reasoning in Structural Stationarity

121

5
Unfolding-based Model Checking of

Finite Control Processes

Contents
5.1 Boundedness of Finite Control Process Nets 125

5.2 From Finite Control to Safe Processes 130

5.3 Optimality of the Translation 136

5.4 Unfolding-based Model Checking 138

5.5 Experimental Results 140

5.6 Related Work and Conclusion 144

In this chapter, we contribute to the analysability of structurally stationary
processes. For safe Petri nets particularly efficient model checking techniques
have been developed. To exploit these algorithms for π-Calculus verification, we
sacrifice a part of the modelling power of structurally stationary processes and
investigate the translation of syntactic subclasses with the structural semantics.
The result is that finite control processes (FCPs) [Dam96], which have an accept-
ably high modelling power, admit a translation into safe Petri nets. We proceed
in two steps.

We first prove a general boundedness result for the Petri nets obtained from
the translation of FCPs. More precisely, we show that the structural semantics
of an FCP is a bounded Petri net, and we develop a technique for computing a
non-trivial bound by static analysis of the process term.

The boundedness result suggests the definition of a syntactic subclass of FCPs,
so-called safe processes that are translated into safe Petri nets. The second
main result is that every FCP can be translated into a safe process of at most
quadratic size. Combined with the structural semantics, this gives a procedure
for translating an FCP into a safe Petri net.

We present a concrete model checking technique for safe Petri nets due to Hel-
janko [Hel02] and Khomenko, Koutny, and Yakovlev [KKY04]. It first computes

123

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

Finite Control Process

Safe Process

Safe Petri net

Finite and Complete Prefix

SAT Encoding

Function Safe, Section 5.2

Structural Semantics, Section 3.3

Unfoldings, Section 2.2.3

Formula φC ∧ φV , Section 5.4

Figure 5.1: Illustration of our approach to verification of FCPs.

the finite and complete prefix (cf. Section 2.2.3) and then encodes it together
with the verification problem at hand into a Boolean satisfiability problem. The
encoding ensures that any satisfying assignment provides a counterexample to
the property. Figure 5.1 sums up our verification approach.

To demonstrate the applicability of our approach, we verify a number of bench-
mark case studies from the literature for deadlock freedom—the common denom-
inator of all tools for π-Calculus verification. The experiments show that it has a
significant advantage over other existing tools in terms of memory consumption
and runtime. In brief, the contributions in this chapter are as follows:

• We prove a general boundedness result for the structural semantics of FCPs.

• We define safe processes, a syntactic subclass of FCPs which are translated
into safe Petri nets. The main result is that every FCP can be translated
into a bisimilar safe process. We show optimality of this translation.

• We recall an efficient verification technique from the literature. The result-
ing tool chain in Figure 5.1 is applied to the verification of a number of case
studies. Our approach outperforms existing tools by orders of magnitude.

The chapter is organised as follows. In Section 5.1, we prove the general bounded-
ness result for the Petri nets resulting from the translation of FCPs. Based on

124

5.1 Boundedness of Finite Control Process Nets

this insight, we define safe processes in Section 5.2 and show that every FCP
can be translated into a safe process. We prove optimality of this translation
in Section 5.3. In Section 5.4, we introduce a particularly efficient verification
approach for unfoldings, which we apply in Section 5.5. Section 5.6 concludes
the chapter. We illustrate the developed theory on a client-server system.

Example 5.0.1 (Client/Server System)
Consider the process C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ modelling two clients and a se-
quential server, with the corresponding process identifiers defined as

C (url) := νip.url〈ip〉.ip(s).s(x).C ⌊url⌋

S(url) := url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋.

The server is located at some URL, S⌊url⌋. To contact it, a client sends its ip
address on the channel url . The server receives the IP address and—to establish
a private connection with the client—creates a temporary session νses, which
it passes to the client, y〈ses〉. Upon reception of the session, ip(s), client and
server continue to interact, which is not modelled explicitly. At some point, the
server decides that the session has expired. It sends the session object itself to
the client, ses〈ses〉, and becomes a server again, S⌊url⌋. The client receives the
message, s(x), and calls its recursive definition to be able to contact the server
once more, C ⌊url⌋. The model can contain several clients (two in our case), but
the server is engaged with one client at a time. ¨

5.1 Boundedness of Finite Control Process Nets

We investigate the translation of finite control processes (FCPs) [Dam96]. Recall
from Definition 2.1.5, that FCPs are of the form νã.(P1 | . . . | Pn) where the
Pi do not use the parallel composition operator. Without loss of generality, we
assume that either νã.(P1 | . . . | Pn) is 0 or none of the Pi contains 0. This can
always be achieved by replacing a process π.0 by π.K0⌊−⌋ with K0(−) := 0. To
indicate that a process is finite control, we denote it by PFC .

The main result in this section states that the Petri net N [[PFC]] is bounded,
and a non-trivial bound can be derived syntactically from the structure of PFC .
Such a bound follows from the intuitive idea is that k tokens on a place [F]
require at least k processes Pi in PFC = νã.(P1 | . . . | Pn) sharing some process
identifiers.

To make the notion of sharing process identifiers precise we define orbits. The
orbit of a process Pi consists of the identifiers Pi calls, both directly and indirectly.
With this definition, we rephrase the above idea: if there are at most k orbits in
PFC whose intersection is non-empty then the net N [[PFC]] is k-bounded.

125

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

The result states that the bound of N [[PFC]] is small. If PFC = νã.(P1 | . . . | Pn)
then N [[PFC]] is trivially n-bounded, as the total number of orbits is n. Often,
our method yields bounds which are better than n. This limits the state space
in our translation and makes such nets relatively easy to model check.

The intuitive idea of the orbit function is to collect all process identifiers syn-
tactically reachable from a given process. To collect the process identifiers in a
single process, we employ the function ident .

Definition 5.1.1 (ident , orb : P → P(ID))
The function ident : P → P(ID) computes the set of process identifiers ident(P)
that are in the process P ∈ P:

ident(0) := ∅ ident(K⌊ã⌋) := {K}

ident(π.P) := ident(P) ident(M + N) := ident(M) ∪ ident(N)

ident(P | Q) := ident(P) ∪ ident(Q) ident(νa.P) := ident(P).

The orbit of a process P , denoted by orb(P), is the smallest set so that (1)
ident(P) ⊆ orb(P) and (2) if a process identifier K with a defining equation
K(x̃) := Q is in orb(P) then ident(Q) ⊆ orb(P). ¨

By induction on the derivations of structural congruence, it can be shown that
the set of identifiers in a process is invariant under structural congruence.

Lemma 5.1.2 (Invariance of ident under ≡)
For all P, Q ∈ P the congruence P ≡ Q implies ident(P) = ident(Q).

To formally state the boundedness result, we define the maximal number of
intersecting orbits of a process PFC = νã.(P1 | . . . | Pn) to be

||PFC ||∩ := max
˘
|I| | I ⊆ {1, . . . , n} and

T

i∈Iorb(Pi) 6= ∅
¯

.

Theorem 5.1.3 (Boundedness Result for Finite Control Process Nets)
N [[PFC]] is ||PFC ||∩-bounded.

Example 5.1.4 (Application of Theorem 5.1.3)
Consider process PFC = C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ in Example 5.0.1. We compute
orb(S⌊url⌋) = {S} and orb(C ⌊url⌋) = {C} for both clients. Thus, ||PFC ||∩ = 2
and so the structural semantics N [[PFC]] in Figure 5.2 is 2-bounded. This is an
improvement on the trivial bound of 3, the number of concurrent processes. ¨

We spend the rest of the section proving Theorem 5.1.3. The Petri net N [[PFC]]
is k-bounded iff in every reachable process Q ∈ Reach(PFC) there are at most k

126

5.1 Boundedness of Finite Control Process Nets

.

.

••[F1]

•[F2]

[F3]

[F4]

[F5] [F6]

F1 = C ⌊url⌋ F3 = νip.url〈ip〉.ip(s).s(x).C ⌊url⌋

F2 = S⌊url⌋ F4 = url(y).νses.y〈ses〉.ses〈ses〉.S⌊url⌋

F5 = νip.(ip(s).s(x).C ⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S⌊url⌋)

F6 = νses.(ses(x).C ⌊url⌋ | ses〈ses〉.S⌊url⌋).

Figure 5.2:
The structural semantics N [[PFC]] of the client/server system in Example 5.0.1.
Transition names are omitted for the sake of readability. The Petri net is in
fact bounded by ||PFC ||∩ = 2, which is the optimal bound in this example.

fragments that are structurally congruent. Thus, we need to show that the num-
ber of structurally congruent fragments is bounded by ||PFC ||∩ in every reachable
process. To do so, we assume there are k fragments F1 ≡ . . . ≡ Fk in Q and
conclude that there are at least k intersecting orbits in PFC , i.e., ||PFC ||∩ ≥ k.
We argue as follows. From structural congruence we know that the identifiers in
all Fi are equal, Lemma 5.1.2. We now show that the identifiers of the Fi are
already contained in the orbits of different Pi in PFC = νã.(P1 | . . . | Pn). Thus,
the intersection orb(P1) ∩ . . . ∩ orb(Pk) is not empty. This means that we found
k intersecting orbits, so ||PFC ||∩ ≥ k holds.

To show ident(Fi) ⊆ orb(Pi) we relate the processes in every reachable frag-
ment with the initial process PFC = νã.(P1 | . . . | Pn). To achieve this, we again
employ the theory of derivatives presented in Section 4.2. We prove that every
reachable process is as a parallel composition of derivatives of the processes Pi

in PFC .

Lemma 5.1.5
Let PFC = νã.(P1 | . . . | Pn). Then every Q ∈ Reach(PFC) is structurally
congruent with νc̃.(Q1σ1 | . . . | Qmσm) so that there is an injective function inj :
{1, . . . , m} → {1, . . . , n} for which Qi ∈ derivatives(Pinj(i)) and σi : fn(Qi) →
c̃ ∪ fn(PFC) hold.

127

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

Proof
The proof is similar to that of Proposition 4.2.2 in Section 4.2. ¥

The lemma below states that the identifiers of any derivative Q of P are in the
orbit of P . Combined with the previous lemma, this relates the identifiers in a
reachable fragment and the orbits in the initial process.

Lemma 5.1.6
For every process P ∈ P and every Q ∈ derivatives(P) the inclusion ident(Q) ⊆
orb(P) holds.

The proof of Lemma 5.1.6 requires the following observation. If Q ∈ der(P)
then the identifiers of Q are among those of P . This can be shown by induction
on the structure of P .

Lemma 5.1.7
For every process P ∈ P and every Q ∈ der(P) we have ident(Q) ⊆ ident(P).

The statement in Lemma 5.1.6 now follows by induction on the structure of
derivatives(P).

Proof (of Lemma 5.1.6)
In the base case, we consider Q ∈ der(P). By Lemma 5.1.7 and the definition of
the orbit function, we get ident(Q) ⊆ ident(P) ⊆ orb(P).

Consider K⌊ã⌋ ∈ derivatives(P) with K(x̃) := Q and assume we already
proved the inclusion ident(K⌊ã⌋) = {K} ⊆ orb(P). For every R ∈ der(Q)
we establish ident(R) ⊆ orb(P). By Lemma 5.1.7, ident(R) ⊆ ident(Q). As K ∈
orb(P) by the hypothesis, the definition of the orbit function implies ident(Q) ⊆
orb(P). This concludes the proof. ¥

We return to the argumentation on Theorem 5.1.3. Consider a reachable pro-
cess Q ≡ ΠkF | Q′. By Lemma 5.1.5, Q is structurally congruent with a process
νc̃.(Q1σ1 | . . . | Qmσm) that satisfies Qi ∈ derivatives(Pinj(i)). By transitiv-
ity, also ΠkF | Q′ is structurally congruent with this process. Lemma 3.2.7
and Proposition 3.2.10 relate the restricted forms of both processes by restricted
equivalence:

rf (ΠkF | Q′) = ΠkF | rf (Q′) ≡rf Πi∈IGi = rf (νc̃.(Q1σ1 | . . . | Qmσm)),

for some fragments Gi. By definition of restricted equivalence, k of the Gi are
structurally congruent. As identifiers are preserved by structural congruence,
these Gi have the same identifiers. Each Gi is a parallel composition of processes
Qiσi. Since every Gi consists of different Qiσi, there are k processes Qi that share

128

5.1 Boundedness of Finite Control Process Nets

process identifiers. With Lemma 5.1.6, the identifiers of every Qi are in the orbit
of Pinj(i). Since inj is injective, we have k processes Pinj(i) with intersecting
orbits, and so Theorem 5.1.3 holds. We now turn this argumentation into a
formal proof.

Proof (of Theorem 5.1.3)
Consider a reachable marking of N [[PFC]] with k tokens on place [F]. We show
that ||PFC ||∩ ≥ k. According to Theorem 3.4.3, the reachable marking corres-
ponds to a process Q ∈ Reach(PFC) with Q ≡ ΠkF | Q′ for some Q′ ∈ P.

According to Lemma 5.1.5, ΠkF | Q′ ≡ Q ≡ νc̃.(Q1σ1 | . . . | Qmσm). With
Proposition 3.2.10 it follows that rf (ΠkF | Q′) ≡rf rf (νc̃.(Q1σ1 | . . . | Qmσm)).
Let the restricted form rf (νc̃.(Q1σ1 | . . . | Qmσm)) be the parallel composition
Πi∈IGi for some fragments Gi. Lemma 3.2.7 yields rf (F) = F , and so

ΠkF | rf (Q′) ≡rf Πi∈IGi.

Restricted equivalence ensures that for every F there is a Gi so that F ≡ Gi.
Without loss of generality, let these Gi be G1, . . . , Gk. Since all F are structurally
congruent, we have G1 ≡ . . . ≡ Gk.

By definition of restricted and standard form, every Gi is structurally congru-
ent with νc̃i.(Πi∈Ii

Qiσi), where ∅ 6= Ii ⊆ {1, . . . , m} and Ii ∩ Ij = ∅ for i 6= j.
Non-emptiness follows from the fact that fragments are not structurally congru-
ent to 0, disjointness from the fact that every sequential process Qiσi belongs
to exactly one fragment. The identifiers are preserved by structural congruence
according to Lemma 5.1.2:

ident(Gi) = ident(νc̃i.(Πi∈Ii
Qiσi)) =

S

i∈Ii
ident(Qiσi) =

S

i∈Ii
ident(Qi).

The second equality holds by the definition of ident , and the third because of the
invariance of ident under substitution. Again, as G1 ≡ . . . ≡ Gk and since the
identifiers are preserved by structural congruence, we have ident(G1) = . . . =
ident(Gk), which means

S

i∈I1
ident(Qi) = . . . =

S

i∈Ik
ident(Qi). (5.1)

Consider a process Qi1 where i1 ∈ I1. As derivatives are different from 0, it
contains an identifier K ∈ ident(Qi1). With Equality (5.1), there are processes
Qi2 where i2 ∈ I2 up to Qik

where ik ∈ Ik so that K ∈ ident(Qij
) for all

2 ≤ j ≤ k. By Lemma 5.1.6, the inclusion ident(Qij
) ⊆ orb(Pinj(ij)) holds for

all j. Of course, inj is the injection that exists due to Lemma 5.1.5. Combining
both arguments, we conclude orb(Pinj(i1))∩ . . .∩ orb(Pinj(ik)) 6= ∅. As the index
sets Ii are pairwise disjoint and as inj is injective, all Pinj(ij) are distinct. So we
found k processes with intersecting orbits, which means ||PFC ||∩ ≥ k. ¥

129

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

In case the orbits of all Pi in PFC = νã.(P1 | . . . | Pn) are disjoint, The-
orem 5.1.3 implies safeness of the structural semantics N [[PFC]]. We now show
that every FCP can be translated into a bisimilar process with disjoint orbits.

5.2 From Finite Control to Safe Processes

Safe nets are a prerequisite to apply particularly efficient unfolding-based verific-
ation techniques. According to Theorem 5.1.3, the reason for non-safeness of the
nets of arbitrary FCPs is the intersection of orbits. In this section we investigate
a translation of FCPs into their syntactic subclass called safe processes, where
the sequential processes comprising an FCP have pairwise disjoint orbits. The
idea of translating PFC = νã.(P1 | . . . | Pn) to the safe process Safe(PFC) is
to create copies of the process identifiers that are shared among several Pi, i.e.,
of those that belong to several orbits. The corresponding defining equations are
duplicated as well. The intuition is that every Pi gets its own set of process iden-
tifiers which it can call during system execution. Hence, due to Theorem 5.1.3,
the resulting safe processes are mapped to safe Petri nets.

The main result in this section states that the processes PFC and Safe(PFC)
are bisimilar, and, moreover, that the fragments are preserved. Furthermore, the
size of the specification Safe(PFC) is at most quadratic in the size of PFC . In
Section 5.3, we show that this translation is optimal.

Definition 5.2.1 (Safe Process)
An FCP PFC = νã.(P1 | . . . | Pn) is a safe process if the orbits are pairwise
disjoint, i.e., for all i, j ∈ {1, . . . , n} : if i 6= j then orb(Pi) ∩ orb(Pj) = ∅. ¨

To translate an FCP PFC = νã.(P1 | . . . | Pn) into a safe process Safe(PFC),
we choose a unique number for every sequential process, say i for Pi. We then
rename every process identifier K in the orbit of Pi to a fresh identifier Ki.
Technically, we use the functions renk : P → P.

Definition 5.2.2 (renk : P → P)
For every k ∈ N, the function renk : P → P maps a process P ∈ P to the process
renk(P) as follows:

renk(0) := 0 renk(K) := Kk

renk(K⌊ã⌋) := renk(K)⌊ã⌋ renk(π.P) := π.renk(P)

renk(M + N) := renk(M) + renk(N) renk(P | Q) := renk(P) | renk(Q)

renk(νa.P) := νa.renk(P).

The defining equation of KK is defined to be Kk(x̃) := renk(Q) if K(x̃) := Q. ¨

130

5.2 From Finite Control to Safe Processes

We shall need that renaming is compatible with the computation of process
identifiers and the application of substitutions. The proof is by induction on the
structure of processes.

Lemma 5.2.3
For every P ∈ P we get ident(renk(P)) = renk(ident(P)) and renk(P)σ =
renk(Pσ).

With the renk functions, an FCP is translated into a safe process as follows:

Definition 5.2.4
Let PFC = νã.(P1 | . . . | Pn), then Safe(PFC) := νã.(ren1(P1) | . . . | renn(Pn)).
Note that the defining equation of Kk is Kk(x̃) := renk(Q) if K(x̃) := Q. The
original equations K(x̃) := Q are removed. ¨

Example 5.2.5 (Translation to Safe Processes)
Consider the FCP PFC = C ⌊url⌋ | C ⌊url⌋ | S⌊url⌋ in Example 5.0.1. The
translation is Safe(PFC) = C 1⌊url⌋ | C 2⌊url⌋ | S3⌊url⌋, where

C 1(url) := νip.url〈ip〉.ip(s).s(x).C 1⌊url⌋

C 2(url) := νip.url〈ip〉.ip(s).s(x).C 2⌊url⌋

S3(url) := url(y).νses.y〈ses〉.ses〈ses〉.S3⌊url⌋.

The equations for C and S are removed. The structural semantics N [[Safe(PFC)]]
is depicted in Figure 5.3. The Petri net is safe. ¨

In the example, we just created another copy of the equation defining a client.
The following result shows that the size of the translated system is always at
most quadratic in the size of the original specification.

Proposition 5.2.6 (Size)
Let PFC = νã.(P1 | . . . | Pn) be an FCP. Then ||Safe(PFC)|| ≤ n · ||PFC ||.

Proof
The process Safe(PFC) is defined to be νã.(ren1(P1) | . . . | ren1(Pn)). Consider
the renaming of Pi to reni(Pi). In the worst case, all definitions for process
identifiers in PFC are copied. This results in a specification of size at most
||PFC || for every process Pi. When we translate PFC to Safe(PFC), we rename n
processes Pi. Therefore, the size of Safe(PFC) is bounded by n · ||PFC ||. ¥

Note that since n ≤ ||PFC ||, the result shows that the size of Safe(PFC) is at
most quadratic in the size of PFC . We now show that Safe(PFC) is in fact a

131

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

.

.

•[G1]

•[G2]

•[G3]

[G4]

[G5]

[G6]

[G7]

[G8]

[G9]

[G10]

G1 = C 1⌊url⌋ G4 = νip.url〈ip〉.ip(s).s(x).C 1⌊url⌋

G2 = S3⌊url⌋ G5 = url(y).νses.y〈ses〉.ses〈ses〉.S3⌊url⌋

G3 = C 2⌊url⌋ G6 = νip.url〈ip〉.ip(s).s(x).C 2⌊url⌋

G7 = νip.(ip(s).s(x).C 1⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S3⌊url⌋)

G8 = νip.(ip(s).s(x).C 2⌊url⌋ | νses.ip〈ses〉.ses〈ses〉.S3⌊url⌋)

G9 = νses.(ses(x).C 1⌊url⌋ | ses〈ses〉.S3⌊url⌋)

G10 = νses.(ses(x).C 2⌊url⌋ | ses〈ses〉.S3⌊url⌋).

Figure 5.3:
Structural semantics of the safe process Safe(PFC) in Example 5.2.5. The
Petri net is safe and bisimilar with the structural semantics of the client/server
system PFC in Figure 5.2.

safe process. This follows from the compatibility of the renaming with the orbit
function in Lemma 5.2.7.

Lemma 5.2.7
For every k ∈ N the equality orb(renk(P)) = renk(orb(P)) holds.

Proof
Inclusion ⊆ We show orb(renk(P)) ⊆ renk(orb(P)) by induction on the struc-
ture of orb(renk(P)). Let Kk ∈ ident(renk(P)). The compatibility of ident and
renk in Lemma 5.2.3 yields Kk ∈ renk(ident(P)) ⊆ renk(orb(P)). The inclusion
holds as ident(P) ⊆ orb(P) by definition of the orbit function.

132

5.2 From Finite Control to Safe Processes

In the induction step, assume the inclusion Kk ∈ renk(orb(P)) holds for
Kk ∈ orb(renk(P)). Let the defining equation be Kk(x̃) := renk(Q). We
have to show that ident(renk(Q)) ⊆ renk(orb(P)). The hypothesis reveals that
K ∈ orb(P) with K(x̃) := Q by definition of renk. By Lemma 5.2.3, we have
ident(renk(Q)) = renk(ident(Q)). Since K ∈ orb(P), the definition of orbit
yields ident(Q) ⊆ orb(P). We conclude renk(ident(Q)) ⊆ renk(orb(P)).

Inclusion ⊇ The reverse inclusion is shown similarly by induction on orb(P). ¥

Proposition 5.2.8 (Safeness)
Let PFC = νã.(P1 | . . . | Pn) be an FCP. Then Safe(PFC) is a safe process.

Proof
Function Safe is defined by Safe(PFC) = νã.(ren1(P1) | . . . | renn(Pn)). We
have to show that the orbits are pairwise disjoint. Take distinct indices i, j. We
observe that orb(reni(Pi)) = reni(orb(Pi)) and orb(renj(Pj)) = renj(orb(Pj))
with Lemma 5.2.7. As identifiers in reni(orb(Pi)) have i as superscript while
those in renj(orb(Pj)) have j, we get reni(orb(Pi)) ∩ renj(orb(Pj)) = ∅. ¥

The translation of PFC into Safe(PFC) does not alter the behaviour of the
process: both processes are bisimilar with a meaningful bisimulation relation.
This relation shows that the processes reachable from PFC and Safe(PFC) co-
incide up to the renaming of process identifiers. Thus, not only the behaviour
of PFC is preserved by Safe(PFC), but also the structure of the reachable pro-
cess terms, in particular their fragments. Recall that two transition systems
(S, Ã, s0), (S′, Ã′, s′0) are bisimilar, denoted by ≈, if there is a bisimulation re-
lation R ⊆ S × S′ that relates the initial states, i.e., (s0, s

′
0) ∈ R. A relation is

a bisimulation if for all (s, s′) ∈ R the following two implications hold.

(1) For all t ∈ S with s Ã t there is t′ ∈ S′ with s′ Ã
′ t′ and (t, t′) ∈ R.

(2) For all t′ ∈ S′ with s′ Ã
′ t′ there is t ∈ S with s Ã t and (t, t′) ∈ R.

Let PFC = νã.(P1 | . . . | Pn) and P ′
FC = νã.(P1 | . . . | reni(Pi) | . . . | Pn).

We define the relation Ri by (P, Q) ∈ Ri if there are P sf ≡ P and Qsf ≡ Q in
standard form with

P sf = νã.(P 6=ν
1 | P ′

i | P 6=ν
2) and Qsf = νã.(P 6=ν

1 | reni(P
′
i) | P 6=ν

2).

Intuitively, two processes are related if their standard forms coincide up to the
identifiers in process Pi. While process Pi in PFC uses the original identifiers,
reni(Pi) in P ′

FC has identifiers with i as superscript.

Proposition 5.2.9
For any i ∈ {1, . . . , n}, the relation Ri is a bisimulation relating PFC and P ′

FC .

133

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

Proof
Without loss of generality, assume that process P2 is renamed, i.e., we have the
relation R2. Consider a pair (P, Q) ∈ R2.

Case P → P ′ We have to show that the reaction can be imitated by Q,
i.e., Q → Q′ so that P ′ and Q′ are related by R2. As P is structurally congruent
with P sf , we have P sf → P ′ by Rule (Struct).

Proposition 2.1.38 shows that there are three possible reactions for P sf : a
process performs a τ action, some process identifier calls its defining equation, or
two processes communicate. We consider the latter case, where we assume that
the first two processes communicate, i.e.,

P sf = νã.(M1 + a〈b〉.P ′
1 + N1 | M2 + a(x).P ′

2 + N2 | P 6=ν
rem)

P ′ ≡ νã.(P ′
1 | P ′

2{b/x} | P 6=ν
rem).

We have to show that Q → Q′ so that (P ′, Q′) ∈ R2. By definition of R2, we
have Q ≡ Qsf with

Qsf = νã.(M1 + a〈b〉.P ′
1 + N1 | ren2(M2 + a(x).P ′

2 + N2) | P 6=ν
rem)

= νã.(M1 + a〈b〉.P ′
1 + N1 | ren2(M2) + a(x).ren2(P

′
2) + ren2(N2) | P 6=ν

rem)

→ νã.(P ′
1 | ren2(P

′
2){b/x} | P 6=ν

rem).

The second equality holds by definition of ren2. Lemma 5.2.3 shows that re-
naming and applications of substitutions are compatible. Thus, we can push the
substitution inside the renaming to get the equality:

νã.(P ′
1 | ren2(P

′
2){b/x} | P 6=ν

rem) = νã.(P ′
1 | ren2(P

′
2{b/x}) | P 6=ν

rem) =: Q′.

To relate P ′ and Q′ by R2, the processes

νã.(P ′
1 | P ′

2{b/x} | P 6=ν
rem) and νã.(P ′

1 | ren2(P
′
2{b/x}) | P 6=ν

rem)

need to be in standard form, i.e., the topmost operators of P ′
1 and P ′

2{b/x} need
to be different from restriction. Assume P ′

1 = νã1.P
′′
1 , where either P ′′

1 = K⌊ã⌋
or P ′′

1 = M 6=0. (Recall that in FCPs the processes Pi do not use the parallel
composition operator.) Similarly, let P ′

2 = νã2.P
′′
2 . By disjointness of bound and

free names in Convention 2.1.11, we can extrude the scopes of ã1 and ã2. With
νa.P ≡ P if a /∈ fn(P), we remove those names from ã, ã1, and ã2 that are not
free in P ′′

1 | P ′′
2 {b/x} | P 6=ν

rem . This results in ã′, ã′
1, ã

′
2:

νã.(P ′
1 | P ′

2{b/x} | P 6=ν
rem)

(Scope extrusion) ≡ νã.ã1.ã2.(P
′′
1 | P ′′

2 {b/x} | P 6=ν
rem)

(νa.P ≡ P if a /∈ fn(P)) ≡ νã′.ã′
1.ã

′
2.(P

′′
1 | P ′′

2 {b/x} | P 6=ν
rem).

134

5.2 From Finite Control to Safe Processes

We treat νã.(P ′
1 | ren2(P

′
2{b/x}) | P 6=ν

rem) similarly to get

νã.(P ′
1 | ren2(P

′
2{b/x}) | P 6=ν

rem)

≡ νã′.ã′
1.ã

′
2.(P

′′
1 | ren2(P

′′
2 {b/x}) | P 6=ν

rem).

Since P ′ ≡ νã′.ã′
1.ã

′
2.(P

′′
1 | P ′′

2 {b/x} | P 6=ν
rem) and similarly process Q′ is struc-

turally congruent with νã′.ã′
1.ã

′
2.(P

′′
1 | ren2(P

′′
2 {b/x}) | P 6=ν

rem) and since these
processes are in standard form, we conclude (P ′, Q′) ∈ R2.

The imitation of reactions Q → Q′ by P can be proved in a similar way.
Also the proof that the initial processes PFC = νã.(P1 | . . . | Pn) and P ′

FC =
νã.(P1 | ren2(P2) | . . . | Pn) are related by R2 is similar to the latter part of this
proof, but requires scope extrusion for all processes P1 to Pn. ¥

By transitivity of bisimilarity, Proposition 5.2.9 allows for renaming several Pi

and still getting a bisimilar process. In particular, renaming all n processes in
PFC = νã.(P1 | . . . | Pn) yields the result for the safe system Safe(PFC).

Theorem 5.2.10 (Bisimilarity)
For every finite control process PFC , the transition systems of PFC and Safe(PFC)
are bisimilar, T (PFC) ≈ T (Safe(PFC)).

The transition systems of Safe(PFC) and N [[Safe(PFC)]] are isomorphic. Hence,
by transitivity of bisimilarity, the following corollary of Theorem 5.2.10 and The-
orem 3.4.3 holds.

Corollary 5.2.11
The transition systems of a finite control process PFC and the structural se-
mantics N [[Safe(PFC)]] are bisimilar, T (PFC) ≈ T (N [[Safe(PFC)]]).

Example 5.2.12 (Bisimilarity)
As the transition systems of N [[PFC]] and PFC are isomorphic and those of PFC

and N [[Safe(PFC)]] bisimilar, by transitivity of bisimilarity the transition systems
of N [[PFC]] in Figure 5.2 and N [[Safe(PFC)]] in Figure 5.3 are bisimilar. ¨

The corollary shows that one can reason about the behaviour of PFC using
N [[Safe(PFC)]]. Consider a process Q reachable from PFC . We argue that also
the structure of Q is preserved, first by the translation of PFC to the safe pro-
cess Safe(PFC), and then by the translation of Safe(PFC) to the safe Petri net
N [[Safe(PFC)]]. With this result we can also reason about the structure of all
processes reachable from PFC using N [[Safe(PFC)]].

With Theorem 5.2.10, PFC and Safe(PFC) are bisimilar via the relation R1 ◦
· · · ◦ Rn, e.g. a process Q = νa.νb.(K⌊a⌋ | K⌊a⌋ | L⌊b⌋) reachable from PFC

corresponds to Q′ = νa.νb.(K1⌊a⌋ | K2⌊a⌋ | L3⌊b⌋) reachable from Safe(PFC).

135

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

Hence, one can reconstruct the fragments of Q form those of Q′. For example,
computing the restricted forms for the processes above yields:

rf (Q) = νa.(K⌊a⌋ | K⌊a⌋) | νb.L⌊b⌋

rf (Q′) = νa.(K1⌊a⌋ | K2⌊a⌋) | νb.L3⌊b⌋.

Dropping the superscripts in rf (Q′) yields the fragments in rf (Q), since only the
restricted names influence the restricted form, not the process identifiers.

The transition systems of Safe(PFC) and N [[Safe(PFC)]] are isomorphic with
Theorem 3.4.3, e.g. Q′ corresponds to marking M([νa.(K1⌊a⌋ | K2⌊a⌋)]) = 1,
M([νb.L3⌊b⌋]) = 1, and M([F]) = 0 otherwise. Thus, from a marking of the
net N [[Safe(PFC)]] one can obtain the restricted form of a reachable process in
Safe(PFC), which in turn corresponds to the restricted form in PFC (when the
superscripts of process identifiers are dropped).

5.3 Optimality of the Translation

We discuss our choice to rename all Pi in νã.(P1 | . . . | Pn) to gain a safe process.
One might be tempted to improve our translation by renaming only a subset of
processes Pi whose orbits intersect with many others, in hope to get a smaller
specification than Safe(PFC). We show that this idea does not work, and the
resulting specification will be of the same size, i.e., our definition of Safe(PFC) is
optimal. First, we illustrate this issue on an example.

Example 5.3.1
Let P = τ.K⌊ã⌋ + τ.L⌊ã⌋, R = K⌊ã⌋, and S = L⌊ã⌋, where K(x̃) := Def 1 and
L(x̃) := Def 2. Consider the process P | R | S. The orbits of P and R as well as
P and S intersect.

Renaming of P yields ren1(P) | R | S = τ.K1⌊ã⌋ + τ.L1⌊ã⌋ | R | S, where
K1(x̃) := ren1(Def 1) and L1(x̃) := ren1(Def 2). This means we create additional
copies of the shared identifiers K and L.

The renaming of R and S yields P | ren1(R) | ren2(S) = P | K1⌊ã⌋ | L2⌊ã⌋,
where we create new defining equations for the identifiers K1 and L2. The size
of the translation is the same. ¨

This illustrates that any renaming of processes Pi where the orbits overlap
results in a specification of the same size. To render this intuition precisely, we
call Kk(x̃) := renk(Q) a copy of the equation K(x̃) := Q, for any k ∈ N. We also
count K(x̃) := Q as a copy of itself.

136

5.3 Optimality of the Translation

Proposition 5.3.2 (Necessary Condition for Safeness)
The number of copies of an equation K(x̃) := Q necessary to get a safe process
from PFC equals to the number of orbits that contain K.

Proof
Let PFC = νã.(P1 | . . . | Pn). If there are less copies of the equation K(x̃) := Q
than orbits containing K, by the pigeonhole principle there are at least two or-
bits renk(Pi) and renk(Pj) sharing one identifier Kk. By definition, the resulting
process is not safe. If there are more copies than intersecting orbits, some identi-
fiers do not belong to any orbit. Every process reni(Pi) only calls the identifiers
in its orbit, i.e., Ki ∈ orb(reni(Pi)). The remaining Kj that do not belong to
any orbit are never used. The corresponding equations Kj(x̃) := renj(Q) can be
removed from the specification. ¥

Now we show that our translation provides precisely this minimal number of
copies of defining equations for every identifier, i.e., that it is optimal.

Proposition 5.3.3 (Optimality of Our Translation)
Our translation Safe(PFC) provides as many copies of an equation K(x̃) := Q as
there are orbits containing K.

Proof
Let PFC = νã.(P1 | . . . | Pn) and let the identifier K be contained in k orbits,
without loss of generality K ∈ orb(P1) ∩ . . . ∩ orb(Pk). By definition of Safe, we
rename Pi to reni(Pi). As K is in the orbit of Pi, the new identifier Ki is in the
orbit of reni(Pi) for all 1 ≤ i ≤ k. The defining equations are Ki(x̃) := reni(Q)
where K(x̃) := Q. As K is not contained in any other orbit, no further copies
of K(x̃) := Q are added. Thus, we have k + 1 copies of the defining equation
K(x̃) := Q. By definition, we remove the original equation and get the desired
equality. ¥

Remark 5.3.4
Note that one can, in general, optimise the translation by performing dynamic
rather than syntactic analyses, and produce a smaller process whose correspond-
ing Petri net is safe. However, since our notion of a safe process is syntactic the
resulting process will not be safe according to our definition. ¨

137

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

5.4 Unfolding-based Model Checking

In the previous sections, we showed how to translate FCPs into safe Petri nets.
For safe Petri nets, efficient algorithms are known to compute the finite and
complete prefix of the unfolding (cf. Section 2.2.3 and [EH08]). In this section,
we present a state-of-the-art procedure to establish properties for a safe Petri net
with help of the finite and complete prefix. The idea is to reduce the verification
task to a Boolean satisfiability (SAT) problem (cf. Figure 5.1). Off-the-shelf
SAT solvers can then be used in black-box fashion to solve the problem. We
remark that the technique presented in this section is due to Heljanko [Hel02]
and Khomenko et. al. [KKY04] and is also described in [EH08].

Given a finite and complete prefix and a property to be established, the encod-
ing into SAT proceeds in two steps. First, a so-called configuration constraint φC

is computed. It contains a variable xe for every event e. The configuration con-
straint ensures that a satisfying assignment of the variables yields a configuration
of the prefix. More precisely, the set {e p xe = true} is a configuration.

The violation constraint φV expresses all violations of the property on the
given prefix, i.e., it depends on property as well as prefix. The formula to be
checked for satisfiability is the conjunction φC ∧φV . It is unsatisfiable if and only
if the property of interest holds. If a satisfying assignment is found, then the
configuration {e p xe = true} yields a run in the Petri net which violates the
property.

Technically, the configuration constraint φC is a conjunction of

^

e∈E\Ecut

^

f∈••e

(¬xe ∨ xf) and
^

e∈E\Ecut

^

f∈Confle

(¬xe ∨ ¬xf),

where Confle := {((•e)• \ {e}) \ Ecut} is the set of non-cut-off events which are
in the direct conflict relation with e. The first formula is a set of implications
xe ⇒ xf . It ensures that a satisfying assignment to the variables yields a causally
closed set of events, i.e., if it contains event e then it also contains the immediate
predecessors f ∈ ••e. The second formula consists of a number of implications
xe ⇒ ¬xf , which ensures that the resulting set of events is conflict-free. Note that
φC is given in conjunctive normal form, the input format of most SAT solvers.

A Petri net is in a deadlock, if no transition is enabled. In the prefix, there are
two reasons for which an event e cannot be executed. Either some predecessor
f ∈ ••e has not fired or some event consuming tokens from •e has been executed.
These considerations lead to the following violation constraint φV for deadlock-
freedom:

^

e∈E

“ _

f∈••e

¬xf ∨
_

f∈(•e)•\Ecut

xf

”

.

138

5.4 Unfolding-based Model Checking

.

.

e1

e2

e3

e4

e5

e6

e7

e8

e9

(a)

(¬xe4
∨ xe1

) ∧ (¬xe4
∨ xe2

) ∧ (¬xe5
∨ xe2

) ∧ (¬xe5
∨ xe3

) ∧
(¬xe6

∨ xe4
) ∧ (¬xe7

∨ xe5
) ∧ (¬xe4

∨ ¬xe5
)

(b)

xe1
∧ xe2

∧ xe3
∧ (¬xe1

∨ ¬xe2
∨ xe4

∨ xe5
) ∧ (¬xe2

∨ ¬xe3
∨ xe4

∨ xe5
) ∧

(¬xe4
∨ xe6

) ∧ (¬xe5
∨ xe7

) ∧ ¬xe6
∧ ¬xe7

(c)

Figure 5.4:
A finite and complete prefix of the structural semantics in Figure 5.3 and
its SAT encoding as configuration constraint φC (b). Part (c) is a violation
constraint φV for the prefix, which represents all possible deadlock situations.
As only event names are important for the encodings, conditions and labels
are omitted.

Example 5.4.1 (φC ∧ φV)
Consider the safe Petri net N [[Safe(PFC)]] of the client/server system in Fig-
ure 5.3. A finite and complete prefix of the net is depicted in part (a) of Fig-
ure 5.4. The configuration constraint φC for the prefix is part (b), the violation
constraint part (c) of the picture. ¨

The presented approach is not limited to verification of deadlock-freedom but
applies to any property which can be rephrased in terms of (un)reachability. To
check for reachability of markings, also variables for conditions are introduced.
For details we refer to [Hel02, KKY04, EH08].

139

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

5.5 Experimental Results

To demonstrate the practicality of our approach, Tim Strazny implemented the
translation of FCPs to safe processes in the tool Petruchio [SM08]. In this
section, we present the results from applying our tool chain to check three series
of benchmarks for deadlocks. We compare the efficiency of our unfolding-based
verification approach with other well-known approaches and tools for π-Calculus
verification. The tables in this section are taken from [MKS09]. The correspond-
ing verification experiments have been conducted by Tim Strazny.

The NESS (Newcastle E-Learning Support System) example models an elec-
tronic course work submission system. This series of benchmarks is taken from
[KKN06], where the only other unfolding-based verification technique for the π-
Calculus is presented. The approach described in [KKN06] is limited to recursion-
free processes (cf. Definition 2.1.4). It translates a process into a high-level Petri
net using the results in [DKK06a] and model checks the latter. As discussed in
Section 3.6, the translation to Petri nets in [DKK06a, KKN06] is very different
from our approach, and a high-level net unfolder is used there for verification,
while our technique uses the standard unfolding procedure for safe low-level nets.
Moreover, our technique is not limited to recursion-free processes.

The model consists of a teacher process T composed in parallel with k stu-
dents S (the system can be scaled up by increasing the number of students)
and an environment process ENV . Every student has its own local channel for
communication, hi, and all students share the channel h:

νh, h1, . . . , hk.(T⌊nessc, h1, . . . , hk⌋ | Πk
i=1S⌊h, hi⌋ | ENV ⌊nessc⌋).

The students are supposed to submit their work for assessment to NESS. The
teacher passes the channel nessc of the system to all students, hi〈nessc〉, and then
waits for the confirmation that they have finished working on the assignment,
hi(x). After receiving the ness channel, hi(nsc), students organise themselves
in pairs. To do so, they send their local channel hi on h and at the same time
listen on h to receive a partner, h〈hi〉 . . .+h(x) . . . When they finish, exactly one
student of each pair sends two channels to the support system, nsc〈hi〉.nsc〈x〉,
which give access to their completed joint work. These channels are received by
the ENV process. The students finally notify the teacher about completion of
their work, hi〈fin〉. Thus, the system is modelled by:

T (nessc, h1, . . . , hk) := Πk
i=1hi〈nessc〉.hi(xi)

S(h, hi) := hi(nsc).(h〈hi〉.hi〈fin〉 + h(x).nsc〈hi〉.nsc〈x〉.hi〈fin〉)

ENV (nessc) := nessc(y1) . . . nessc(yk).

In the following Tables 5.1 and 5.2, the row nsk gives the verification results for
the NESS system with k ∈ N students. The property we verified was whether all

140

5.5 Experimental Results

processes successfully terminate by reaching the end of their individual code (as
distinguished from a deadlock, where some processes are stuck in the middle of
their intended behaviour, waiting for a communication to occur). Obviously, the
system successfully terminates iff the number of students is even, i.e., they can
be organised into pairs. The dnsk entries refer to a refined NESS model where
the pairing of students is deterministic; thus the number of students is even, and
these benchmarks are deadlock-free.

FCP HLNet Model Checking mwb hal

Model Size |P| |T| unf |B| |E∗| sat dl π2fc

dns4 84 1433 511 6 10429 181 < 1 10 93
dns6 123 3083 1257 46 28166 342 < 1 — —
dns8 162 5357 2475 354 58863 551 < 1 — —
dns10 201 8255 4273 — — — — — —
dns12 240 11777 6791 — — — — — —
ns2 61 157 200 1 5553 127 < 1 < 1 < 1
ns3 88 319 415 7 22222 366 < 1 1 8
ns4 115 537 724 69 101005 1299 1 577 382
ns5 142 811 1139 532 388818 4078 58 — —
ns6 169 1141 1672 — — — — — —
ns7 196 1527 2335 — — — — — —

Table 5.1:
Experimental results for verification of the NESS benchmarks with the ap-
proach presented in [KKN06], the MWB [VM94], and HAL [FGMP03].

The second example is a client-server system similar to our running example.
For a more realistic model, we extend the server to spawn separate sessions that
handle the clients’ requests. We change the server process in Example 5.0.1 to a
more concurrent CONCS by adding separate session processes:

CONCS(url , getses) := url(y).getses(s).y〈s〉.CONCS⌊url , getses⌋

SES(getses) := νses.getses〈ses〉.ses〈ses〉.SES⌊getses⌋.

On a client’s request, the server creates a new session object using the getses
channel, getses(s). A session object is modelled by an SES process. It sends its
private channel νses along the getses channel to the server. The server forwards
the session to the client, y〈s〉, which establishes the private session, and becomes
available for further requests. This case study uses recursion and is scalable in
the number of clients and the number of sessions. In Table 5.3, e.g., the entry
5s5c gives the verification results for the system with five SES processes, five C
processes and one server. All these benchmarks are deadlock-free.

The last example is the well-known specification of the handover procedure in
the GSM Public Land Mobile Network. We use the standard π-Calculus model
with one mobile station, two base stations, and one mobile switching centre
presented by Orava and Parrow in [OP92].

141

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

FCP Struct Safe Struct Model Checking

Model Size |P| |T| B Size |P| |T| unf |B| |E∗| sat

dns4 99 22 47 8 115 32 50 < 1 113 38 < 1
dns6 145 32 94 12 169 48 99 < 1 632 159 < 1
dns8 191 42 157 16 233 64 164 < 1 3763 745 < 1
dns10 237 52 236 20 277 80 239 1 22202 3656 2
dns12 283 62 331 24 331 96 286 56 128295 18192 62
ns2 73 18 28 4 81 26 40 < 1 61 27 < 1
ns3 105 37 91 6 117 56 141 < 1 446 153 < 1
ns4 137 68 229 8 153 102 364 < 1 5480 1656 < 1
ns5 169 119 511 10 189 172 815 17 36865 7832 3
ns6 201 206 1087 12 225 282 1722 1518 377920 65008 84
ns7 233 361 2297 14 261 646 3605 — — — —
ns2-r 72 16 24 4 80 24 36 < 1 51 22 < 1
ns3-r 104 29 70 6 116 48 117 < 1 292 99 < 1
ns4-r 134 45 123 8 150 79 216 < 1 1257 392 < 1
ns5-r 166 66 241 10 186 119 435 2 10890 2635 1
ns6-r 198 91 418 12 222 167 768 123 107507 19892 31
ns7-r 230 120 666 14 258 223 1239 — — — —

Table 5.2:
Experimental results for verification of the NESS benchmarks with the ap-
proach presented in this chapter.

We compare our results with three other techniques for π-Calculus verification:
the mentioned approach in [KKN06], the verification kit HAL [FGMP03], and
the mobility workbench (MWB) [VM94]. HAL translates a π-Calculus process
into an HD-automaton [Pis99]. This in turn is translated into a finite automaton
which is checked using standard tools. The MWB does not use any automata
translation, but builds the state space on the fly. These tools can verify vari-
ous properties (cf. Section 5.6), but we perform our experiments for deadlock
checking as it is the common denominator.

We briefly comment on the role of the models with the suffix −r in Table 5.2.
One can observe that parallel compositions inside a fragment lead to interleaving
diamonds in our Petri net representation. Thus, restricted names that are known
to a large number of processes can make the size of our Petri net translation grow
dramatically (cf. Section 4.5). We demonstrate this effect by verifying some of the
NESS benchmarks with and without (suffix −r in the table) the restrictions on
such critical names. Even with the critical restrictions our approach outperforms
the other tools. But when such restrictions are removed, it becomes orders of
magnitude faster. (Removing such critical restrictions does not alter the process
behaviour: νa.P reacts to νa.P ′ iff P reacts to P ′. Thus, one can replace νa.P by
P for model checking purposes. Note that this holds only for active restrictions
in the initial process, not for those within recursive definitions.)

The columns in Tables 5.1, 5.2, and 5.3 are organised as follows. FCP Size gives
the size of the process as defined in Section 2.1.1. The following two columns,
HLNet and Model Checking (present only in Table 5.1), are the verification results
when the approach in [KKN06] is applied. In the former column, |P | and |T | state

142

5.5 Experimental Results

FCP mwb hal Struct Safe Struct Model Checking

Model Size dl π2fc |P| |T| B Size |P| |T| unf |B| |E∗| sat

gsm 214 — 18 374 138 1 286 148 344 < 1 345 147 < 1
gsm-r 213 n/a n/a 60 72 1 285 75 110 < 1 150 72 < 1
1s1c 48 — < 1 11 13 1 48 12 15 < 1 17 9 < 1
1s2c 52 — 6 12 15 2 63 22 30 < 1 35 17 < 1
2s1c 52 — 2 20 31 2 61 22 35 < 1 37 18 < 1
2s2c 56 — 138 31 59 2 76 40 66 < 1 73 33 < 1
3s2c 60 — — 68 159 3 89 66 128 < 1 137 57 < 1
3s3c 64 — — 85 217 3 104 100 194 < 1 216 87 < 1
4s4c 72 — — 362 1202 4 132 216 484 < 1 537 195 < 1
5s5c 80 — — 980 3818 5 160 434 1132 < 1 1238 403 < 1

Table 5.3: Experimental results for GSM and client-server benchmarks.

the number of places and transitions in the high-level Petri net. The following
column unf gives the time to compute the unfolding prefix of this net. We meas-
ure all runtimes in seconds. For this prefix, |B| is the number of conditions, and
|E∗| is the number of events (excluding cut-offs). Like our technique, [KKN06]
employs a SAT solver whose runtime is given in the sat column. The following
two columns, mwb dl and hal π2fc, give the runtimes for the deadlock checking
algorithm in MWB and for converting a π-Calculus process into a finite auto-
maton (via HD-automata). The latter includes the translation of a π-Calculus
process into an HD-automaton, minimisation of this HD-automaton, and the
conversion of the minimised HD-automaton into a finite automaton [FGMP03].
The entries in Table 5.2 are the results of applying our model checking procedure.
The column Struct gives the numbers of places and transitions and the bounds
of the Petri nets corresponding to a direct translation of the FCPs. These nets
are given only for comparison, and are not used for model checking. Safe Size

gives the size of the safe process computed by the function Safe described in Sec-
tion 5.2, and the next column gives the numbers of places and transitions of the
corresponding safe Petri nets. Note that these nets, unlike those in [KKN06], are
the usual low-level Petri nets. The following columns give the unfolding times,
the prefix sizes, and the times for checking deadlocks on the prefixes using a SAT
solver. A ‘−’ in the tables indicates the corresponding tool did not produce an
output within 30 minutes, and an ‘n/a’ means the technique was not applicable
to the example.

Tables 5.1 and 5.2 illustrate the results for checking the NESS example with
the different techniques. As the MWB requires processes where all names are
restricted, we cannot check the ‘−r’ versions of the case studies. Our runtimes are
orders of magnitude smaller in comparison with HAL and MWB, and are much
better compared with the approach in [KKN06]. Furthermore, they dramatically
improve when the critical names are removed (the ‘−r’ models).

The approach in [KKN06] only applies to recursion-free processes, so one
cannot check the client-server or the GSM benchmarks with that technique.

143

Chapter 5 Unfolding-based Model Checking of Finite Control Processes

Table 5.3 shows that the proposed technique dramatically outperforms MWB

and HAL, and handles the benchmark with five sessions and clients in a second.

5.6 Related Work and Conclusion

We have proposed a practical approach for verification of finite control processes.
It works by first translating the given FCP into a safe process, and then trans-
lating the latter with the structural semantics into a safe Petri net, for which
unfolding-based model checking is performed. The translation to safe processes
exploits a general boundedness result for FCP nets based on the developed theory
of orbits. Our experiments show that this approach has significant advantages
over other existing tools for verification of dynamically reconfigurable systems
in terms of memory consumption and runtime. We summarise the outcomes of
research on automatic verification tools for the π-Calculus and identify potential
directions for future research on our verification approach.

Based on the theory of HD-automata, model and bisimulation checking tools
for the π-Calculus are implemented in the HAL toolkit [FGMP03]. Finite HD-
automata are translated into ordinary finite automata, which makes finite state
verification tools applicable. The π-logic, defined for model checking, is cap-
able of referring to the identities of names. Strong early bisimilarity checking is
performed by checking bisimilarity of the finite automata [MP95a].

An extension of the modal µ-Calculus to cope with name creation and passing
is proposed in [Dam96], together with a sound and complete proof system and
a tableau-based model checking algorithm for finite control processes. The al-
gorithm is integrated in the MWB—initially designed to decide the open bisim-
ilarities [SW01] between finite control processes [VM94].

The spatial logic of Caires and Cardelli [CC03] specifies structural as well as
behavioural properties of processes. It contains operators to refer to subprocesses,
environments, and the freshness of names. A model checking algorithm, which
is complete for the class of bounded processes, is available [Cai04].

Our approach to verification of π-Calculus using unfoldings outperforms the
established tools on the property of deadlock-freedom and there is hope that it
will also speed up the verification of the mentioned properties. In particular, we
started to investigate a spatial logic inspired by [CC03] that can be compiled down
to a temporal logic for Petri nets, i.e., we reduce the model checking problem
whether process P satisfies a spatial logic formula φP to whether N [[P]] satisfies
θPN (φP) in an classical temporal logic for nets [Lin08]. The advantage of this
translation-based approach is that the existing results in Petri net theory help
us judge hardness and decidability of the model checking problem [Esp97a]. We
plan to compare its efficiency with the direct model checking algorithm in the
Spatial Logic Model Checker [Cai04].

144

5.6 Related Work and Conclusion

After the translation into a safe process, some fragments differ only by the
replicated process identifiers. Such fragments are equivalent in the sense that
they react in the same way and generate equivalent places in the postsets of
the transitions. Hence, it should be possible to optimise the computation of the
structural semantics, because many structural congruence checks can be omitted
and several computations of enabled reactions become unnecessary. Moreover,
this observation allows one to use a weaker (compared with marking equality)
equivalence on configurations in the unfolding procedure [Kho03]. This would
produce cut-off events more often and hence reduce the size of the unfolding
prefix.

It seems to be possible to generalise our translation to safe processes to a wider
subclass of structurally stationary processes. For example, consider the process
S⌊url⌋ | C ⌊url⌋ | C ⌊url⌋ modelling a concurrent server and two clients, with the
corresponding process identifiers defined as

S(url) := url(y).(νses.y〈ses〉.ses〈ses〉 | S⌊url⌋)

C (url) := νip.url〈ip〉.ip(s).s(x).C ⌊url⌋.

Intuitively, when contacted by a client, the server spawns a new session and
is ready to serve another client, i.e., several clients can be served in parallel.
Though this specification is not an FCP, it still results in a 2-bounded Petri net
very similar to the one in Figure 5.2. Our method can still be used to convert it
into a safe Petri net for subsequent verification.

145

146

6 Case Studies

Contents
6.1 Car Platooning . 148

6.1.1 Modelling the Case Study 149

6.1.2 Occurrence Number Properties 152

6.1.3 Topological Properties 153

6.1.4 Temporal Properties 154

6.2 Autonomous Transport 156

6.2.1 Modelling the Case Study 156

6.2.2 Temporal Properties 159

6.2.3 Topological Properties 164

6.3 Discussion of the Verification Approach 165

6.4 Related Work . 166

To further evaluate the usefulness of the structural semantics for automatic
verification, we consider two realistic case studies. Our Petri net translation fa-
cilitates the semi-automatic verification of non-trivial properties of various kinds,
ranging from occurrence number properties over topological properties asking for
connections between processes to temporal properties.

As opposed to the fully automated model checking in the previous section, the
verification in this chapter is computer-aided. We decompose global correctness
properties by hand into lemmas, which we then establish with the help of tools.
This approach is more efficient than uninformed model checking as it often con-
siders system parts instead of the full system or simpler properties. Hence, it
scales better with the size of the model.

For a wide range of properties, efficient verification algorithms that only in-
spect the graph structure of the net are sufficient. They avoid costly state space
computations and so circumvent the state explosion problem, the main drawback

147

Chapter 6 Case Studies

of model checking. These algorithms exploit the fact that the Petri net of interest
is generated from a π-Calculus process, i.e., they rely on additional knowledge
about the structural semantics (e.g. that the places yield all private connections
between processes).

To begin with, we verify a simplified model of a highway control system
[HESV91]. Since its size is limited, it allows us to explain the arguments that
prove a property. The second case study is taken from the automated manufac-
turing domain [BR01]. As the model comprises 195 lines of π-Calculus code, we
only sketch it and report on the conducted verification. Note that without tool
support, the verification of the second case study would not have been possible.
To conclude the chapter, we discuss our verification approach and compare it
with related work on the verification of both case studies.

6.1 Car Platooning

The highway control system we consider has been developed in the PATH project
at the University of California, Berkeley [PAT86]. It has been chosen as one of the
benchmark case studies for verification techniques developed in the Transregional
Collaborative Research Center on Automatic Verification and Analysis of Com-
plex Systems (AVACS) [AVA04], hence offering related approaches to verification
we shall compare our results with. The scenario is as follows [HESV91].

A vehicle enters a highway and communicates its goal location to a central
device. The device responds by sending a path the vehicle has to follow. To
do so, it chooses one of three elementary manoeuvres: change the current lane,
merge with preceding vehicles into so-called platoons, and split platoons. Thanks
to computer-supported control, cars in platoons drive close to each other. This
gives hope for better utilisation of highways and shorter travelling times when
the system is installed.

.

.

free agent

register

free agent

new leader

car ahead

→

follower leader

Figure 6.1: Illustration of the merge manoeuvre.

We focus on the merge manoeuvre as illustrated in Figure 6.1. For its descrip-

148

6.1 Car Platooning

tion we call single vehicles free agents. When a free agent detects another one
driving in front, depicted by a car ahead message, it contacts that vehicle with
the request to merge. If the leading vehicle agrees, the now called follower speeds
up to drive closely behind the leader. They maintain a permanent connection,
indicated by the two arrows between follower and leader in Figure 6.1. The two
cars form a car platoon. In our model, we only merge free agents whereas the
original case study also merges platoons up to a given size. The theory of struc-
tural stationarity allows us to verify those systems with known bounds as well.
We simplified the case study for the sake of brevity and clarity.

The verification in [HESV91] relies on proper connections between the vehicles.
Therefore, the results achieved are only valid modulo this assumption. We
present a model where the connections are built up appropriately with the help
of central control units managing sections of the highway. These units are rep-
resented by the masts in Figure 6.1. Free agents entering a section register at
the unit and receive the channel for contacting a preceding vehicle from the unit.
To limit the number of messages in our case study, we let the central control
unit send the car ahead message with the new leader as a parameter instead of
sending two messages.

6.1.1 Modelling the Case Study

We consider the example of two free agents merging into a platoon. This case
study is specified by the π-Calculus process ENV ⌊cfa⌋ | MRG⌊cfa⌋ in Table 6.1.
The environment process ENV recursively generates new free agents. These free
agents have an id , a channel ca, and a channel rq . The channel ca models a
car ahead message, the request channel rq is used by a second free agent to
issue a request to merge into a platoon. Free agents register at a MRG process.
They pass their id to establish a private connection and then send the ca and
rq channels. At some point, the MRG process sends a ca message to the second
free agent that registered. It contains the rq channel of the first free agent. The
agent receives this message and becomes a request process RQ . It contacts the
other free agent on the rq channel and, if this agent accepts the request to merge,
turns into a follower FL. The first car becomes a leader LD . This finishes the
merge manoeuvre.

Remark 6.1.1
The car platoon system ENV ⌊cfa⌋ | MRG⌊cfa⌋ is a finite handler process as
defined in Section 4.4. The distinguished public channel is cfa, free agents are par-
ticipants, i.e., the call FA⌊cfa⌋ is of the form KPT ⌊p̃⌋ in PPT , and the merge pro-
cess MRG⌊cfa⌋ is a handler process KHD⌊p̃⌋ in PHD. Hence, by Theorem 4.4.8,
the car platoon model ENV ⌊cfa⌋ | MRG⌊cfa⌋ is structurally stationary.

149

Chapter 6 Case Studies

We remark that also the extended system where platoons of several cars merge
can be modelled as a finite handler process. ¨

ENV (cfa) := FA⌊cfa⌋ | ENV ⌊cfa⌋

MRG(cfa) := cfa(idx).idx (cax).idx (rqx).

cfa(idy).idy(cay).idy(rqy).cay〈rqx 〉.MRG⌊cfa⌋

FA(cfa) := νid , ca, rq .cfa〈id〉.id〈ca〉.id〈rq〉.

(ca(rqnl).RQ⌊id , rqnl⌋ + rq(nf).nf 〈id〉.LD⌊id ,nf ⌋)

RQ(id , rqnl) := rqnl〈id〉.id(nl).FL⌊id ,nl⌋.

Table 6.1: π-Calculus model of the merge manoeuvre.

The structural semantics of ENV ⌊cfa⌋ | MRG⌊cfa⌋ is depicted in Figure 6.2.
We explain the meanings of places and transitions. Initially, the processes F1 =
ENV ⌊cfa⌋ and F4 = MRG⌊cfa⌋ are present and so the corresponding places are
marked. With transition t1, the environment process ENV ⌊cfa⌋ generates free
agents F2 = FA⌊cfa⌋. Transition t2 represents a call to the process identifier FA,
which yields

F3 = νid , ca, rq .cfa〈id〉.id〈ca〉.id〈rq〉.choice.

We use choice as a shortcut, which is replaced by the choice composition

ca(rqnl).RQ⌊id , rqnl⌋ + rq(nf).nf 〈id〉.LD⌊id ,nf ⌋

to obtain the full definition of F3. Shortcuts improve the readability of processes,
they are not part of the π-Calculus syntax. The call MRG⌊cfa⌋, represented by
transition t3, gives

F5 = cfa(idx).idx (cax).idx (rqx).regy .cay〈rqx 〉.MRG⌊cfa⌋,

where regy abbreviates

cfa(idy).idy(cay).idy(rqy).

With t4 the first free agent passes its id to the MRG process. The transition
consumes a token for a free agent F3, and the token for the MRG process F5, and
produces a fragment that contains a free agent and the MRG process, F6. With
transitions t5 and t6, the free agent continues to pass its ca and rq channels,
resulting in fragments F7 and F8:

F6 = νid .
`
νca, rq .id〈ca〉.id〈rq〉.choice

| id(cax).id(rqx).regy .cay〈rqx 〉.MRG⌊cfa⌋
´

150

6.1 Car Platooning

.

.

•

[F1] [F2] [F3]

•

[F4]

[F5] [F6] [F7] [F8]

[F9][F10][F11]

[F12] [F13] [F14] [F15]

t1 t2

t3

t4 t5 t6 t7

t8t9t10

t11 t12 t13

ENV generates

free agents

Two free agents register

at MRG and MRG

introduces them

The two free agents form

a follower-leader-platoon

Figure 6.2:
Structural semantics N [[ENV ⌊cfa⌋ | MRG⌊cfa⌋]] of the merge manoeuvre. The
fragment definitions are given in the text. Cutting away the gray part yields
a subnet where the number of cars stays constant.

F7 = νid .
`
νca, rq .id〈rq〉.choice | id(rqx).regy .cay〈rqx 〉.MRG⌊cfa⌋

´

F8 = νrq .
`
νid , ca.choice | regy .cay〈rq〉.MRG⌊cfa⌋

´
.

The registration of the second free agent, which yields F9, F10, and F11 given
below, is similar. We use α-conversion to rename the id , ca, and rq channels
of the first free agent to id1 , ca1 , and rq1 . The shortcuts choice1 and choice2

correspond to choice with those names changed accordingly:

F9 = νid2 .
`

νrq1 .(νid1 , ca1 .choice1 | id2 (cay).id2 (rqy).cay〈rq1 〉.MRG⌊cfa⌋)

| νca2 , rq2 .id2 〈ca2 〉.id2 〈rq2 〉.choice2

´

F10 = νca2 , id2 .
`

νrq1 .(νid1 , ca1 .choice1 | id2 (rqy).ca2 〈rq1 〉.MRG⌊cfa⌋)

| νrq2 .id2 〈rq2 〉.choice2

´

F11 = νca2 .
`

νrq1 .(νid1 , ca1 .choice1 | ca2 〈rq1 〉.MRG⌊cfa⌋)

| νid2 , rq2 .(ca2 (rqnl).RQ⌊id2 , rqnl⌋ + . . .)
´
.

In F11, the MRG process is ready to pass the rq1 channel of the leading car
to the second free agent. Since it uses the ca2 channel, we say that the MRG
process sends a car ahead message. Afterwards, the process MRG⌊cfa⌋ forgets
the restricted names of both free agents and the fragment is split up. The free

151

Chapter 6 Case Studies

agent that receives the car ahead message becomes an RQ⌊id2 , rq1 ⌋ process in
F12. With transition t11 from F12 to F13, RQ is replaced by its defining process:

F12 = νrq1 .
`
νid1 , ca1 .choice1 | νid2 .RQ⌊id2 , rq1 ⌋

´

F13 = νrq1 .
`

νid1 , ca1 .(. . . + rq1 (nf).nf 〈id1 〉.LD⌊id1 ,nf ⌋)

| νid2 .rq1 〈id2 〉.id2 (nl).FL⌊id2 ,nl⌋
´
.

In F13, the second free agent issues a request to merge with the leading car.
Transition t12 from F13 to F14 models the acceptance of this request as it reflects
the communication of both cars on the rq1 channel. With t13, the now leader
passes its id1 channel to the follower, which yields the car platoon in F15.

F14 = νid2 .
`
νid1 .id2 〈id1 〉.LD⌊id1 , id2 ⌋ | id2 (nl).FL⌊id2 ,nl⌋

´

F15 = νid1 , id2 .
`
LD⌊id1 , id2 ⌋ | FL⌊id2 , id1 ⌋

´
.

We continue with the investigation of the occurrence numbers of processes in the
car platoon system.

6.1.2 Occurrence Number Properties

If we consider a reaction sequence where the number of cars stays constant, we
expect a linear relationship between the number of free agents and the number of
follower-leader-platoons. Each follower-leader-platoon created in the execution
should correspond to two free agents beforehand. This relationship exists, we
prove it using S-Invariants (cf. Section 2.2.2).

Consider the subnet of the structural semantics of the car platoon system,
which is obtained by removing the environment process F1 = ENV ⌊cfa⌋ (cf.
gray part in Figure 6.2). Since only the environment generates free agents, the
number of cars stays constant. To relate the number of free agents and the
number of follower-leader-platoons, we construct a relation between the markings
of [F2] and [F15]. We use the following S-invariant I, written as labelled vector
to improve readability:

It =

„
F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

1 1 0 0 1 1 1 2 2 2 2 2 2 2

«

.

Recall that we can rely on the INA toolkit to compute S-invariants [Sta03]. By
the fundamental property of S-invariants in Lemma 2.2.12, for all markings M
and M ′ of the subnet with M →∗ M ′ it holds

It · M ′ = It · M

⇔ Σ15
i=2I([Fi])M

′([Fi]) = Σ15
i=2I([Fi])M([Fi]).

152

6.1 Car Platooning

If we assume that all merging activities are finished in M and in M ′, i.e., there
are only tokens on the places [F2], [F15], and [F4] with F4 = MRG⌊cfa⌋ then the
equation implies

M ′([F2]) + 0M ′([F4]) + 2M ′([F15]) = M([F2]) + 0M([F4]) + 2M([F15])

⇔ ∆M,M′([F15]) = −1/2∆M,M′([F2]),

where ∆M,M′(x) := M ′(x) − M(x). This means for every token added on [F15]
two free agents FA⌊cfa⌋ are removed from [F2]. Since F15 consists of two processes
νid1 , id2 .(LD⌊id1 , id2 ⌋ | FL⌊id2 , id1 ⌋) and no processes are created, we conclude
at process level that every free agent removed in a reaction sequence from process
P to P ′ is a follower or a leader in P ′.

To sum up, consider P ∈ Reach(ENV ⌊cfa⌋ | MRG⌊cfa⌋) and P ′ ∈ Reach(P),
where the restricted forms of P and P ′ consist of fragments FA⌊cfa⌋, MRG⌊cfa⌋,
and νid1 , id2 .(LD⌊id1 , id2 ⌋ | FL⌊id2 , id1 ⌋) only. Let P ′ be reachable without the
reaction ENV ⌊cfa⌋ → FA⌊cfa⌋ | ENV ⌊cfa⌋. Then the following result holds.

Result 6.1.2
The number of follower-leader-platoons added in P ′ is half the number of free
agents removed in P ′. Every free agent removed is a follower or a leader.

6.1.3 Topological Properties

In Section 3.1, we discussed the interpretation of π-Calculus processes as hyper-
graphs, where restricted names connect the sequential processes that share them.
Inspired by this graph interpretation, we consider connectedness properties. We
say that Q, Q′ ∈ S(P) are directly connected in process P if they share a free
name, i.e., fn(Q) ∩ fn(Q′) 6= ∅. Assume Q occurs only in fragments where its
free names are restricted. Then the direct connectedness property can be es-
tablished for all reachable processes by inspecting the places in the Petri net,
without taking behavioural information into account. Note that the assumption
always holds for closed processes.

Result 6.1.3
In every reachable process, a follower is directly connected with a leader, i.e., a
process that contains FL⌊idx , idy⌋ also contains LD⌊idy , idz ⌋.

Proof
Only fragment F15 = νid1 , id2 .(LD⌊id1 , id2 ⌋ | FL⌊id2 , id1 ⌋) contains a follower
FL⌊id2 , id1 ⌋ and id1 is the identifier of a leader. ¥

153

Chapter 6 Case Studies

The proof shows more. There is no situation, in which a follower knows a leader
but the leader does not know the follower, i.e., FL⌊id2 , id1 ⌋ implies LD⌊id1 , idz ⌋
with idz = id2 . With the argument that a leader is only present in the mentioned
fragment we conclude that also a leader is always properly connected, which
means directly connected with a follower, not with another leader or a free agent.

We say that Q, Q′ ∈ S(P) are connected in process P , if they are in the
transitive closure of the direct connection relation, i.e., there are Q1, . . . , Qn ∈
S(P) so that fn(Q)∩fn(Q1) 6= ∅, fn(Qi)∩fn(Qi+1) 6= ∅, and fn(Qn)∩fn(Q′) 6= ∅.
A connection is necessary for an interaction between Q and Q′. The following
situation demonstrates that connections are critical. In fragment F11, the free
agent ca2 (rqnl).RQ⌊id2 , rqnl⌋+. . . waits for the request channel of its new leader.
At the same time it is connected (via ca2 〈rq1 〉.MRG⌊cfa⌋) with another free
agent νid , ca, rq .cfa〈id〉.id〈ca〉.id〈rq〉.choice. The second free agent could send
false information to the first.

Result 6.1.4
In ENV ⌊cfa⌋ | MRG⌊cfa⌋ a process is reachable where ca2 (rqnl).RQ⌊id2 , rqnl⌋+
. . . and νid , ca, rq .cfa〈id〉.id〈ca〉.id〈rq〉.choice are connected.

Proof
The process ca2 (rqnl).RQ⌊id2 , rqnl⌋ + . . . only shares its ca2 channel with the
process ca2 〈rq1 〉.MRG⌊cfa⌋ in F11. The latter process additionally shares the
channel cfa with the fragment F3 = νid , ca, rq .cfa〈id〉.id〈ca〉.id〈rq〉.choice. A
process is reachable where all three subprocesses occur in parallel composition iff
a marking M is reachable with M([F3]) > 0 and M([F11]) > 0. The coverability
tree shows that this is possible. ¥

6.1.4 Temporal Properties

The topological properties verified in the last section are invariants, i.e., they hold
in every reachable process. The property considered in this section talks about
more elaborate temporal behaviour. The verification is purely graph theoretic,
i.e., it solely relies on the net structure. Consider fragment

F11 = νca2 .
`

νrq1 .
`
νid1 , ca1 .choice1 | ca2 〈rq1 〉.MRG⌊cfa⌋

´

| νid2 , rq2 .(ca2 (rqnl).RQ⌊id2 , rqnl⌋ + . . .)
´
,

in which process ca2 〈rq1 〉.MRG⌊cfa⌋ sends a car ahead message with a new leader
to the free agent ca2 (rqnl).RQ⌊id2 , rqnl⌋ + . . .

154

6.1 Car Platooning

Result 6.1.5
For every free agent the following holds in every reachable process: if the agent
receives a car ahead message, it will never receive a car ahead message again.

We briefly discuss the formalisation of the property in a temporal logic. The
temporal behaviour (a car ahead message is received at most once) is specified
relative to a free agent. Formulas in standard temporal logics like CTL∗ refer
to a finite set of atomic propositions, which is not suitable for reasoning about
an unbounded number of free agents. Instead, the property requires a universal
quantifier for restricted names, which covers temporal operators. Logics that
support name quantification are presented in [Dam96, CC03, FGMP03].

The proof of Result 6.1.5 applies the following more general observation. Con-
sider a non-empty (denoted by +) sequence

F | P →+ F ′ | P ′ → Q.

If the first and last reaction use the restricted name a (i.e., a prefix a〈b〉 is
consumed in the reaction) and a is not renamed via α-conversion in the meantime,
we say there are two reactions in the sequence using one restricted name.

Observation 6.1.6
Consider a reaction sequence where two reactions use one restricted name. Let
F and F ′ be the fragments performing the reactions. Then there is a directed
path in the Petri net from place [F] to [F ′] so that every fragment on the path
has at least one restricted name. ¥

The idea underlying the observation is that a restricted name a, which is used
by F and F ′ with F | P → P1 → . . . → Pn → F ′ | P ′, is remembered in
all intermediate processes Pi. When the restricted forms rf (Pi) ≡ Πj∈Ji

Gj are
computed, one fragment Gj contains the restriction νa. These fragments form
the path in the Petri net.

Proof (of Result 6.1.5)
To send a car ahead message to the same agent twice, a directed path in the net
is needed from the first fragment sending the message to the second. The only
fragment sending a car ahead message is F11. The only cycle starting in [F11]
is [F11].[F4].[F5].[F6].[F7].[F8].[F9].[F10] (cf. Figure 6.2). Since place [F4] with
F4 = MRG⌊cfa⌋ on this cycle does not have a restricted name, no car ahead
message is sent repeatedly to the same free agent. ¥

155

Chapter 6 Case Studies

6.2 Autonomous Transport

We report on the results of verifying an industrial case study from the automated
manufacturing domain, which have been obtained by Philipp Gringel [Gri07] and
Tim Strazny [MKS09]. The case study is taken from a project on integrating the
design of mechanical systems and their control software funded by the German
Research Council as Priority Program Integration of Software Specification Tech-
niques for Applications in Engineering [EDD+04]. We briefly describe the case
study and refer to [BR01] for details.

WPIN

TV

MT1

WPTV
WPMT2 MT3 WP

TV
OUT

Figure 6.3: Sketch of the transportation system.

As part of a motor production process workpieces are drilled and cut, and
afterwards washed. The workpieces arrive in an input storage, are brought to a
drill and a cutter, finally washed and deposited to an output storage. The focus
of the case study is on the transportation system. It is realised by autonomous
vehicles that communicate by radio. Figure 6.3 illustrates the scenario. A key
requirement of the system is flexibility in the range of workpieces that have to
be processed. To ensure this, workpieces carry information about the ordering
in which they have to pass the tools. For example, the motor parts first visit the
drill, denoted by MT 1, or the cutter MT 2, and afterwards the washing machine
MT 3. Hence, MT 1,MT 2,MT 3 as well as MT 2,MT 1,MT 3 are correct sequences
through the system, any other path is forbidden. Our transportation system is
highly flexible as it can be easily adapted to arbitrary sequences of processing
steps.

6.2.1 Modelling the Case Study

The π-Calculus process representing the production system has been developed
by Philipp Gringel in his Bachelor’s thesis [Gri07]. We restrict ourselves to ex-
plaining the main components and remark that the model is a finite control
process. Hence, it is structurally stationary with Lemma 4.3.6 and moreover, the
verification approach from Chapter 5 is applicable to establish temporal proper-
ties.

156

6.2 Autonomous Transport

Basic Model

The system is the parallel composition of the processes for input and output
storages, machine tools, transportation vehicles, and workpieces. The model is
scalable in the number of machine tools (of each type), transportation vehicles,
and workpieces, as indicated by the iterated parallel compositions (Π) below:

IN | OUT | ΠMT 1 | ΠMT 2 | ΠMT 3 | ΠTV | ΠWP .

Formally, all of the processes above are calls to process identifiers. We omitted
the long parameter lists and just remark that all processes except transportation
vehicles TV have unique identifiers. Moreover, there is a channel tv on which
vehicles and machines communicate.

Workpieces We follow a workpiece through the production process. Upon cre-
ation, it sends its ID on channel new to the input storage, which then requests
a vehicle to transport it. The workpiece non-deterministically decides in which
order it has to be processed by machine tools. However, as explained above,
the washing machine MT 3 is the last to be visited before the workpiece is put
into the output storage. To announce the machine it has to visit next to the
transportation vehicle, the workpiece sends the machine type on its ID channel
wp.1 For example, a processing sequence MT 1,MT 2,MT 3 gives rise to the com-
munication sequence wp〈mt1〉.wp〈mt2〉.wp〈mt3〉. When the workpiece arrives in
the output storage, it finally communicates on the channel representing its ID
and terminates, vanishing from the system’s view:

WP(wp,new ,mt1,mt2,mt3, out) :=

new〈wp〉.(wp〈mt1〉.wp〈mt2〉.wp〈mt3〉.wp〈out〉.wp

+ wp〈mt2〉.wp〈mt1〉.wp〈mt3〉.wp〈out〉.wp).

Input storage Upon reception of a new workpiece wp, the input storage calls
for a transportation vehicle by sending its address store on the channel tv . When
the vehicle arrives, the storage hands over the workpiece by sending wp on chan-
nel store. With a recursive call, the input storage is ready to handle the next
workpiece:

IN (new , store, tv) := new(wp).tv〈store〉.store〈wp〉.IN ⌊new , store, tv⌋.

Transportation vehicles A vehicle listens on channel tv for a transportation
request. The sender of the request—a machine tool or the input storage—is
stored in the variable source. The vehicle moves to the sender, modelled by a

1Note that the number of machines of each type is parametric. The workpiece decides only
on the machine type, the actual machine is chosen non-deterministically.

157

Chapter 6 Case Studies

τ -step, and receives the workpiece wp on channel source. As explained above,
the workpiece sends the machine type it has to visit next. Since there may be
several machine tools of the same type, the vehicle requests the identifier of an
idle machine with the receive action type(dest). It then moves to the machine
that answered and delivers the workpiece by sending wp on channel dest . Having
completed a task, the vehicle becomes ready for the next transportation:

TV (tv) := tv(source).τ.source(wp).wp(type).type(dest).τ.dest〈wp〉.TV ⌊tv⌋.

Machine tools The definition of a machine tool process is more complicated—
it is a realistic design consisting of seven subprocesses. We decided only to sketch
its structure and behaviour rather than explain it in full detail. After a workpiece
has been deposited on the input buffer of a machine tool, the buffer’s handler
informs the machine about the presence of a workpiece. The machine moves
the workpiece from its input buffer to the processing unit and starts working.
When the processing is done, it puts the workpiece to its output buffer, which
subsequently calls for a transportation vehicle.

Processing of a workpiece, i.e., drilling, cutting, or washing, is performed in the
process WORK . It receives a workpiece wp from the input buffer in, performs
its operation with a τ -action, and calls the PUT process to deposit the workpiece
to the output buffer:

WORK (full , empty , in) := in(wp).τ.PUT⌊full , empty ,wp⌋.

Output storage Finally, the workpiece arrives in the output storage. It is
modelled like a working machine and therefore has a type and an ID. To accept a
workpiece, it sends its ID store on its type channel and then awaits a workpiece
on store. We already explained that a workpiece terminates when it arrives in
the output storage and communicates on channel wp. The storage then forgets
about the workpiece and is ready to receive the next one:

OUT (type, store) := type〈store〉.store(wp).wp.OUT⌊type, store⌋.

This finishes the walk through the case study model.

Refined Model with Malfunctions

Braatz and Ritter introduce the case study in two levels of abstraction [BR01].
The basic model discussed above defines the communication infrastructure. The
refined model accounts for failures in machine tools or transportation vehicles
and uses an additional process modelling a mechanic to cope with malfunctions.

We assume malfunctions in vehicles to occur only during the transportation of
workpieces. The process part that represents the transportation is split up into
three steps,

τ.source(wp).wp(type). type(dest). τ.dest〈wp〉,

158

6.2 Autonomous Transport

before each of which a vehicle may break down. Technically, a malfunction is a
non-deterministic choice, similar to the interrupt mechanism in CSP [Hoa85].

When a malfunction occurs, a vehicle calls on an emergency channel for another
vehicle to take over its transportation task. After the workpiece is handed over
to this rescue vehicle, the broken vehicle issues a request to the mechanic. When
it is repaired, the vehicle is ready to take over transportation jobs again.

The definition of a vehicle is generalised so that it can also act as a rescue
vehicle as follows. It accepts requests on the emergency channel, which contain
the status of the transportation task. More precisely, the broken vehicle sends
its point of failure, which gives information about the steps of the transporta-
tion that have been finished. The rescue vehicle takes over the workpiece (or the
transportation task) and performs the remaining part of the transportation. Res-
cue vehicles are assumed not to malfunction. After the transportation is finished,
a rescue vehicle behaves like a standard vehicle again.

A machine tool only malfunctions with a workpiece inside its processing unit.
Since a drill may get stuck or break within the workpiece, the machine tool is
not immediately able to hand over the workpiece to its output buffer. Instead, it
calls for the mechanic and waits until the problem is fixed. After being repaired,
the machine tool outputs the processed workpiece and calls for a transportation
vehicle as usual.

We now turn to the verification, first of temporal properties with the approach
in Chapter 5, and afterwards of topological properties with the technique in
Section 6.1.3.

6.2.2 Temporal Properties

Braatz and Ritter suggest a number of correctness criteria for the transportation
system. We settle two of them using our unfolding-based verification technique
(cf. Figure 5.1). We show that the system is free from deadlocks and that
workpieces are processed in a correct order, i.e., they are only washed after having
been drilled and cut. Both requirements are considered key in [BR01]. As the
first step we establish correctness of the basic model. When we tried to verify
the refined model, we discovered a subtle deadlock. A counterexample produced
by our tool chain helped us understand the problem and change the design to
eliminate the deadlock. To conclude the section, we consider a requirement not
mentioned by Braatz and Ritter. We show that in certain situations a broken
machine tool or transportation vehicle may never be repaired by the mechanic,
if there are enough operational vehicles to compensate for it. (Note that there
are no fairness requirements in the model.)

All results are supported by tables that give information about the sizes of the
models and the corresponding verification times. They are taken from [MKS08],
where the verification has been conducted by Tim Strazny. Unlike Chapter 5, the

159

Chapter 6 Case Studies

tables do not give runtimes for the alternative model checkers MWB, HAL, or
the unfolding-based approach in [KKN06]. The former two failed for the smallest
instance of the case study model, while the latter cannot handle recursive π-
Calculus definitions, which are necessary for our case study.

The benchmarks were run on a core of a 2.5 GHz Athlon 64 X2 with 4 GB
memory. The columns in Table 6.2 are organised as follows. Property states
the property we checked. We refer to these in the following subsections. A row
labelled with Xp Y m Zv in the Instance column stands for the instance of
the model with X workpieces, Y machine tools (in total), and Z transportation
vehicles.2 The meanings of the remaining columns are like in Table 5.2. Except
for a few rows, we give the data only for instances with maximal size we were
able to verify with our tools.

Deadlocks

Workpiece processes terminate when they arrive in the output storage. Hence,
with a fixed number of workpieces, every run of the system is finite. To distin-
guish deadlocks from proper system terminations, we consider final states of the
maximal system runs. If every workpiece is consumed, the system has terminated
properly, else the final state contains a derivative of some workpiece process and
so this state is a deadlock.

To check for deadlocks, we modified the definition of workpieces so that they
are transferred back from output to input storage. Hence, the properly termin-
ating runs become infinite, while the remaining maximal runs are still deadlocks.
Technically, instead of terminating upon a message from the output storage (on
their ID channel wp), workpieces call their recursive definition, so that they are
ready to be processed again by sending their IDs on channel new . Rows with
property dl in Table 6.2 show the sizes and verification times for different in-
stances of the model. All basic models are deadlock-free.

Removing Deadlocks from the Refined Model We verified different in-
stances of the refined model and found a subtle bug in case there are at least as
many workpieces as there are vehicles.3 The problem is in the communication
protocol used by a broken vehicle. It hands over its transportation job to a res-
cue vehicle before calling the mechanic. Consider the following scenario. Every
vehicle fetches a workpiece. Then, at some moment during transportation, all
vehicles malfunction. They call for rescue vehicles to take over their transporta-
tion tasks, but since every vehicle is broken, none of the calls can be answered.
As the mechanic is contacted by a vehicle only when its job has been handed
over, he is never called, and the system is in a deadlock.

2The π-Calculus code for various instances can be found at [SM08].
3Instances of the model with more vehicles than workpieces are deadlock-free.

160

6
.2

A
u
to

n
o
m

o
u
s

T
ra

n
sp

o
rt

FCP Struct Safe Struct Model Checking
Property Instance Size |P| |T| B Size |P| |T| unf |B| |E∗| sat

dl 1p 3m 6v basic 445 197 152 6 1133 312 347 <1 1942 1285 <1

dl 2p 3m 6v basic 455 277 243 6 1208 457 593 235 83898 56935 37

dl 3p 3m 3v basic 453 357 334 3 1223 455 536 22392 722603 481845 3491

dl 1p 6m 6v basic 550 356 275 6 2027 531 590 28 40138 27780 28

dl 2p 6m 3v basic 548 487 432 3 2042 595 656 27168 823960 560147 233

dl (♣) 1p 3m 1v refined 811 292 297 1 1475 292 297 <1 1427 1011 <1

dl 1p 3m 6v refined 861 797 1389 1 3200 797 1389 1289 199528 157316 1561

dl (♠) 2p 3m 2v refined 831 593 761 1 1895 593 761 1863 211066 159793 336

dl 2p 3m 3v refined 841 756 1101 1 2240 756 1101 24170 830328 647837 701

dl 1p 6m 4v refined 949 937 1371 1 3491 937 1371 28876 923236 721991 1182

flow 1p 3m 6v basic 848 245 185 6 1338 360 380 <1 2212 1452 <1

flow 2p 3m 1v basic 1130 379 334 1 1616 349 338 17989 625464 400094 139

flow 1p 6m 4v basic 945 417 324 4 2317 540 551 1416 182710 125557 327

flow 1p 3m 6v refined 1370 824 1401 1 3460 824 1401 1773 211908 167083 1063

wrong flow 1p 3m 1v basic 1120 240 204 1 1538 244 208 <1 974 635 <1

wrong flow 1p 3m 1v refined 1613 334 345 1 2031 338 349 <1 1606 1176 <1

malf reach 2p 3m 2v refined 831 593 761 1 1895 593 761 1863 211066 159793 <1

Table 6.2: Experimental results for the transportation system.

1
6
1

Chapter 6 Case Studies

To solve this problem, we let transportation vehicles non-deterministically de-
cide either to call for a rescue vehicle and then get repaired or to call for the
mechanic immediately, without handing over the transportation job. In the lat-
ter case, a repaired vehicle is assumed to finish its job without malfunction. The
rows for property dl in Table 6.2 give the data only for corrected versions of the
refined model—they are deadlock-free. Uncorrected versions with deadlocks are
not listed.

Correctness and Completeness of Workpiece Flows

We first prove that each workpiece specified above visits the machine tools in
one of the correct orders, either MT 1, MT 2, MT 3 or MT 2, MT 1, MT 3. We
then show that any other workpiece definition leads to forbidden sequences of
machine tools. Hence, the workpiece model is complete with respect to the
allowed paths. Both, correctness and completeness are established with deadlock
detection methods by adapting our system model.

To establish correctness, we change the model in two respects. We first let
a workpiece loop back from output to input storage (cf. checking for deadlocks
above), so that the system does not terminate. Then, we restrict the behaviour
of machine tools and output storage. They check whether a workpiece has visited
the tools in the correct order, and deadlock if this is not the case. Hence, the
system is deadlock-free iff the workpiece followed a correct path through the
system.

A sequence of machine tools is incorrect if (1) a tool is visited more than once;
(2) the workpiece is washed although it has not been drilled or cut, or (3) the
workpiece has not visited any of the machines. The control mechanisms work as
follows.

To ensure that a machine type mt ∈ {mt1,mt2,mt3} is visited at most once
by a workpiece wp, messages mt fresh wp are generated when the workpiece
arrives in the input storage, i.e., after it has sent its ID on channel new . The
message states that the workpiece has not yet been processed by a machine of
the corresponding type. The WORK process of machine tools is now modified
to consume such a message before it starts working. Since we verify instances
of the system with a single workpiece, the system deadlocks iff the workpiece is
sent twice to a machine of the same type.

To ensure workpiece wp visits machine tools of type one and two before type
three, we let each machine of type mt ∈ {mt1,mt2,mt3} spawn a message
mt done wp. It states that workpiece wp has been processed by a tool of the
given type. The WORK process of machine tools of type three is now modified
to consume messages mt1 done wp and mt2 done wp when it receives workpiece
wp. The process gets stuck, if the workpiece has not visited machine tools of type
one and two. The control mechanism for the output storage is similar. Hence,
machine tools of type three have to recreate the messages they consumed.

162

6.2 Autonomous Transport

It is not obvious that spawning messages mt fresh wp (similar for mt done wp)
can be modelled in the restricted syntax of finite control processes. The idea is
to compose processes FRESHmt,wp in parallel with the main process, one process
for each type of machine tools and every workpiece. When a workpiece arrives
in the input storage, it sends a message mt forkfresh wp to the FRESHmt,wp

process, which in response provides the mt fresh wp message.

The results for checking the modified system for deadlocks are given in the rows
flow in Table 6.2. The system is deadlock-free and this, together with the above
argumentation, proves that workpieces visit machine tools in a correct order.

To establish completeness, we alter the model in a different way. Workpieces
terminate when they arrive in the output storage. Unlike workpieces in the
original model, they non-deterministically choose a path through the system, i.e.,
a non-deterministic choice is used each time a workpiece is asked to announce its
next destination. The process is designed so that the two valid paths above are
excluded.

If one of the machine tools finds constraints (1), (2), or (3) on the correct order
violated, it starts an infinite loop. Consequently, the system has a deadlock if
and only if there is a path through the system, which is different from those in
the original model. We verified the absence of deadlocks, which shows that any
other path leads to a forbidden sequence of machine tools. The verification times
are given in the wrong flow rows in Table 6.2.

Broken Vehicles Get Repaired

We now demonstrate that the fairness property that a broken transportation
vehicle is eventually repaired is violated as long as there are enough vehicles
to compensate for it. Note that in Table 6.2 neither the instance with one
workpiece, three machine tools and one vehicle in row dl (♣) nor the instance
with two workpieces, three machine tools, and two vehicles in row dl (♠) has
deadlocks.

System (♠) is the parallel composition of system (♣), another workpiece pro-
cess, and another vehicle process. Hence all runs that are possible in system (♣)
are also possible in system (♠). We now verified that a state is reachable where
the second transportation vehicle malfunctions and system (♣) is in its initial
state. In row malf reach of Table 6.2 we give the sizes of the net, its prefix,
and the running times. Since the malfunction of the second vehicle is reachable
and system (♣) is deadlock-free, the second vehicle does not have to be repaired.
There exists a run where the second vehicle fetches a workpiece, malfunctions,
and issues a request for a rescue vehicle which is never answered. Since system
(♣) is deadlock-free the remaining vehicle can always perform a step without
communicating with the broken vehicle.

163

Chapter 6 Case Studies

6.2.3 Topological Properties

We investigate the connections between workpieces, machine tools, and trans-
portation vehicles. In contrast to Section 6.1.3, the definition of direct connections
is refined towards restricted channels, i.e., Q, Q′ ∈ S(P) are directly connected
in P fn(Q) ∩ fn(Q′) ∩ fn(P) 6= ∅. We discuss the verification of the following
property.

Result 6.2.1
In every reachable state of the transportation system, a workpiece is directly
connected either with a storage, a machine tool, or a transport vehicle, but never
with two of them.

Since Braatz and Ritter abstract from the implementation of the communic-
ation infrastructure, these properties are not considered in [BR01]. However,
their violation points to serious bugs in the implementation of the transport sys-
tem. For example, if a workpiece is shared by a transport vehicle and a machine
tool, one of them has a dangling reference to the workpiece and the memory
management should be reconsidered.

Note that any process that is directly connected to a workpiece belongs to
the same fragment as the workpiece, since direct connections rely on restricted
channels. Since the places in the structural semantics represent all reachable
fragments, it is sufficient to inspect all places for more than one direct connection
to a workpiece. We consider an instance of the system where only the channel
wp of a single workpiece is restricted. The characteristics of our model are listed
in the following table, where |PT| (and |TP|) denotes the number of arcs from
places to transitions (and vice versa) and Compile is the compile time in seconds:

Property Instance Size |P| |T| |PT| |TP| Compile

con 1p 6m 6v refined 979 2084 3744 6233 6268 21,3

Due to the size of the model (2084 places), tool support is required to inspect
the places. The idea is to load the file of the Petri net (in the ll_net format
that is plain text) into a text editor and use regular expressions to find all places
with at least three sequential processes. We used the following query

new [ˆ(”] \(([ˆ|”]∗\|){2}.

It first searches for a restriction operator, new, followed by the restricted name,
[ˆ(”]. Then it reads the opening bracket of the fragment, \(. The expression
([ˆ|”]∗\|) denotes a group of a sequential process [ˆ|”]∗ followed by a parallel
composition operator \|. Finding this group twice, {2}, means the fragment
contains at least three sequential processes as it does not end with a parallel
composition.

164

6.3 Discussion of the Verification Approach

Since the query had no match, there is no situation in which a workpiece is
directly connected with more than one tool, vehicle, or storage. As a sanity
check, we changed the definition of vehicles to store the restricted wp channel
and immediately found hits for the query above. In the following section we
discuss our verification techniques.

6.3 Discussion of the Verification Approach

In Section 6.1.2, we pruned the net N [[ENV ⌊cfa⌋ | MRG⌊cfa⌋]] by hand to
exclude an unbounded generation of free agents by ENV ⌊cfa⌋. Since our Petri net
semantics is non-compositional, excluding the process ENV ⌊cfa⌋ and computing
the Petri net N [[MRG⌊cfa⌋]] does not yield the subnet in Figure 6.2. Nevertheless,
automating our pruning method should be possible for Petri nets N [[P]], where
P uses an environment process like ENV ⌊cfa⌋ to create new processes.

Our verification algorithms exploit the fact that the places in the Petri net
N [[P]] are the reachable fragments of P . Most notably, we verified topological
invariants with the help of a regular expression finder in a text editor. This
ease of verification comes at the expense of a complicated computation of the
semantics that determines precisely the reachable fragments. More syntactical
Petri net translations like [Eng96, BG95, DKK06a] can be computed more ef-
ficiently (cf. Section 3.6 for a discussion of these semantics). But they ask for
more expensive analyses. A topological verification problem like the correct con-
nection of a workpiece requires to solve a complicated coverability problem in
these translations. In general, such a coverability problem needs to be solved in
every analysis while our semantics requires a complicated computation once and
then eases the verification. Moreover, we already discussed that our translation
still yields finite place/transition Petri nets where related approaches yield either
infinite nets or Turing complete models.

In Section 3.5, we mentioned that we may not be able to determine the precise
set of reachable fragments in the Petri net N [[P]] due to memory limitations.
In this case, we compute an over-approximating Petri net NNoCov [[P]], which
subsumes N [[P]]. Our verification techniques that rely on the knowledge of the
reachable fragments are still applicable to NNoCov [[P]] as follows. If we check for
example the correct connection between a follower and a leader, we inspect all
places in NNoCov [[P]]. If the processes are properly connected in NNoCov [[P]] we
can conclude that they are properly connected in N [[P]]. If we find a place [F]
in NNoCov [[P]] where follower and leader are not properly connected, we have to
check whether [F] is markable in NNoCov [[P]]. It is markable in NNoCov [[P]] if
and only if it is contained in N [[P]]. Thus, if it is markable there is an incorrect
connection in N [[P]] and the property does not hold for the process P . If it is
not markable, the place is not contained in N [[P]]. We remove it from NNoCov [[P]]

165

Chapter 6 Case Studies

and repeat the analysis. This approach is a variant of counterexample-guided
refinement of an imprecise system representation as proposed in [CGJ+00].

The temporal property verified in Section 6.1.4 was stated informally. In
[Dam96, CC03, FGMP03] temporal logics are proposed to formalise the correct
behaviour of π-Calculus processes. These logics are able to specify the way names
flow through a system. To establish such properties on the structural semantics,
we need to keep track of the identity of names. Following [MP95a, Pis99, MP01],
transitions could be equipped with labels relating the names in pre- and postset.
It deserves further investigation whether decidability results can be obtained for
model checking linear-time variants of these logics.

In Chapter 5 and Section 6.2.2, we demonstrated that our Petri net semantics
works well with efficient standard verification techniques for Petri nets. The
performance of Petri net verification tools highly depends on the size of the nets.
Our translation yields small nets when the number of processes inside fragments
is small or the processes inside fragments tightly interact. We found out that
the size of our translation is particularly sensitive to independent reactions inside
a fragment. As an example, consider the fragment νa.(τ.a〈a1〉 | . . . | τ.a〈an〉),
which yields 2n places in our translation. Partial-order and Petri net reduction
techniques [CGP99, ES01] are helpful to limit the size of the Petri net, some of
which are already implemented in Petruchio.

6.4 Related Work

In the AVACS project, three related verification techniques for the car platoon
system have been developed [Bau06, Wes08, Tob08]. Unlike our technique, which
is a decision procedure, the related approaches are abstraction-based, i.e., they
construct a finite abstraction of the infinite state space of a DRS and verify prop-
erties on this abstraction. The benefit is that these techniques can handle arbit-
rary models, also Turing complete classes, while ours is restricted to structurally
stationary systems. The drawback is that they are semi-decision procedures, i.e.,
not guaranteed to verify a property.

In [Bau06], graph transformation models of the car platoon system are pro-
posed to demonstrate the expressiveness of the newly developed partner graph
grammars and to evaluate the usefulness of the novel partner abstraction. Partner
abstraction is used within the abstract-interpretation framework, i.e., the reach-
able system states (which are graphs) of the car platoon system are abstracted
to finitely many instances, which constitute an invariant for all reachable connec-
tion structures. Bauer’s work is closely related to our verification of topological
properties, where the places form all (concrete) reachable fragments. Different
from his technique, we also reflect the behaviour of the car platoon system in the
net and can thus handle occurrence number and temporal properties.

166

6.4 Related Work

Westphal models the car platoon system in the language of dynamic commu-
nicating systems [Wes08], the semantics of which are transition systems with
graph-labelled states. He proposes a logic to specify temporal properties that
refer to the identities of processes in the system. To prove a property, Westphal
computes a finite abstraction of the transition system with the so-called spotlight
abstraction technique. He succeeds in proving temporal liveness properties and
topological invariants, but cannot handle occurrence number properties. As was
explained in the previous section, the structural semantics needs to be exten-
ded with assignments on transitions to handle temporal properties that refer to
identities.

The approach of Westphal has been extended in [Tob08] to an abstraction-
refinement cycle [CGJ+00]. With a coarse abstraction of the transition system,
Toben tries to verify temporal properties that again talk about system entities.
If a counterexample is produced that is not feasible in the concrete system, the
abstraction is refined and the verification is repeated.

Several models of the production system by Braatz and Ritter [BR01] exist in
the literature. We now discuss the related work on verification of this case study.

In [Weh00], the manufacturing system is modelled in the formal language CSP-
OZ, which combines CSP for the description of behavioural and Object-Z for data
aspects of the case study. With the model checker FDR, deadlock freedom and
correctness of the workpiece flow were established. Unlike our model, positions
of vehicles are modelled and a transportation job is given to the closest vehicle,
while malfunctions and mechanic are omitted. We also remark that workpieces
are modelled there as data rather than processes in the system. Compared to
our approach, only small instances of the case study with two vehicles and three
machine tools are verified.

In [MORW04], the case study illustrates the integration of the formal language
CSP-OZ into a software development process. These authors create a UML
model of the case study and translate it automatically into a CSP-OZ model.
Then JAVA interfaces with assertions are generated from the formal model. A
runtime checker monitors the execution of any program implementing the inter-
faces. If the checker detects an assertion violation, it terminates the execution
of the program with an exception.

A model of the basic manufacturing system without malfunctions is considered
in [FMPR01]. With focus on the timing behaviour, Flake et. al. use the language
MFERT and then translate their model into the input format of the RAVEN
model checker. Due to the limitations of the toolkit, the movement of work-
pieces is imitated by signals, in contrast with our model that creates channels
dynamically. Correctness properties are specified in Clocked CTL, e.g. these au-
thors show that a machine tool is not idle for more than 400 time units. They
also analyse the timing behaviour, e.g. they evaluate the time a workpiece waits
in the input storage for being picked up.

Also [RWKR04] uses the RAVEN model checker to establish time-dependent

167

Chapter 6 Case Studies

properties. Their focus is on the positioning and movement of vehicles, therefore
they explicitly include a primitive path finding algorithm in their model. They
show that all workpieces eventually arrive at the output storage and that vehicles
never collide. Different from our model, failures of machines are not considered.

168

Part III

Beyond Structural Stationarity

169

7 Depth and Breadth

Contents
7.1 From Processes to Hypergraphs 173

7.1.1 Hypergraphs . 173

7.1.2 Graph Interpretation of Processes 175

7.2 A Second Characterisation of Structural Stationarity180

7.3 Anchored Fragments 186

7.4 Characterisation of Boundedness in Depth 192

7.5 Characterisation of Breadth 194

7.6 Applications . 198

7.7 Related Work and Conclusion 200

In Chapter 4, we proved that the structural semantics N [[P]] is finite exactly
if process P is structurally stationary, i.e., it reaches only finitely many different
fragments, Lemma 4.1.2. A main result was the complete characterisation of
structural stationarity in Theorem 4.3.2: a process is structurally stationary
if and only if the number of sequential processes in every reachable fragment is
bounded. We applied the theorem to establish structural stationarity for a variety
of well-known process classes. What is yet missing is an intuitive understanding
of the processes that fail to be structurally stationary.

The main result in this chapter is the definition of two functions on π-Calculus
processes called depth and breadth so that the following complete characterisation
holds. A process is structurally stationary if and only if it is bounded in depth
and bounded in breadth. The function depth measures the interdependence of
restricted names in a process term, while the function breadth measures the dis-
tribution of restricted names. Hence, this second characterisation of structural
stationarity refers to the restriction operator, in contrast to Theorem 4.3.2 rely-
ing on the parallel composition operator—a difference that is interesting from a

171

Chapter 7 Depth and Breadth

theoretical point of view. From a practical point of view, the contraposition of
this equivalence answers the question raised above. A process fails to be struc-
turally stationary if it is not bounded in breadth or not bounded in depth. So,
infinity of the structural semantics has two different sources.

Unfortunately, the definitions of depth and breadth are difficult to under-
stand as the functions refer to all processes in a congruence class. Therefore,
we present intuitive characterisations that make use of the interpretation of pro-
cesses as hypergraphs [MPW92, Mil99, SW01], which we introduced informally
in Section 3.1. We establish two results. (1) A process is bounded in depth if
and only if the length of the simple paths (i.e., without repetition of hyperedges)
in the hypergraphs is bounded. (2) The breadth of a process equals the degree
of the corresponding hypergraph. We demonstrate the application of our results
by judging well-known modelling constructs in process algebras for boundedness
in depth or breadth.

To sum up, this chapter provides an intuitive understanding of the processes
that are (not) mapped to finite Petri nets using our structural semantics. The
contributions are as follows:

• We define the novel characteristic functions depth and breadth on π-Calculus
processes. We prove that boundedness in depth and breadth completely
characterises structural stationarity.

• We show that boundedness in depth is equivalent to boundedness in the
simple paths. The main technical contribution in the proof is a restrictive
normal form for processes. Every process can be rewritten as a so-called
anchored fragment using structural congruence.

• We establish equality between the breadth of a process and the degree of its
graph. In the proof, we construct the process in the congruence class where
the number of fragments under a restriction is maximal. By definition, the
process exists. We give a construction for it.

• We apply the results to judge whether standard constructs in process al-
gebras are bounded in depth or breadth.

The chapter is organised as follows. In Section 7.1, we recall the basic definitions
of hypergraphs and formally define the interpretation of π-Calculus processes.
The definitions of depth and breadth as well as the characterisation of structural
stationarity are provided in Section 7.2. The theory of anchored fragments is
introduced in Section 7.3. It is applied in Section 7.4, where we present the
intuitive characterisation of boundedness in depth over the simple paths. Sec-
tion 7.5 is devoted to the equality between breadth and hypergraph degree. In
Section 7.6, we apply our results to judge well-known modelling constructs for
boundedness before Section 7.7 discusses related work and concludes the chapter.

172

7.1 From Processes to Hypergraphs

Throughout the chapter, we use the elementary fragments F e introduced in
Convention 3.2.3 as shortcut for sequential processes M 6=0 and K⌊ã⌋. Since both
processes are treated in the same way by the functions in this chapter, the use
of F e safes some case distinctions in definitions and proofs.

7.1 From Processes to Hypergraphs

We introduce the basic definitions of hypergraphs and then formally define the
interpretation of π-Calculus processes.

7.1.1 Hypergraphs

Hypergraphs extend graphs by the ability to connect an arbitrary number of
vertices with one hyperedge. We only introduce the basic definitions, deeper
results on hypergraphs and hypergraph models of reconfigurable systems can be
found in, e.g. [Hab92].

Definition 7.1.1 (Hypergraph)
Let L be a set of vertex labels. A (vertex-labelled) hypergraph is a tuple G =
(V, E, l, inc), where

V is a finite set of vertices,

E is a finite set of hyperedges,

l : V → L is a vertex labelling function that assigns a label l(v) ∈ L to every
vertex v ∈ V , and

inc : E → P(V) is an incidence function. It gives the set of vertices inc(e) ⊆ V
that are connected with e ∈ E.

The set of all hypergraphs is H. In our setting, vertices are labelled by processes
and edges are names, i.e., we have L = P and E ⊆ N . We sometimes refer to
hypergraphs as graphs and to hyperedges as edges. If the naming is unambiguous,
we refer to a vertex by its label. ¨

As introduced in Section 3.1, a vertex v ∈ V is drawn by a dot labelled by
l(v), an edge e ∈ E is drawn by a box labelled by e. There is an arc between the
vertex v and the edge e, if v ∈ inc(e).

We say that two hypergraphs G1 = (V1, E1, l1, inc1) and G2 = (V2, E2, l2, inc2)
are equal , denoted by G1 = G2, if E1 = E2 and there is a bijection between the
sets of vertices that is compatible with the labelling and the incidence functions.

173

Chapter 7 Depth and Breadth

More precisely, there is a bijection f : V1 → V2 so that l1(v) = l2(f(v)) and
f(inc1(e)) = inc2(e) for all v ∈ V1 and e ∈ E1 = E2. With this definition, the
identity of vertices is not important and we can always assume V1 ∩ V2 = ∅. As
indicated in the introduction, the paths in a hypergraph will play a particular
role in this chapter.

Definition 7.1.2 (Paths)
A path in G = (V, E, l, inc) is a finite sequence p = (v1, e1, . . . , vn, en, vn+1) of
vertices and edges so that ei connects vi and vi+1, i.e., vi, vi+1 ∈ inc(ei) for all i.
The length of p, length(p), is the number of edges in p, e.g., length(p) = n above.
By fe(p) we refer to v1, the first element in p. A path is simple, if it does not
repeat edges, i.e., ei 6= ej for all i 6= j. By lsp(G) we denote the length of the
longest simple path in G. The set of all paths in G is Paths(G). ¨

While we need paths to characterise boundedness in depth, the breadth of a
process is related to the degree of the graph. It is the maximal number of vertices
connected with a hyperedge.

Definition 7.1.3 (Degree)
In the hypergraph G = (V, E, l, inc), the degree of a hyperedge e ∈ E is the
number of vertices e is connected with, i.e., deg(e) := |inc(e)|. The degree of G
is the maximal degree of the hyperedges, deg(G) := max{deg(e) p e ∈ E}. ¨

To define the interpretation of processes as graphs compositionally, we require
two operations on graphs. The disjoint union of two hypergraphs G1 and G2,
where E1 ∩E2 = ∅, puts both graphs side by side as illustrated in Figure 7.1 (a).

.

.

•
a(x) ⊎ •

K⌊a⌋
= •

a(x)
•

K⌊a⌋
(a)

•
a(x)

•
K⌊a⌋ ⊗ a = •

a(x)
•

K⌊a⌋
(b) a

Figure 7.1:
Illustration of the graph operations G1 ⊎ G2 in (a) and G ⊗ a in (b).

Definition 7.1.4 (Disjoint union)
Let G1,G2 ∈ H with Gi = (Vi, Ei, li, inci) and E1 ∩ E2 = ∅. The disjoint union
of G1 and G2 is the graph G1 ⊎ G2 := (V1 ⊎ V2, E1 ⊎ E2, l1 ⊎ l2, inc1 ⊎ inc2). ¨

174

7.1 From Processes to Hypergraphs

To lift the restriction operator to graphs, we define the connect operator. It
takes a graph G and a name a which is not in the set of edges, a /∈ E. An
application of connect yields the graph G ⊗ a, where edge a is added to E. It
connects the processes that have a as a free name. Figure 7.1 (b) illustrates the
operator.

Definition 7.1.5 (Connect)
Let G = (V, E, l, inc) and a ∈ N with a /∈ E. The graph G connect a is G ⊗ a :=
(V, E ⊎ {a}, l, inc ⊎ {(a, Va)}), where Va ⊆ V with v ∈ Va iff a ∈ fn(l(v)). ¨

Disjoint union of graphs is commutative and associative. Also for the connect
operator a form of commutativity holds. Both laws will be helpful in the proof
of Lemma 7.1.10 in the following section.

Lemma 7.1.6
The following equalities hold:

G1 ⊎ G2 = G2 ⊎ G1 G1 ⊎ (G2 ⊎ G3) = (G1 ⊎ G2) ⊎ G3

(G ⊗ a) ⊗ b = (G ⊗ b) ⊗ a.

7.1.2 Graph Interpretation of Processes

Every π-Calculus process can be understood as a hypergraph by (1) creating a
vertex for every sequential process, (2) taking the active restrictions as set of
hyperedges, and (3) inserting an arc where a name is free in a process. The
following function makes this idea precise. Note that active restrictions νa.P
that are not free in P do not yield hyperedges. This ensures the structurally
congruent processes νa.P and P have the same graph interpretation.

Definition 7.1.7 (G : P → H)
The graph-theoretic interpretation G : P → H maps a given π-Calculus process
P to a hypergraph G[[P]] as follows:

G[[M=0]] := (∅, ∅, ∅, ∅) G[[F e]] := ({v}, ∅, {(v, F e)}, ∅)

G[[P | Q]] := G[[P]] ⊎ G[[Q]] G[[νa.P]] :=

(

G[[P]] ⊗ a, if a ∈ fn(P)

G[[P]], if a /∈ fn(P).

¨

We briefly comment on the well-definedness of G[[−]]. By an induction on the
structure of processes, we observe that a /∈ arn(P) implies a /∈ EP , the edge set

175

Chapter 7 Depth and Breadth

of G[[P]]. Since the name a is bound at most once in νa.P , it is not bound in P .
Thus, a /∈ EP and G[[P]] ⊗ a is well-defined. Similarly, we derive that the edge
sets in G[[P]] and G[[Q]] are disjoint as required by G[[P]] ⊎ G[[Q]].

Structurally congruent processes P ≡ Q are not mapped to the same hy-
pergraph, i.e., G[[P]] 6= G[[Q]]. Vertex labels may be replaced by structurally
congruent processes or hyperedges together with the attached processes may be
renamed. Figure 7.2 illustrates the relationship.

.

.

G[[P1]] = •
a(x)

•
K⌊a⌋

a G[[P2]] = •
a(y)

•
K⌊a⌋

a

G[[P3]] = •
b(x)

•
K⌊b⌋

b

Figure 7.2:
Consider the processes P1 = νa.(a(x) | K⌊a⌋), P2 = νa.(a(y) | K⌊a⌋), and
P3 = νb.(b(x) | K⌊b⌋). The processes are structurally congruent, P1 ≡ P2 ≡
P3, but the graph interpretations are not equal. They are related by the graph
equivalence in Definition 7.1.8.

Similar to standard and restricted equivalence on processes, we define a suit-
able equivalence relation on graphs of processes. It allows for precisely the two
mentioned modifications. We then show that the function G[[−]] is invariant under
structural congruence up to this graph equivalence.

Definition 7.1.8 (Graph equivalence)
Let G[[P]] ⊆ H be the codomain of G[[−]]. We define ≡G ⊆ G[[P]] × G[[P]] as the
smallest equivalence relation on G[[P]] satisfying the following two axioms, where
all processes are assumed to be in standard form:

G[[νa.P sf]] ≡G G[[νb.(P sf {b/a})]]

with {b} ∩ (fn(P sf) ∪ bn(P sf)) = ∅ and

G[[νã.(M 6=0 | P 6=ν)]] ≡G G[[νã.(N 6=0 | P 6=ν)]],

where M 6=0 ≡ N 6=0. ¨

Proposition 7.1.9 states the indicated invariance of G[[−]]. That also graph equi-
valence implies structural congruence means we found another complete charac-
terisation of structural congruence, which relies on only two axioms.

176

7.1 From Processes to Hypergraphs

Proposition 7.1.9 (Characterisation of ≡ with ≡G)
For all processes P, Q ∈ P we have P ≡ Q if and only if G[[P]] ≡G G[[Q]].

The definition of graph equivalence resembles the definition of standard equi-
valence, Definition 2.1.30.1 The proof of Proposition 7.1.9 benefits from this
similarity. Instead of proving the proposition directly, we first show that graph
equivalence characterises standard equivalence.

Lemma 7.1.10 (Characterisation of ≡sf by ≡G)
For all P sf , Qsf ∈ Psf we have P sf ≡sf Qsf if and only if G[[P sf]] ≡G G[[Qsf]].

The proposition then follows with the observation that process P and its stand-
ard form sf (P) have the same graph.

Lemma 7.1.11 (Invariance of G[[−]] under sf)
For all P ∈ P the equality G[[P]] = G[[sf (P)]] holds.

Before we prove the auxiliary lemmas, we establish Proposition 7.1.9.

Proof (of Proposition 7.1.9)
Consider P, Q ∈ P. We observe that Lemma 7.1.11, combined with reflexivity
and transitivity of ≡G , justifies the first of the following equivalences:

G[[P]] ≡G G[[Q]]

(Comment above) ⇔ G[[sf (P)]] ≡G G[[sf (Q)]]

(Lemma 7.1.10) ⇔ sf (P) ≡sf sf (Q)

(Proposition 2.1.31) ⇔ P ≡ Q.

This proves the characterisation of P ≡ Q via G[[P]] ≡G G[[Q]]. ¥

Proof (of Lemma 7.1.10)
⇒ We do an induction on the derivations of ≡sf . The base cases are the
axioms. For α-conversion of restricted names and for replacing non-empty choices
by structurally congruent ones, graph equivalence holds by definition. Consider
commutativity of parallel composition:

G[[νã.(P 6=ν
1 | P 6=ν

2)]]

(Definition of G[[−]]) = (G[[P 6=ν
1]] ⊎ G[[P 6=ν

2]]) ⊗ ã

(Commutativity of ⊎, Lemma 7.1.6) = (G[[P 6=ν
2]] ⊎ G[[P 6=ν

1]]) ⊗ ã

1Note that it does not require associativity and commutativity of parallel composition and
commutativity of restriction.

177

Chapter 7 Depth and Breadth

(Definition of G[[−]]) = G[[νã.(P 6=ν
2 | P 6=ν

1)]].

The proofs for associativity of parallel composition and commutativity of restric-
tion are similar and use the remaining two equalities in Lemma 7.1.6.

In the induction step, we assume that P sf ≡sf Qsf implies G[[P sf]] ≡G G[[Qsf]]
and similar for Qsf ≡sf Rsf . We have to consider Qsf ≡sf P sf and P sf ≡sf Rsf .
The graph equivalences G[[Qsf]] ≡G G[[P sf]] and G[[P sf]] ≡G G[[Rsf]] immediately
follow with the hypothesis and the fact that ≡G is an equivalence relation.

⇐ We conduct an induction on the derivations of ≡G . For the two axioms of
graph equivalence in Definition 7.1.8, there is nothing to prove as the processes
are standard equivalent by definition. Since ≡G is an equivalence relation, we have
to consider the graphs that are equivalent by reflexivity, i.e., G[[P sf]] ≡G G[[Qsf]]
where G[[P sf]] = G[[Qsf]]. Let P sf = νã.P 6=ν with P 6=ν = Πi∈IPi and let
Qsf = νb̃.Q 6=ν with Q 6=ν = Πj∈JQj . We compute the graph interpretations:

G[[P sf]] = ({vi p i ∈ I}, ã, l, inc) with l(vi) = Pi

G[[Qsf]] = ({wj p j ∈ J}, b̃, l′, inc′) with l′(wj) = Qj .

The incidence functions are not important. Since the graphs are equal, we have
ã = b̃. With commutativity of restriction in ≡sf , we reorder the names b̃ and get
νb̃.Q 6=ν ≡sf νã.Q 6=ν . Equality of the graphs also gives a bijection between the
sets of vertices f : {vi p i ∈ I} → {wj p j ∈ J}, which is compatible with the
labelling function. With f(vi) = wj this means

Pi = l(vi) = l′(f(vi)) = l′(wj) = Qj .

Via associativity and commutativity of parallel composition in ≡sf , we reorder
the processes Qj so that νã.(Πj∈JQj) ≡sf νã.(Πi∈IPi). Combining the argu-
ments yields νb̃.Q 6=ν ≡sf νã.Q 6=ν ≡sf νã.P 6=ν and we conclude P sf ≡sf Qsf . The
induction step is again trivial as ≡sf is an equivalence relation. ¥

Proof (of Lemma 7.1.11)
We do an induction on the structure of processes. The base cases of empty
choices and elementary fragments are trivial. We turn to the induction step.

Assume G[[P]] = G[[sf (P)]] holds for process P . Consider νa.P with a ∈ fn(P):

G[[νa.P]]

(Definition of G[[−]]) = G[[P]] ⊗ a

(Hypothesis) = G[[sf (P)]] ⊗ a

(Definition of G[[−]]) = G[[νa.sf (P)]]

(Definition of sf) = G[[sf (νa.P)]].

The proofs for νa.P with a /∈ fn(P) and for P | Q are similar. ¥

178

7.1 From Processes to Hypergraphs

It is important to note that graph equivalence preserves the length of the
longest simple path and the graph degree. Combined with the fact that structur-
ally congruent processes yield equivalent graphs, we conclude that the degree and
the length of the longest simple paths are invariant under structural congruence
of processes.

Lemma 7.1.12 (Invariance of lsp and deg under ≡G)
For all P, Q ∈ P with G[[P]] ≡G G[[Q]] we have deg(G[[P]]) = deg(G[[Q]]) and
lsp(G[[P]]) = lsp(G[[Q]]).

Proof
We use induction on the derivations of graph equivalence. For graphs that
are equivalent by reflexivity, i.e., G[[P]] ≡G G[[Q]] where G[[P]] = G[[Q]], the
degree and the length of the simple paths are preserved by the compatibil-
ity of the incidence functions. Consider G[[νa.P sf]] ≡G G[[νb.(P sf {b/a})]] where
{b} ∩ (fn(P sf) ∪ bn(P sf)) = ∅. Let P sf = νx̃.P 6=ν with P 6=ν = Πi∈IPi. We
compute the graph representations:

G[[νa.P sf]] = ({vi p i ∈ I}, x̃ ∪ {a}, l, inc),

where l(vi) = Pi and vi ∈ inc(m) iff m ∈ fn(Pi). Similarly,

G[[νb.(P sf {b/a}]] = ({vi p i ∈ I}, x̃ ∪ {b}, l′, inc′),

where l′(vi) = Pi{b/a} and vi ∈ inc′(m) iff m ∈ fn(Pi{b/a}). First, we show
equality of the graph degrees. We observe, that inc and inc′ coincide on x ∈ x̃:

vi ∈ inc(x)

(Definition of inc) ⇔ x ∈ fn(Pi)

(a 6= x 6= b) ⇔ x ∈ fn(Pi{b/a})

(Definition of inc′) ⇔ vi ∈ inc′(x).

Hence, |inc(x)| = |inc′(x)| holds. Also a and b are incident with the same
vertices, inc(a) = inc′(b), and thus |inc(a)| = |inc′(b)|. The degrees of the
graphs coincide.

To see that lsp is preserved by graph equivalence, let the longest simple path in
G[[νa.P sf]] be p = (v1, e1, . . . , vn, en, vn+1). If ei ∈ x̃, we have inc(ei) = inc′(ei)
as argued above. Since the definition of paths requires vi, vi+1 ∈ inc(ei), we
conclude vi, vi+1 ∈ inc′(ei). If ei = a, we have inc(a) = inc′(b). Thus,
vi, vi+1 ∈ inc(a) implies vi, vi+1 ∈ inc′(b). Together, we conclude that the path
p′ obtained from p by replacing a by b is a path in G[[νb.(P sf {b/a})]]. Since
length(p′) = n, we conclude that lsp(G[[νb.(P sf {b/a})]]) ≥ lsp(G[[νa.P sf]]). Simil-
arly, if we start with the longest simple path in G[[νb.(P sf {b/a})]], we can show
that lsp(G[[νb.(P sf {b/a})]]) ≤ lsp(G[[νa.P sf]]). Equality holds.

179

Chapter 7 Depth and Breadth

For replacing non-empty choices, G[[νã.(M 6=0 | P 6=ν)]] ≡G G[[νã.(N 6=0 | P 6=ν)]]
with M 6=0 ≡ N 6=0, we again show equality of the incidence functions. This
follows from fn(M 6=0) = fn(N 6=0) due to Lemma 2.1.19. The rest of the proof is
analogue. The induction step is trivial as equality (of degree and length) is an
equivalence. ¥

Combining Lemma 7.1.12 with the fact that structurally congruent processes
yield equivalent graphs, we conclude that the degree and the length of the longest
simple path are invariant under structural congruence of processes. We shall
apply this insight several times in the remainder of the chapter.

Corollary 7.1.13 (Invariance of lsp and deg under ≡)
Consider processes P, Q ∈ P with P ≡ Q. Then lsp(G[[P]]) = lsp(G[[Q]]) and
deg(G[[P]]) = deg(G[[Q]]).

Proof
With Proposition 7.1.9, P ≡ Q implies G[[P]] ≡G G[[Q]]. With Lemma 7.1.12, the
corollary holds. ¥

We continue with the characterisation of structural stationarity over the func-
tions depth and breadth. In Section 7.4, we return to the graph interpretation
of processes to give intuitive explanations for both functions.

7.2 A Second Characterisation of Structural Stationarity

The characterisation of structural stationarity we elaborate in this section refers
to the restriction operator. We observe that a bounded number of restricted
names does not imply structural stationarity. In fact, a process with only one
restricted name may not be structurally stationary. Consider νa.K⌊a⌋ with
K(x) := x〈x〉 | K⌊x⌋. It generates processes sending on the restricted chan-
nel a. The reaction sequence

νa.K⌊a⌋ → νa.(a〈a〉 | K⌊a⌋) → νa.(a〈a〉 | a〈a〉 | K⌊a⌋) → . . .

forms infinitely many fragments that are pairwise not structurally congruent.
Referring to νa.K⌊a⌋ as fragment F1, to νa.(a〈a〉 | K⌊a⌋) as F2 etc. we obtain
the infinite structural semantics N [[F1]] depicted in Figure 7.3.

In the graph interpretation, depicted in Figure 7.4, there is no bound on the
number of vertices connected with the hyperedge of the restricted name a, i.e.,
the degree of this edge is not bounded. Thus, the degree of the graphs, which is
the maximum of the node degrees, is not bounded.

180

7.2 A Second Characterisation of Structural Stationarity

.

.
[F1]

•

[F2] [F3]

. . .

Figure 7.3: Infinite structural semantics in unbounded breadth and depth.

At process level, the degree of a hyperedge labelled by a is the number of
sequential processes that share the restricted name. In the restricted form, the
hyperedge degree is reflected by the maximal number of fragments under a restric-
tion, denoted by ||F || | . For example, the execution above yields ||νa.K⌊a⌋|| | = 1
and ||νa.(a〈a〉 | K⌊a⌋)|| | = 2. To represent the degree of the graphs, i.e., the
maximum of the node degrees, as a function on fragments we search for the widest
representation FB of a fragment F . Widest means that the number of fragments
under a restriction in FB is maximal in the congruence class. The breadth of F
is then defined by the number of fragments under a restriction in FB. In Sec-
tion 7.5 we show that this definition of breadth fits to the graph interpretation.
The breadth of F equals the degree of G[[F]].

.

.

•
K⌊a⌋

•
K⌊a⌋

•
a〈a〉

•
K⌊a⌋

•
a〈a〉

•
a〈a〉

a a a

→ → → . . .

Figure 7.4: Reaction sequence illustrating unbounded breadth.

Definition 7.2.1 (|| − ||B : PF → N, boundedness in breadth)
The function || − || | : PF → N gives the maximal number of fragments under a
restriction:

||F e|| | := 1 ||νa.(F1 | . . . | Fn)|| | := max{n, ||F1|| | , . . . , ||Fn|| | }.

The breadth of fragment F is the maximal number of fragments under a restriction
in all fragments structurally congruent with F , i.e.,

||F ||B := max{||G|| | p G ≡ F}.

A process P ∈ P is bounded in breadth, if the breadth of all reachable fragments
is bounded by some kB ∈ N, i.e.,

∃kB ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||B ≤ kB.

The set of all processes that are bounded in breadth is PB<∞. ¨

181

Chapter 7 Depth and Breadth

By definition, the function || − ||B is invariant under structural congruence.

Observation 7.2.2 (Invariance of || − ||B under ≡)
For all F, G ∈ PF with F ≡ G it holds ||F ||B = ||G||B. ¥

As it refers to all fragments in a congruence class, the notion of breadth is hard
to grasp. We provide a small example that illustrates the definition.

Example 7.2.3 (Breadth)
Consider νa.L⌊a⌋ with L(x) := νb.(x〈b〉 | x〈b〉 | L⌊x⌋). The only reaction se-
quence is given by

νa.L⌊a⌋ → νa.(νa1.(a〈a1〉 | a〈a1〉) | L⌊a⌋)

→ νa.(νa1.(a〈a1〉 | a〈a1〉) | νa2.(a〈a2〉 | a〈a2〉) | L⌊a⌋) → . . .

After n ∈ N reactions we have the following fragment FD ≡ FB:

FD = νa.(Πn
i=1νai.(a〈ai〉 | a〈ai〉) | L⌊a⌋)

FB = νa1.(. . . (νan.(νa.(Πn
i=1(a〈ai〉 | a〈ai〉) | L⌊a⌋))) . . .).

We compute ||FD|| | = n+1 and ||FB|| | = 2n+1. In FB the number of fragments
under a restriction is maximal in the congruence class of FD ≡ FB. So after n
reactions we have ||FD||B = ||FB||B = ||FB|| | = 2n + 1. There is no bound on the
breadth of the reachable fragments, i.e., νa.L⌊a⌋ /∈ PB<∞. ¨

Intuitively, the fragment FB that maximises || − || | minimises the scope of
the restricted name, which is shared by most sequential processes. We give the
construction of FB from a given fragment in Section 7.5.

Imposing a bound on the breadth of all reachable fragments does not suffice to
show structural stationarity. Consider νa.K⌊a⌋ with K(x) := νb.(b〈x〉 | K⌊b⌋).
The process generates infinitely many fragments that are pairwise not structur-
ally congruent but have a breadth of two:

νa.K⌊a⌋ → νa.(νb.(b〈a〉 | K⌊b⌋)) → νa.(νb.(b〈a〉 | νc.(c〈b〉 | K⌊c⌋))) → . . .

If we let F1 = νa.K⌊a⌋, F2 = νa.(νb.(b〈a〉 | K⌊b⌋)) etc. we again arrive at the
infinite structural semantics in Figure 7.3.

.

.

•
K⌊a⌋

•
b〈a〉

•
K⌊b⌋

•
b〈a〉

•
c〈b〉

•
K⌊c⌋

a a b a b c→ → → . . .

Figure 7.5: Reaction sequence illustrating unbounded depth.

182

7.2 A Second Characterisation of Structural Stationarity

In the graph interpretation in Figure 7.5, the length of the simple paths is not
bounded. At process level, this length is mimicked by the nesting of restrictions
||F ||ν . In the example, ||νa.K⌊a⌋||ν = 1 and ||νa.(νb.(b〈a〉 | K⌊b⌋))||ν = 2. To
ensure the restrictions contribute to the length of a simple path, we take a rep-
resentation FD of the given fragment F where this nesting is minimal. Intuitively,
FD is the flattest representation of F . The depth of fragment F is then defined
by the nesting of restrictions in this flattest representation FD. In Section 7.4,
we show that this definition of depth corresponds to the intuitive understanding.
The depth of all reachable fragments is bounded if and only if the length of all
simple paths in the graph interpretation is bounded.

Definition 7.2.4 (|| − ||D : PF → N, boundedness in depth)
The nesting of restrictions in a fragment is given by the function ||−||ν : PF → N

defined inductively as follows:

||F e||ν := 0 ||νa.(F1 | . . . | Fn)||ν := 1 + max{||F1||ν , . . . , ||Fn||ν}.

For a fragment F , we define the depth to be the minimal nesting of restrictions
in all fragments in the congruence class:

||F ||D := min{||G||ν p G ≡ F}.

A process P ∈ P is bounded in depth, if there is a bound on the depth of all
reachable fragments, i.e.,

∃kD ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||D ≤ kD.

The set of all processes of bounded depth is PD<∞. ¨

Like the breadth, the depth of fragments is invariant under structural congru-
ence.

Observation 7.2.5 (Invariance of || − ||D under ≡)
For all F, G ∈ PF with F ≡ G it holds ||F ||D = ||G||D. ¥

We continue the investigation of process νa.L⌊a⌋ defined in Example 7.2.3.

Example 7.2.6 (Depth)
We observed that all processes reachable via n ∈ N reactions are structurally
congruent with FD ≡ FB:

FD = νa.(Πn
i=1νai.(a〈ai〉 | a〈ai〉) | L⌊a⌋)

FB = νa1.(. . . (νan.(νa.(Πn
i=1(a〈ai〉 | a〈ai〉) | L⌊a⌋))) . . .).

183

Chapter 7 Depth and Breadth

The nesting function yields ||FD||ν = 2 and ||FB||ν = n + 1. Since the nesting of
restrictions in FD is minimal in the congruence class, we have ||FB||D = ||FD||D =
||FD||ν = 2. So the depth all fragments reachable from νa.L⌊a⌋ is bounded by
two, i.e., νa.L⌊a⌋ ∈ PD<∞. ¨

In a fragment F , there are at most ||F || | fragments under a restriction. The

nesting of restrictions is bounded by ||F ||ν . Thus, F contains at most ||F ||||F ||ν
|

sequential processes.

Lemma 7.2.7 (Elementary Inequality)

For all F ∈ PF : ||F ||S ≤ ||F ||||F ||ν
| .

Proof
We proceed by an induction on the structure of fragments.

Base Case For F e, the inequality holds with ||F e||S = 1 = 10 = ||F e||||F
e||ν

| .

Induction Step Let ||Fi||S ≤ ||Fi||
||Fi||ν
| for all Fi with 1 ≤ i ≤ n. We then

have for F = νa.(F1 | . . . | Fn):

||F ||S

(Def. ||F ||S) = Σn
i=1||Fi||S

(Hypothesis) ≤ Σn
i=1||Fi||

||Fi||ν
|

(Def. max) ≤ Σn
i=1max{||Fi|| | p 1 ≤ i ≤ n}max{||Fi||ν p 1≤i≤n}.

With max | := max{||Fi|| | p 1 ≤ i ≤ n} we continue:

= Σn
i=1max

max{||Fi||ν p 1≤i≤n}
|

= n · max
max{||Fi||ν p 1≤i≤n}
|

(Def. max) ≤ max{n,max |} · max{n,max |}
max{||Fi||ν p 1≤i≤n}

= max{n,max |}
1+max{||Fi||ν p 1≤i≤n}

(Def. ||F ||ν) = max{n,max |}
||F ||ν

(Def. max |) = max{n, ||F1|| | , . . . , ||Fn|| | }
||F ||ν

(Def. ||F || |) = ||F ||||F ||ν
| .

¥

In fact, boundedness in breadth and in depth entails structural stationarity—
the main result in this section. Since the reverse direction is trivial, Theorem 7.2.8

184

7.2 A Second Characterisation of Structural Stationarity

provides the following complete characterisation of structural stationarity. A pro-
cess is structurally stationary if and only if it is bounded in breadth and bounded
in depth. While the proof of structural stationarity from boundedness in the se-
quential processes in Theorem 4.3.2 is direct and cumbersome, the application of
the theorem yields an elegant proof of Theorem 7.2.8. We briefly sketch it.

If the process under consideration is bounded in depth by kD, the nesting of
restrictions in the flattest representation FD of a given fragment F is bounded
by kD, ||FD||ν ≤ kD. The number of fragments under a restriction in FD is
bounded by the breadth of F , which in turn is assumed to be bounded by kB.
Hence, ||FD|| | ≤ kB. With the elementary inequality in Lemma 7.2.7 we have a
bounded number of sequential processes in FD and so in F . With Theorem 4.3.2
we conclude structural stationarity.

Theorem 7.2.8 (Characterisation of Structural Stationarity via ν)
PFG<∞ = PB<∞ ∩ PD<∞.

Proof
⇒ If the process is structurally stationary, there is a finite set of fragments
{F1, . . . , Fn} so that every reachable fragment is structurally congruent with some
Fi. Then the maxima max{||Fi||D p 1 ≤ i ≤ n} and max{||Fi||B p 1 ≤ i ≤ n}
exist and bind the depth and the breadth of all reachable fragments.

⇐ If we assume boundedness in breadth and depth there are kB and kD
so that for all Q ∈ Reach(P) and all F ∈ fg (rf (Q)) we have ||F ||B ≤ kB and
||F ||D ≤ kD. We establish boundedness in the number of sequential processes:

∃kS ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||S ≤ kS .

We claim that kkD
B is a bound. Consider Q ∈ Reach(P) and F ∈ fg (rf (Q)). For

every fragment F , there is FD ≡ F so that ||FD||ν = min{||G||ν p G ≡ F} =
||F ||D. For this FD the inequality ||FD|| | ≤ max{||G|| | p G ≡ F} = ||F ||B holds.
We compute

||F ||S

(|| − ||S invariant under ≡) = ||FD||S

(Elementary inequality, Lemma 7.2.7) ≤ ||FD||||FD||ν
|

(Observation ||FD|| | ≤ ||F ||B) ≤ ||F ||||FD ||ν
B

(Observation ||FD||ν = ||F ||D) = ||F ||||F ||D
B

(kB and kD bounds on breadth and depth) ≤ kkD
B .

This proves P is bounded in the number of sequential processes. With The-
orem 4.3.2, P is structurally stationary. ¥

185

Chapter 7 Depth and Breadth

The reformulation of Theorem 7.2.8 is useful in disproving structural station-
arity. A process is not structurally stationary if and only if it is not bounded in
breadth or not bounded in depth. Thus, there are two sources of infinity for the
structural semantics. We discuss that they are of different quality.

Consider νa.L⌊a⌋ with L(x) := νb.(x〈b〉 | x〈b〉 | L⌊x⌋) in Example 7.2.3
and 7.2.6. Removing the restriction νa gives the process L⌊a⌋. The semantics
N [[L⌊a⌋]] is depicted in Figure 7.6. In any execution, the number of tokens on
[νb.(a〈b〉 | a〈b〉)] is not bounded. We conclude that νa.L⌊a⌋ is not bounded in
breadth. With Theorem 7.2.8 the process is not structurally stationary.

.

.

•[L⌊a⌋] [νb.(a〈b〉 | a〈b〉)]

Figure 7.6: Identifying and handling unboundedness in breadth.

The example suggests that processes of bounded in depth but unbounded
breadth are not Turing complete. In fact, we show that termination is decidable
for these processes in Section 8.2. Conversely, processes of bounded breadth but
unbounded depth are Turing complete. This follows from a well-known encoding
of counter machines that we recall in Section 8.3

Before we proceed to these decidability results, we prove our graph-theoretic
intuition to PD<∞ and PB<∞ correct (cf. Figure 7.4 and 7.5). The main technical
contribution is the definition of a syntactic subclass of fragments, called anchored
fragments. In this chapter, we use them to derive boundedness in depth from
boundedness in the simple paths (Lemma 7.4.1). In Chapter 8 they help us find
a well-quasi-ordering on processes of bounded depth (Lemma 8.2.14).

7.3 Anchored Fragments

Anchored fragments are a restricted class of fragments, which enjoys the following
technical property. The nesting of restrictions in an anchored fragment corres-
ponds to the length of a simple path in the graph interpretation (Lemma 7.3.2).
This relation allows us to prove that anchored fragments are particularly flat: the
nesting of restrictions in FA is bounded by the depth of FA (Corollary 7.4.5).2

The importance of anchored fragments stems from Proposition 7.3.4: anchored
fragments are a normal form under structural congruence. This means, for a
given fragment F we can construct a structurally congruent anchored fragment
FA, where ||FA||ν is bounded by ||F ||D. Lemma 7.4.1 and Lemma 8.2.14 are two
important applications of the corresponding inequality.

2Fragment FB in Example 7.2.6 illustrates that this does not hold for arbitrary fragments.

186

7.3 Anchored Fragments

In a fragment F = νa.(F1 | . . . | Fn), all Fi share the name a. In an anchored
fragment FA = νa.(FA

1 | . . . | FA
n), distinguished processes inside the frag-

ments FA
i share the name a. These processes are called anchors and denoted

by anc(FA
i). The definition guarantees that the vertices labelled by the anchors

anc(FA
i) are connected via a in the graph interpretation of FA. Figure 7.7

illustrates this idea.

Definition 7.3.1 (Anchored Fragments)
The set of anchored fragments PA with elements FA and GA is defined by

FA ::= F e
p νa.(FA

1 | . . . | FA
n),

where a ∈ fn(anc(FA
i)) for all i, anc(F e) := F e and anc(νa.(FA

1 | . . . | FA
n)) :=

anc(FA
1). ¨

.

.

•
anc(FA

1)
•

anc(FA
n)

G[[FA
1]] G[[FA

n]]. . .

a

•K⌊a, b1⌋ •L⌊a, b2⌋ •L⌊a, b3⌋

a

b1 b2 b3

Figure 7.7:

The idea of anchored fragments FA = νa.(FA
1 | . . . | FA

n) is to connect the
anchors anc(FA

i) in the graph. This is illustrated schematically to the left and
for the concrete anchored fragment in Example 7.3.3 to the right.

Since anchored fragments are defined inductively, connectedness not only holds
in G[[FA]] with FA = νa.(FA

1 | . . . | FA
n) but also in each of the FA

i . Hence,
when descending the anchored fragment FA with the function || − ||ν , we follow
a simple path p in the graph G[[FA]]. Consequently, for an anchored fragment
FA the nesting of restrictions corresponds to the length of a simple path p in
G[[FA]], ||FA||ν = length(p). This is stated in the following Lemma 7.3.2. In
the proof, we need that the first element of p is labelled by the anchor of FA,
l(fe(p)) = anc(FA).

Lemma 7.3.2
Let FA ∈ PA. There is a simple path p ∈ Paths(G[[FA]]) with length(p) = ||FA||ν
and l(fe(p)) = anc(FA).

187

Chapter 7 Depth and Breadth

We illustrate the construction of a suitable path p in the induction step. The
idea is to extend a path p′ that exists by the hypothesis by an edge and a vertex.

Example 7.3.3 (Illustration of Lemma 7.3.2)
Consider FA = νa.(FA

1 | FA
2 | FA

3) with FA
1 = νb1.K⌊a, b1⌋, FA

2 = νb2.L⌊a, b2⌋,
and FA

3 = νb3.L⌊a, b3⌋. The vertex labels are unique in this example. Therefore,
we identify v with l(v). The nesting of restrictions is

||FA||ν = 1 + max{||FA
1 ||ν , ||FA

2 ||ν , ||FA
3 ||ν} = 1 + ||νb3.L⌊a, b3⌋||ν = 2.

Since the nesting of restrictions is equal in FA
1 , FA

2 , and FA
3 we can choose any FA

i

to compute the nesting of restrictions of FA, in particular FA
3 . Figure 7.8 shows

a simple path p = (K⌊a, b1⌋, a, L⌊a, b3⌋, b3, L⌊a, b3⌋) in G[[FA]], which satisfies
length(p) = 2 = ||FA||ν and l(fe(p)) = K⌊a, b1⌋ = anc(FA). We explain its
construction.

.

.

•K⌊a, b1⌋ •L⌊a, b2⌋ •
L⌊a, b3⌋

a

b1 b2 b3

G[[FA
3]]

Figure 7.8:

Construction of a path p in G[[FA]] with length(p) = ||FA||ν and l(fe(p)) =
anc(FA).

According to the hypothesis, there is a simple path p′ in G[[FA
3]] that satisfies

length(p′) = 1 = ||FA
3 ||ν and l(fe(p′)) = L⌊a, b3⌋ = anc(FA

3). This path is
p′ = (L⌊a, b3⌋, b3, L⌊a, b3⌋), depicted by dashed lines. As G[[FA

3]] is embedded
in G[[FA]], indicated by the dotted frame, p′ is a path in G[[FA]]. The anchor
L⌊a, b3⌋ and K⌊a, b1⌋, the anchor of FA, are connected with a by definition of
anchored fragments. We define p = (anc(FA), a, p′). The path extends p′ by the
bold lines. ¨

Proof (of Lemma 7.3.2)
We conduct an induction on the structure of anchored fragments.

Base Case Consider F e with G[[F e]] = ({v}, ∅, {(v, F e)}, ∅). For the only
simple path p = (v), we get length(p) = 0 = ||F e||ν and l(fe(p)) = F e = anc(F e).

188

7.3 Anchored Fragments

Induction Step Let the statement hold for FA
1 , . . . , FA

n with a ∈ fn(anc(FA
i))

and consider FA = νa.(FA
1 | . . . | FA

n). The nesting of restrictions is

||FA||ν = 1 + max{||FA
i ||ν p 1 ≤ i ≤ n} = 1 + ||FA

k ||ν , for some k.

By the hypothesis, there are simple paths pi ∈ Paths(G[[FA
i]]) with length(pi) =

||FA
i ||ν and li(fe(pi)) = anc(FA

i) for all i. We show that p = (fe(p1), a, pk) is a
simple path in G[[FA]] that satisfies the requirements.

By definition, G[[FA]] = (G[[FA
1]] ⊎ . . . ⊎ G[[FA

n]]) ⊗ a. Thus, G[[FA
1]] and G[[FA

k]]
are subgraphs of G[[FA]]. Therefore, fe(p1) is a vertex and pk is a path in G[[FA]].
We observe that a ∈ fn(anc(FA

1)) = fn(l1(fe(p1))). By definition of the connect
operator, the first element of p1 is connected with a in G[[FA]], fe(p1) ∈ inc(a).
Similarly, we derive fe(pk) ∈ inc(a). We conclude that fe(p1) and fe(pk) are
connected via a in G[[FA]]. Thus, p is a path in G[[FA]]. Since pk is simple and a
is a hyperedge that is not in G[[FA

k]] (cf. definition of ⊗), p is simple as well. By
construction, the length and the first element of p are correct. ¥

Any fragment can be rewritten into an anchored fragment using structural
congruence. In the proof, it is important that every sequential process inside a
fragment can be chosen as the anchor.

Proposition 7.3.4 (Normal Form Result)
Consider F ∈ PF and a process P ∈ S(F). Then there is an anchored fragment
FA ∈ PA so that FA ≡ F , S(FA) = S(F), and anc(FA) = P .

We explain the construction in two steps. First, we give an explanation with
help of the graph interpretation, then we rephrase the idea on processes.

.

.
G[[F]]

•
Q1

• •
Q2

• •

•
P

a1
1 a2

1

a1
2 a2

2 a3
2

G[[G1]] G[[G2]]

Figure 7.9:

Construction of the anchored fragment FA ≡ F with S(FA) = S(F) and
anc(FA) = P . The figure itself is explained in the text.

When we understand a fragment F as hypergraph G[[F]], a process P ∈ S(F) is
a vertex, cf. Figure 7.9. This vertex is connected with several hyperedges, which

189

Chapter 7 Depth and Breadth

can be devided into two sets ã1 and ã2. Edges in ã1 connect P with the remainder
of the graph, edges in ã2 are only connected with P . In the figure, ã1 = {a1

1, a
2
1}

and ã2 = {a1
2, a

2
2, a

3
2}. The remaining graph consists of several unconnected

graphs G[[G1]], . . . ,G[[Gm]]. In Figure 7.9, we have G[[G1]] and G[[G2]]. Since G[[F]]
is connected, each of the graphs G[[Gi]] contains a vertex that is connected with
a name in ã1. In the figure, the vertices are Q1 and Q2.

To construct the anchored fragment FA, we first recursively apply the con-
struction to each of the fragments Gi. This means, we build anchored fragments
GA

i with the processes Qi as anchors. The fragment FA is then (the restricted
form of) νã1.(νã2.P | GA

1 | . . . | GA
m).

On processes, the construction works as follows. We first compute the standard
form of the given fragment, sf (F) = νã.(P1 | . . . | Pn). Since computing the
standard form does not change the sequential processes, one process Pi is the
process P of interest, say P1. We split the set of names ã into three subsets
ã1, ã2, ã3 as follows. A name a that is shared by P and P2 | . . . | Pn is in
the set ã1. A name that is free only in P is in ã2. The remaining names are
in ã3. While the sets ã1 and ã2 are like in the graph construction, the names
ã3 were hidden in the dotted boxes in Figure 7.9. Shrinking the scopes yields
νã1.(νã2.P | νã3.(P2 | . . . | Pn)). To transform νã3.(P2 | . . . | Pn) into a
parallel composition of anchored fragments, we compute the restricted form. It
consists of several fragments, rf (νã3.(P2 | . . . | Pn)) = G1 | . . . | Gm. By
construction, every Gi contains a process Qi sharing a name with P . Since
each Gi has less processes than F we can apply the hypothesis. This yields
anchored fragments GA

i , where anc(GA
i) = Qi shares a name with P . We now

have νã1.(νã2.P | GA
1 | . . . | GA

m). As the names in ã1 are shared by different
GA

i , we minimise their scopes to get the required anchored fragment. Before we
turn this argumentation into a formal proof, we illustrate it on an example.

Example 7.3.5
Let F = νb1, b2, b3, a.(K⌊a, b1⌋ | L⌊a, b2⌋ | L⌊a, b3⌋). We construct an anchored
fragment with K⌊a, b1⌋ as anchor. Fragment F is in standard form. We split the
set of names {a, b1, b2, b3} into ã1 = {a}, ã2 = {b1}, and ã3 = {b2, b3}. Shrinking
the scopes yields νa.(νb1.K⌊a, b1⌋ | νb2, b3.(L⌊a, b2⌋ | L⌊a, b3⌋)). The restricted
form of νb2, b3.(L⌊a, b2⌋ | L⌊a, b3⌋) is νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋. Both fragments,
νb2.L⌊a, b2⌋ and νb3.L⌊a, b3⌋, are anchored fragments where the anchors share
the name a with K⌊a, b1⌋. The scope of a is minimal and the computation returns
the anchored fragment νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋). ¨

Proof (of Proposition 7.3.4)
We do a well-founded induction on the number of sequential processes in a frag-
ment.

190

7.3 Anchored Fragments

Base Case Consider F ∈ PF with ||F ||S = 1 and P ∈ S(F). As the function
||F ||S does not count restrictions, we conclude F = νã.F e for some set of names
ã ⊆ fn(F e). Obviously, F is an anchored fragment. The anchor is correct since
P ∈ S(νã.F e) = {F e} implies P = F e = anc(νã.F e).

Induction Step Assume the statement holds for all G with 1 ≤ ||G||S < n.
We prove that it also holds for F with ||F ||S = n. Let P ∈ S(F). To begin
with, we compute the standard form of F with Lemma 2.1.28, i.e., F ≡ sf (F) =
νã.(P1 | . . . | Pn):

F

(Standard form, || − ||S invariant under ≡) ≡ νã.(P1 | . . . | Pn)

(Lemma 2.1.28: S(P) = S(sf (P)), wlog. P = P1) ≡ νã.(P | P2 | . . . | Pn).

We decompose ã into three disjoint subsets

ã1 := ã ∩ fn(P) ∩ fn(P2 | . . . | Pn)

ã2 := (ã ∩ fn(P)) \ fn(P2 | . . . | Pn)

ã3 := (ã ∩ fn(P2 | . . . | Pn)) \ fn(P)

and apply the rule for scope extrusion to shrink the scopes. This explains the
first of the following congruences. In the next, we compute the restricted form of
νã3.(P2 | . . . | Pn) with Lemma 3.2.7, rf (νã3.(P2 | . . . | Pn)) = G1 | . . . | Gm:

(Scope extrusion) ≡ νã1.(νã2.P | νã3.(P2 | . . . | Pn))

(Restricted form) ≡ νã1.(νã2.P | G1 | . . . | Gm)

(Let ã1 = ak, . . . , a1) = νak, . . . , a1.(νã2.P | G1 | . . . | Gm).

For every fragment Gi there is a name al ∈ fn(Gi). Otherwise, F would be
decomposed into at least two fragments when the restricted form is computed,
F = rf (F) ≡rf rf (νã1.(. . .)) = rf (νã1.(. . .)) | Gi. This contradicts ≡rf . We
define Il ⊆ {1, . . . , m} by i ∈ Il iff al ∈ fn(Gi). The argumentation shows that
for every Gi the index i is in some set Il. With scope extrusion, we continue the
congruence:

≡ νak.(. . . νa1.(νã2.P | Πi∈I1Gi) . . . Πi∈Ik\(Ik−1∪...∪I1)Gi).

Since al ∈ fn(Gi) with i ∈ Il \ (Il−1 ∪ . . . ∪ I1), there is Qi ∈ S(Gi) with
al ∈ fn(Qi). As ||Gi||S ≤ n − 1, the induction hypothesis is applicable to Gi.
This yields GA

i ≡ Gi with S(GA
i) = S(Gi) and anc(GA

i) = Qi:

≡ νak.(. . . νa1.(νã2.P | Πi∈I1GA
i) . . . Πi∈Ik\(Ik−1∪...∪I1)G

A
i)

=: FA.

Of course, FA ∈ PA, S(FA) = S(F), and anc(FA) = P . ¥

191

Chapter 7 Depth and Breadth

7.4 Characterisation of Boundedness in Depth

With the interpretation of processes as graphs, we call process P ∈ P bounded
in the simple paths, if there is klsp ∈ N so that the length of the longest simple
path in the hypergraphs of all reachable fragments is less or equal to klsp , i.e.,

∃klsp ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : lsp(G[[F]]) ≤ klsp .

The set of all processes that are bounded in the simple paths is Plsp<∞. We prove
that a process is bounded in depth if and only if it is bounded in the simple
paths. Thus, processes in PD<∞ can be intuitively understood as hypergraphs
where the length of the simple paths is bounded.

With the inequality ||F ||D ≤ lsp(G[[F]]), boundedness in depth follows from
boundedness in the simple paths.

Lemma 7.4.1
For all F ∈ PF the inequality ||F ||D ≤ lsp(G[[F]]) holds.

Proof
With Proposition 7.3.4, there is an anchored fragment FA ≡ F . By definition
of depth, we have ||F ||D = min{||G||ν p G ≡ F} ≤ ||FA||ν . Lemma 7.3.2 gives
a simple path p in G[[FA]] with ||FA||ν = length(p). Combining the arguments
yields:

||F ||D ≤ ||FA||ν = length(p) ≤ lsp(G[[FA]]) = lsp(G[[F]]).

The second inequality holds by definition of the longest simple path, the last
equality is Corollary 7.1.13. ¥

To prove the reverse direction, we need that the length of the longest simple
path in G[[F]] is bounded by the nesting of restrictions in F .

Lemma 7.4.2
For F ∈ PF the inequality lsp(G[[F]]) ≤ 2||F ||ν − 1 holds.

Proof
We use induction on the structure of fragments.

Base Case Elementary fragments F e form the base case:

lsp(G[[F e]]) = 0 = 20 − 1 = 2||F e||ν − 1.

192

7.4 Characterisation of Boundedness in Depth

Induction Step Assume the inequality holds for F1, . . . , Fn with a ∈ fn(Fi)
for all i. We consider F = νa.(F1 | . . . | Fn):

lsp(G[[F]])

(Def. G[[−]]) = lsp((G[[F1]] ⊎ . . . ⊎ G[[Fn]]) ⊗ a).

The graphs G[[Fi]] are not connected in G[[F1]] ⊎ . . . ⊎ G[[Fn]]. Thus, a is the only
connection between G[[Fi]] and G[[Fj]] in (G[[F1]] ⊎ . . . ⊎ G[[Fn]]) ⊗ a. In the worst
case, a connects two simple paths of length max{lsp(G[[Fi]]) p 1 ≤ i ≤ n}:

≤ 2 · max{lsp(G[[Fi]]) p 1 ≤ i ≤ n} + 1

(Def. max) = 2 · lsp(G[[Fk]]) + 1, for some k

(Hypothesis) ≤ 2 · (2||Fk||ν − 1) + 1, for some k

= 2||Fk||ν+1 − 1, for some k

(Def. max) ≤ 2max{||Fi||ν p 1≤i≤n}+1 − 1

(Def. || − ||ν) = 2||F ||ν − 1.

¥

An application of Lemma 7.4.2 shows that the longest simple path in G[[F]] is
bounded by the depth of F . Hence, boundedness in depth implies boundedness
in the simple paths.

Lemma 7.4.3
For all F ∈ PF the inequality lsp(G[[F]]) ≤ 2||F ||D − 1 holds.

Proof
There is a fragment FD in the congruence class of F , where the nesting of re-
strictions is minimal, i.e., ||FD||ν = min{||G||ν p G ≡ F} = ||F ||D. With
Corollary 7.1.13, Lemma 7.4.2, and the choice of FD we derive

lsp(G[[F]]) = lsp(G[[FD]]) ≤ 2||FD||ν − 1 = 2||F ||D − 1.

¥

Lemma 7.4.1 and Lemma 7.4.3 prove Theorem 7.4.4.

Theorem 7.4.4 (Characterisation of Boundedness in Depth)
PD<∞ = Plsp<∞.

In Section 7.3, we claimed that anchored fragments are particularly flat. The
property follows as a corollary of Lemma 7.3.2 and Lemma 7.4.3. We shall need
it in Section 8.2 to understand anchored fragments as trees of bounded height.

193

Chapter 7 Depth and Breadth

Corollary 7.4.5

For FA ∈ PA the inequality ||FA||ν ≤ 2||FA||D − 1 holds.

Proof
Consider an anchored fragment FA ∈ PA. With Lemma 7.3.2, the definition of
the longest simple path, and Lemma 7.4.3, the (in)equalities

||FA||ν = length(p) ≤ lsp(G[[FA]]) ≤ 2||FA||D − 1

hold for some simple path p in G[[FA]]. ¥

7.5 Characterisation of Breadth

We establish the following result. For non-elementary fragments F the equation
||F ||B = deg(G[[F]]) holds. In the proof, we construct a fragment FB where the
number of fragments under a restriction is maximal in the congruence class, i.e.,
||F ||B = max{||G|| | p G ≡ F} = ||FB|| | . As corollary we conclude that a
process is bounded in breadth if and only if it is bounded in the degree of the
hypergraphs.

To show ||F ||B = deg(G[[F]]), we establish two inequalities. To begin with,
we consider ||F ||B ≤ deg(G[[F]]) in Lemma 7.5.2. In the proof, we exploit the
following lemma that relates the functions ||F || | and deg(G[[F]]).

Lemma 7.5.1
For a non-elementary fragment F ∈ PF the inequality ||F || | ≤ deg(G[[F]]) holds.

Proof
We conduct an induction on the structure of fragments.

Base Case Consider F = νa.(F e
1 | . . . | F e

n). The graph is

G[[F]] = ({v1, . . . , vn}, {a}, {(vi, F
e
i) p 1 ≤ i ≤ n}, {(a, {v1, . . . , vn})}).

We have deg(G[[F]]) = |inc(a)| = n = ||F || | .

Induction Step Assume the inequality ||Fi|| | ≤ deg(G[[Fi]]) holds for the
non-elementary fragments F1, . . . , Fn and consider F = νa.(F1 | . . . | Fn). To
compute the graph of F , let G[[Fi]] = (Vi, Ei, li, inci):

G[[F]] = (V :=
Sn

i=1 Vi,
Sn

i=1 Ei ∪ {a}, l :=
Sn

i=1 li,
Sn

i=1 inci ∪ {(a, Va)}),

where Va ⊆ V with v ∈ Va iff a ∈ fn(l(v)). By definition of fragments, the name
a is free in every Fi. This implies every fragment has a process Pi ∈ S(Fi) that

194

7.5 Characterisation of Breadth

knows the name, i.e., a ∈ fn(Pi). Since there is a vertex vi in the graph of Fi

that is labelled by Pi, we conclude |inc(a)| = |Va| ≥ n. We derive the inequality
deg(G[[F]]) ≥ ||F || | as follows:

deg(G[[F]])

(Definition of deg) = max{deg(e) p e ∈
Sn

i=1 Ei ∪ {a}}.

(Definition of max) = max{deg(a),max{deg(e) p e ∈ E1},

. . . ,max{deg(e) p e ∈ En}}

(Definition of deg(G[[Fi]])) = max{deg(a), deg(G[[F1]]), . . . , deg(G[[Fn]])}

(deg(a) = |inc(a)| ≥ n) ≥ max{n, deg(G[[F1]]), . . . , deg(G[[Fn]])}

(Hypothesis) ≥ max{n, ||F1|| | , . . . , ||Fn|| | }

(Definition of || − || |) = ||F || | .

¥

The inequality ||F ||B ≤ deg(G[[F]]) follows directly from Lemma 7.5.1 and the
invariance of deg under structural congruence.

Lemma 7.5.2
For non-elementary fragments F ∈ PF the inequality ||F ||B ≤ deg(G[[F]]) holds.

Proof
Let F ∈ PF and let H be the fragment in the congruence class of F where ||− || |
is maximal, i.e., ||H|| | = max{||G|| | p G ≡ F} = ||F ||B. With Lemma 7.5.1 and
Corollary 7.1.13, we get

||F ||B = ||H|| | ≤ deg(G[[H]]) = deg(G[[F]]).

¥

The inequality ||F ||B ≥ deg(G[[F]]) is established in two steps. Let sf (F) =
νã.P 6=ν . (1) We observe that the degree of G[[F]] is the maximal number of
processes in P 6=ν that share a name in ã. (2) We then construct a fragment
FB ≡ F where the number of fragments under a restriction, ||FB|| | , exceeds this
number. Definition 7.5.3 makes the maximal number of processes sharing a name
precise.

Definition 7.5.3 (|| − ||Ia : Psf → N)
Consider P sf ∈ Psf with P sf = νã.(Πi∈IPi). For every a ∈ ã, the index set
Ia ⊆ I contains those processes Pi that have a as a free name, i.e., i ∈ Ia iff
a ∈ fn(Pi). Since ã is finite, the maximum max{|Ia| p a ∈ ã} =: ||P sf ||Ia

exists—the maximal number of processes that share a restricted name. ¨

195

Chapter 7 Depth and Breadth

With this definition, we rephrase the statements above. (1) In Lemma 7.5.4, we
prove the equality deg(G[[sf (F)]]) = ||sf (F)||Ia . (2) In Lemma 7.5.5, we construct
a fragment FB from F , where ||FB|| | ≥ ||sf (F)||Ia holds. It turns out to be the
fragment in the congruence class of F where ||−|| | is maximal, i.e., ||F ||B = ||FB|| | .
We illustrate Lemma 7.5.4 and Lemma 7.5.5 in Example 7.5.6.

Lemma 7.5.4
For a process P sf ∈ Psf the equality deg(G[[P sf]]) = ||P sf ||Ia holds.

Proof
Let P sf = νã.(Πi∈IPi). We compute the graph interpretation:

G[[P sf]] = ({vi p i ∈ I}, ã, {(vi, Pi) p i ∈ I}, {(a, Va) p a ∈ ã}),

where vi ∈ Va iff a ∈ fn(Pi). We observe that |inc(a)| = |Va| = |Ia| for all a ∈ ã.
The desired equality holds by definition of degree and || − ||Ia . ¥

We turn to the construction of fragment FB from fragment F . The idea is to
find the active restriction x in F that is shared by most sequential processes.
Then the scope of x is minimised so that it contains all these processes.

Lemma 7.5.5
For every F ∈ PF there is a fragment FB ≡ F with ||sf (F)||Ia ≤ ||FB|| | .

Proof
Let sf (F) = νã.(Πi∈IPi) be the standard form of F . Take the name x ∈ ã which
is shared by most processes, i.e., |Ix| = max{|Ia| p a ∈ ã} = ||sf (F)||Ia . The
remaining names are ã′ := ã \ {x}. We minimise the scope of x and compute the
restricted form to get the fragment FB:

F

(Scope extrusion) ≡ νã′.(νx.(Πi∈IxPi) | Πi∈I\Ix
Pi)

(Lemma 3.2.7) ≡ rf (νã′.(νx.(Πi∈IxPi) | Πi∈I\Ix
Pi))

=: FB.

As F ≡ νã′.(νx.(Πi∈IxPi) | Πi∈I\Ix
Pi) we have F ≡rf FB with Proposition 3.2.10.

The definition of ≡rf ensures FB is a fragment. We compute

||FB|| | = max{. . . , ||νx.(Πi∈IxPi)|| | , . . .} ≥ ||νx.(Πi∈IxPi)|| | = |Ix| = ||sf (F)||Ia .

¥

.

196

7.5 Characterisation of Breadth

Example 7.5.6 (Construction of FB and Equality in Lemma 7.5.4)
Consider νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋). The standard form of
this fragment is νa, b1, b2, b3.(K⌊a, b1⌋ | L⌊a, b2⌋ | L⌊a, b3⌋). Hence, in this ex-
ample ã = {a, b1, b2, b3}. To compute the index sets, let K⌊a, b1⌋ have index 1 and
L⌊a, bi⌋ index i with i = 2, 3. Since a is in the free names of all processes, Ia =
{1, 2, 3} holds. The remaining names give Ibi

= {i}. Thus, a is shared by most
processes, |Ia| = 3 = max{|Ia|, |Ib1 |, |Ib2 |, |Ib3 |}. It is the name x in the construc-
tion. We shrink the scope of a and get νb1, b2, b3.νa(K⌊a, b1⌋ | L⌊a, b2⌋ | L⌊a, b3⌋).
Computing the restricted form does not change the process and we return the
fragment FB = νb1, b2, b3.νa(K⌊a, b1⌋ | L⌊a, b2⌋ | L⌊a, b3⌋). We check the in-
equality:

||FB|| | = 3 ≥ max{|Ia|, |Ib1 |, |Ib2 |, |Ib3 |} = ||sf (F)||Ia .

To illustrate Lemma 7.5.4, we observe that FB is in standard form. Its graph is de-
picted in Figure 7.7 and 7.8. The equality ||FB||Ia = max{|Ia|, |Ib1 |, |Ib2 |, |Ib3 |} =
3 = deg(G[[FB]]) holds. ¨

With Lemma 7.5.4 and Lemma 7.5.5, we prove the inequality ||F ||B ≥ deg(G[[F]]),
which is yet missing.

Lemma 7.5.7
Consider the non-elementary fragment F ∈ PF . Then ||F ||B ≥ deg(G[[F]]).

Proof
With Lemma 7.5.5, we compute FB ≡ F . By definition of breadth, we have
||F ||B = max{||G|| | p G ≡ F} ≥ ||FB|| | . With Lemma 7.5.5 and Lemma 7.5.4
we get

||F ||B ≥ ||FB|| | ≥ ||sf (F)||Ia = deg(G[[sf (F)]]) = deg(G[[F]]).

The last equation holds with G[[F]] = G[[sf (F)]] according to Lemma 7.1.11. ¥

Lemma 7.5.2 and Lemma 7.5.7 prove that the breadth of a fragment equals
the degree of its graph.

Theorem 7.5.8 (Characterisation of Breadth)
Let F ∈ PF be non-elementary and FB ≡ F the fragment constructed in
Lemma 7.5.5. Then ||F ||B = ||FB|| | = deg(G[[F]]).

Proof
The proof of Lemma 7.5.7 yields ||F ||B ≥ ||FB|| | ≥ deg(G[[F]]). With Lemma 7.5.2,
||F ||B ≤ deg(G[[F]]). We conclude equality. ¥

197

Chapter 7 Depth and Breadth

For an elementary fragment F e = K⌊ã⌋ or F e = M 6=0, the breadth is one
while the graph degree is zero. Although different, both values are bounded. We
say that a process is bounded in the degree, if there is kdeg ∈ N that bounds the
degree of the graphs of all reachable fragments, i.e.,

∃kdeg ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : deg(G[[F]]) ≤ kdeg .

If we define the set of all processes that are bounded in the degree to be Pdeg<∞,
the following corollary of Theorem 7.5.8 holds.

Corollary 7.5.9 (Characterisation of Boundedness in Breadth)
PB<∞ = Pdeg<∞.

In the following section, we check well-known examples for boundedness in
depth and boundedness in breadth with the help of Theorem 7.4.4 and The-
orem 7.5.8.

7.6 Applications

We take up the two basic counterexamles for structural stationarity in the be-
ginning of the chapter (cf. Figure 7.4 and 7.5) and extend them to full models
of data structures that are known from the literature. Both processes fail to be
finitely representable using the structural semantics in Chapter 3. The results in
this chapter explain why.

Example 7.6.1 (Lists)
We consider lists [Mil99, SW01] where only an append operation is available. If
we have a list item, LI , the append operation a receives a value y and forwards
it to the neighbouring list element, an〈y〉. If we have a list end, LE , a call to the
append operation creates a new list end with y as parameter, LE⌊an, y⌋. The
former list end becomes a list item, LI ⌊a, an, x⌋:

LI (a, an, x) := a(y).an〈y〉.LI ⌊a, an, x⌋

LE(a, x) := a(y).νan.(LI⌊a, an, x⌋ | LE⌊an, y⌋).

Consider system S1 := νa.(FILL⌊a⌋ | νc.LE⌊a, c⌋), where process FILL(a) :=
νc.a〈c〉.FILL⌊a⌋ generates fresh values c which it appends to the list by sending
a〈c〉. After FILL sent n − 1 fresh names, we have the anchored fragment

FA = νa.(FILL⌊a⌋ | νa2.(νc.LI ⌊a, a2, c⌋ | νa3.(. . . (νcn.LE⌊an, cn⌋) . . .))).

We argue that S1 is not bounded in depth but bounded in breadth. With The-
orem 7.2.8 it is not structurally stationary.

198

7.6 Applications

.

.

•
FILL⌊a⌋

a •
LI ⌊a, a2, c⌋

a2

c

• . . . • an

cn

•
LE⌊an, cn⌋

Figure 7.10:

The graph of fragment FA in Example 7.6.1. It represents a list.

The graph representation of fragment FA is depicted in Figure 7.10. The length
of the simple paths grows in the number of sent names. By Theorem 7.4.4, the
process is not bounded in depth, S1 /∈ PD<∞. The degree of every graph is
two. By Theorem 7.5.8, the breadth of the reachable fragments is two. Hence,
S1 ∈ PB<∞ holds. In the graph interpretation, unboundedness in the length of
the simple paths is evident. The actual depth of the reachable fragments is not
obvious. It is logarithmic in the number of restrictions. ¨

Example 7.6.2 (Bags)
A bag is a data structure that stores arbitrarily many values without ordering
them [Fok07]. We model a bag by the process BAG⌊in, out⌋ which receives a
value y on channel in. Then the bag is ready to accept new values, BAG⌊in, out⌋,
and has the value y available on channel out :

BAG(in, out) := in(y).(out〈y〉 | BAG⌊in, out⌋).

Consider S2 := νin, out .(FILL⌊in⌋ | BAG⌊in, out⌋), where FILL is taken from
Example 7.6.1. After n communications between FILL and BAG, we have

FB = νin.(νc1, . . . , cn.νout .(out〈c1〉 | . . . | out〈cn〉 | BAG⌊in, out⌋) | FILL⌊in⌋).

As the name indicates, fragment FB is constructed according to Lemma 7.5.5.

.

.

•
out〈cn〉

•
out〈c1〉

•
FILL⌊in⌋

•
BAG⌊in, out⌋

cn

c1

outin
...

Figure 7.11:
The graph of fragment FB in Example 7.6.2. It represents a bag.

The graph interpretation is depicted in Figure 7.11. By Theorem 7.5.8, ||FB||B =
deg(G[[FB]]) = n+1. As the degree of the graphs grows unboundedly, the process
is not bounded in breadth, S2 /∈ PB<∞. With Theorem 4.3.2, the system is not

199

Chapter 7 Depth and Breadth

structurally stationary. The length of the longest simple path, lsp(G[[FB]]), is
three. It is bounded by three in all reachable fragments. By Theorem 7.4.4, S2 is
bounded in depth, i.e., in PD<∞. If we remove the restriction νout from S2, we
get S′

2 := νin.(FILL⌊in⌋ | BAG⌊in, out⌋). This process is bounded in breadth
and bounded in depth and hence structurally stationary with Theorem 7.2.8.
Note that the number of active restrictions and the number of sequential processes
are not bounded during system execution. The graph interpretation coincides
with Figure 7.11 but lacks the hyperedge out . ¨

7.7 Related Work and Conclusion

We established a second complete characterisation of structural stationarity. A
process is structurally stationary if and only if it is bounded in depth and bounded
in depth. The novel characteristic functions depth and breadth indicate the qual-
ity of the connections that are induced by restricted names. As the functions are
hard to grasp, we formally defined the graph interpretation of π-Calculus pro-
cesses and worked out graph-theoretic characterisations. Boundedness in depth
is equivalent to boundedness in the simple paths, the function breadth equals
the graph degree. To establish the characterisation of depth, we defined a new
normal form called anchored fragments. In anchored fragments, the nesting of
restrictions corresponds to the length of a simple path in the graphs. This re-
lationship allowed us to prove that anchored fragments are particularly flat in
a well-defined sense. It would be interesting to see whether this flatness can be
established without the graph interpretation. We do not know a different proof.

For a user of the tool Petruchio [SM08], it would be beneficial to know
in advance whether the computation of the structural semantics terminates for
the process of interest. Unfortunately, the problem is undecidable according to
Lemma 4.1.3. We plan to include approximative algorithms to answer the ques-
tion in our tool. In Section 7.2, we showed how the semantics of subprocesses may
reveal unboundedness in breadth. Ideally, the approximation would return the
source of infinity: unbounded breadth B or unbounded depth D. Depending on
the source, finite Petri nets NB[[P]] and ND[[P]] could be computed that approx-
imate the state space of the infinite Petri net N [[P]]. The additional information
will help designing precise approximations, which preserve intricate properties of
processes.

The idea of understanding the term structure of a process, i.e., the syntax, as
a graph was proposed by Milner in his work on flow graphs [MM79, Mil79] (cf.
Section 2.1). For the π-Calculus it has been recalled in [MPW92, Mil99, SW01].
We related the functions depth and breadth on processes P to functions on their
graphs G[[P]]. We are not aware of similar results in the literature.

200

7.7 Related Work and Conclusion

As discussed in Section 3.6, Engelfriet and Gelsema proposed normal forms
that are related to the restricted form [EG99, EG04b, EG07]. The anchored
fragments we presented in this chapter are more stringent than any of the known
normal forms, including Engelfriet’s and Gelsema’s normal forms, Milner’s stand-
ard form, and the restricted form. Thus, they reveal more information about the
connection structure of process terms.

201

202

8
Decidability in Bounded Depth and

Undecidability in Bounded Breadth

Contents
8.1 Well-Quasi-Orderings and the Rooted Tree Em-

bedding . 205

8.2 Well-Structure and Decidability in Bounded Depth 211

8.2.1 An Adequate Well-Quasi-Ordering 212

8.2.2 Proof of Simulation 222

8.2.3 Decidability Results 227

8.3 Undecidability in Bounded Breadth 229

8.3.1 Counter Machines 229

8.3.2 From Counter Machines to Bounded Breadth 230

8.3.3 Undecidability Results 232

8.4 Related Work and Conclusion 234

In the previous chapter, we showed that boundedness in depth and breadth
is equivalent to structural stationarity. Hence, important classes of processes—
where interesting verification problems are decidable—are bounded in depth and
breadth (cf. to the hierarchy of processes in Figure 4.4). Thus, boundedness in
depth and breadth seems fundamental for decidability. From a theoretical point
of view, it is interesting to investigate whether boundedness in only one of the
functions, depth or breadth, is sufficient to achieve decidability results. We argue
that this research also has a practical motivation.

Two decidable classes of processes known from the literature fail to be struc-
turally stationary but allow for modelling interesting features of reconfigurable
systems. Busi and Gorrieri investigated systems where the number of restricted
names during runtime is bounded [BG95, BG09]. They allow, e.g. for model-
ling the elementary bag data structure in Figure 7.4. Amadio and Meyssonnier
proposed bounded input and unique receiver systems [AM02], which turned out

203

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

useful for modelling Internet applications [Ama00]. Although not structurally
stationary, both classes of processes are bounded in depth.

The main contribution in this chapter is a decision procedure for termination
and infinity of states for processes of bounded depth. Taking the expressive-
ness arguments above into account, we claim that PD<∞ is the up-to-now most
expressive and yet decidable subclass of π-Calculus. It subsumes all other de-
cidable subclasses in the literature. As argued in the introduction to this thesis,
termination is a fundamental problem in computation. In computer-aided verific-
ation, it is the basis for the automata-theoretic verification of liveness properties
[Var91]—and thus of particular importance. The decision procedure for infinity
of states can be used as an approximation for structural stationarity in our tool
Petruchio. If it reports a finite state space, the process of interest is structurally
stationary and the structural semantics a finite and even bounded net. If the pro-
cedure decides infinity of states, the structural semantics is either an unbounded
or an infinite net. In the latter case, the compilation does not terminate.

For processes of bounded breadth, we recall a well-known encoding of counter
machines. It shows that the class PB<∞ is Turing complete. With the char-
acterisation of structural stationarity in Chapter 7, this Turing completeness
has interesting consequences. We prove undecidability of structural stationarity
for processes of bounded breadth and derive undecidability of boundedness in
depth as an immediate corollary. We also settle undecidability of boundedness
in breadth.

The decidability results for PD<∞ are obtained by viewing this class as an
instance of well-structured transition systems (WSTS) [Fin90, AČJT00, FS01].
WSTS are a framework for infinite state systems that generalises decidability
results for particular models. Technically, a WSTS is a transition system with
an ordering relation on the states, which is compatible with the transition rela-
tion. Depending on the ordering, the compatibility, and decidability properties
the framework yields decision procedures e.g. for termination [Fin90, FS01] or
simulation [AČJT00].

The technical contribution in the instantiation of the WSTS framework is a
new ordering ¹P on processes, which we show to be a well-quasi-ordering (wqo)
(i.e., in every infinite sequence of processes two comparable ones can be found) for
processes of bounded depth. In the proof, the anchored fragments in Section 7.3
again play a vital role. Since the ordering ¹P is a simulation relation it is
compatible with the reaction relation of the π-Calculus in a strong sense.

To sum up our contributions:

• We define a new ordering on processes, which we prove to be a wqo on
processes of bounded depth.

• With the new ordering, processes of bounded depth have well-structured
transition systems. As a consequence, termination and infinity of states
are decidable for PD<∞.

204

8.1 Well-Quasi-Orderings and the Rooted Tree Embedding

• We recall a well-known process model of counter machines. It proves Turing
completeness of PB<∞. Moreover, the encoding reveals undecidability of
structural stationarity, boundedness in depth, and boundedness in breadth.

The chapter is organised as follows. In Section 8.1, we review the basics on wqos.
Section 8.2 is devoted to the instantiation of the WSTS framework for PD<∞,
Section 8.3 proves Turing completeness in bounded breadth and gives several
undecidability results. We conclude with Section 8.4.

8.1 Well-Quasi-Orderings and the Rooted Tree Embedding

We recall well-quasi-orderings (wqo) and present the rooted tree embedding, a
particular wqo that we will exploit to define a wqo on fragments in the next
section. A brief introduction to wqos and the main results on wqos on graphs
can be found in Diestel’s book on graph theory [Die06].

A quasi-ordering (qo) on a set of elements A is a reflexive and transitive relation
¹ ⊆ A×A. We also call (A,¹) a qo. If we have a qo (A,¹) and a subset B ⊆ A,
then we also refer to (B,¹) as a qo, without explicitly restricting ¹ ⊆ A × A to
B × B. A qo (A,¹) is a well-quasi-ordering (wqo), if in every infinite sequence
(ai)i∈N there are two comparable elements, i.e., there are indices i < j with
ai ¹ aj . To give an example, the natural numbers (N,≤) are a wqo.

A result by Higman [Hig52] lifts a wqo ¹ on a set of elements A to a wqo ¹∗

on the set of finite sequences or words A∗.

Lemma 8.1.1 (and Definition [Hig52])
If (A,¹) is a wqo, then (A∗,¹∗) is a wqo. The ordering u ¹∗ v demands u to
be a subsequence of v, which is dominated elementwise. To define ¹∗ ⊆ A∗ ×A∗

formally, let u = (u1, . . . , um) and v = (v1, . . . , vn). We have u ¹∗ v if there are
indices 1 ≤ i1 < . . . < im ≤ n so that uk ¹ vik

for all 1 ≤ k ≤ m.

Example 8.1.2 (Higman’s Result)
Consider the finite set A = {a, b}, which is a wqo with the identity, i.e., we have
({a, b}, id) as wqo. In a sequence starting with the word (a, a), we may choose
for example

(a, a), (a, b), (b, b), (b, a), a, b, ǫ, . . .

as first elements (with ǫ denoting the empty word). In the following step, we
have to take an element that is larger by id∗. For example (a, b, b), which covers
(a, b), (b, b), a, b, and ǫ, but not (b, a). ¨

205

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

In Section 8.2, we define a qo on fragments. To prove it is a wqo, we relate it
with a wqo on trees. Since fragments are process terms, it is convenient to use a
term-based representation of trees.

Definition 8.1.3 (Trees over A)
Given a set A, the trees over A are defined inductively by

T ::= a p (a, (T1, . . . , Tn)),

where a ∈ A. The set of all trees over A is T (A). ¨

We draw tree a as a single vertex labelled by a that has an incoming arc to
indicate it is the root of the tree. For T = (a, (T1, . . . , Tn)) we draw as before a
labelled vertex with an incoming arc. For every tree Ti, we add an arc labelled
by i to the root of Ti. The arc labelling reflects the fact that the trees are
ordered, i.e., (a, (T1, T2)) 6= (a, (T2, T1)). Figure 8.1 illustrates the graphical
representation.

The height of a tree is measured like the nesting of restrictions in fragments.
For the tree T in Figure 8.1, we have

height(T) = 1 + max{height(T1), height(T2)} = 1 + max{1, 0} = 2.

Definition 8.1.4 (height : T (A) → N)
Consider the trees T (A) over the set A. The height of T ∈ T (A) is defined by
height(a) := 0 and height((a, (T1, . . . , Tn))) := 1 + max{height(Ti) p 1 ≤ i ≤ n}.
For n ∈ N, we denote by T (A)n the trees of height less or equal to n. ¨

A qo ¹ on the set of elements A gives rise to the rooted tree embedding ¹T as
qo on the trees over A, T (A). Intuitively, T1 ¹T T2 if T1 is a subtree of T2 so that
the levels of T1 are preserved in T2. In particular, the root of T1 is mapped to
the root of T2 and the leaves in T1 are leaves in T2. Figure 8.1 gives an example.

Definition 8.1.5 (Rooted Tree Embedding)
Consider a qo (A,¹). The rooted tree embedding ¹T ⊆ T (A) × T (A) contains
all pairs that can be derived with the following rules:

(Elem)
a ¹ a′

a ¹T a′
(Comp)

a ¹ a′ and (T1, . . . , Tm) ¹∗
T (T ′

1, . . . , T
′
n)

(a, (T1, . . . , Tm)) ¹T (a′, (T ′
1, . . . , T

′
n)).

¨

To give an intuition to the definition, imagine the leaves in the tree are sequen-
tial processes composed in parallel and the remaining nodes are restricted names.

206

8.1 Well-Quasi-Orderings and the Rooted Tree Embedding

a

b

c c

c

1 2

1 2

¹T

a

a

b

bc c

c

1 2

1 3
2

1

T T ′

Figure 8.1:
Let A = {a, b, c} be ordered by the identity ¹ = id . Consider T = (a, (T1, T2))
with T1 = (b, (c, c)) and T2 = c as well as T ′ = (a, (T ′

1, T
′
2)) with T ′

1 =
(b, (c, T ′

3, c)), T ′
2 = c, and T ′

3 = (b, (a)). Clearly, T1 ¹T T ′
1 and T2 ¹T T ′

2

and so we derive the rooted tree embedding T ¹T T ′, which is depicted by
bold edges.

To ensure the ordering is a simulation relation, we may have further processes
below a restriction, e.g. T1 = (b, (c, c)) ¹T (b, (c, T ′

3, c)) = T ′
1 in Figure 8.1. But

a restricted name will not simulate a process, hence a 6¹T (a, (b)).

The rooted tree embedding is in fact a qo. While we establish this for all trees
over A, wqo only holds for trees of bounded height.

Lemma 8.1.6
If (A,¹) is a qo, then (T (A),¹T) is a qo.

Proof
The proof of reflexivity is trivial, we only consider transitivity here. We have to
prove that for all T, T ′, T ′′ the following holds. If T ¹T T ′ and T ′ ¹T T ′′ then
T ¹T T ′′. We use induction on the structure of T and show that for all T ′, T ′′

we have: T ¹T T ′ and T ′ ¹T T ′′ implies T ¹T T ′′.

Base Case Consider T = a. Since we assume T ¹T T ′, we conclude T ′ = b
with a ¹ b because only Rule (Elem) gives an ordering for leaves. Similarly, as
we assume T ′ ¹T T ′′ and as T ′ = b, we conclude T ′′ = c with b ¹ c. Transitivity
of ¹ yields a ¹ c. Thus, a ¹T c which means T ¹T T ′′.

Induction Step Assume the proposition holds for T1, . . . , Tm and consider
the tree T = (a, (T1, . . . , Tm)) with T ¹T T ′ ¹T T ′′. As only Rule (Comp)
gives an ordering on composed trees, we get T ′ = (b, (T ′

1, . . . , T
′
n)) with a ¹ b

and (T1, . . . , Tm) ¹∗
T (T ′

1, . . . , T
′
n). Similarly, from the form of T ′ it follows that

T ′′ = (c, (T ′′
1 , . . . , T ′′

o)) with b ¹ c and (T ′
1, . . . , T

′
n) ¹∗

T (T ′′
1 , . . . , T ′′

o).

207

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Transitivity of ¹ yields a ¹ c. The ordering (T1, . . . , Tm) ¹∗
T (T ′

1, . . . , T
′
n)

means there are 1 ≤ i1 < . . . < im ≤ n with Tk ¹T T ′
ik

. Similarly, there
are indices 1 ≤ j1 < . . . < jn ≤ o with T ′

l ¹T T ′′
jl

. Thus Tk ¹T T ′
ik

and
T ′

ik
¹T T ′′

jik
holds. The hypothesis gives Tk ¹T T ′′

jik
. We conclude the ordering

(T1, . . . , Tm) ¹∗
T (T ′′

1 , . . . , T ′′
o) and get T ¹T T ′′ with Rule (Comp). ¥

We are not aware that the rooted tree embedding has been used elsewhere.
Hence, we provide a proof that it is a wqo on trees of bounded height.

Proposition 8.1.7 (The Rooted Tree Embedding is a WQO)
If (A,¹) is a wqo then (T (A)n,¹T) is a wqo for all n ∈ N.

The proposition is established by an induction on n, where Higman’s result is
applied in the induction step. For a clean proof, we require some basics on wqos.
To keep the presentation self-contained, we provide the proofs of all lemmas.

Consider an infinite sequence (ai)i∈N in the set A. An infinite subsequence
(af(i))i∈N is defined by a strictly monotonic function f : N → N. A function is
strictly monotonic if i < j implies f(i) < f(j).

Lemma 8.1.8
If (A,¹) is a wqo then every infinite sequence (ai)i∈N contains an infinite in-
creasing subsequence (af(i))i∈N, i.e., af(i) ¹ af(i+1) for all i.

Proof
Consider an infinite sequence (ai)i∈N. Take the subsequence of elements and(i)

that are not dominated by subsequent elements, i.e., there is no j with nd(i) < j
so that and(i) ¹ aj . This sequence is finite due to the wqo assumption (an infinite
sequence (and(i))i∈N would contain comparable elements). The lemma holds. ¥

We apply the lemma to show that wqos are closed under Cartesian products.

Lemma 8.1.9
Let (A,¹) and (B,⊑) be two wqos. Then (A×B,¹⊑) is a wqo, where (a, b) ¹⊑
(a′, b′) iff a ¹ a′ and b ⊑ b′.

Proof
Let ((ai, bi))i∈N be an infinite sequence in A × B. Since (ai)i∈N is an infinite
sequence in A and (A,¹) is a wqo, there is an infinite increasing subsequence
(af(i))i∈N of (ai)i∈N by Lemma 8.1.8. Consider the subsequence ((af(i), bf(i)))i∈N

of ((ai, bi))i∈N. As (bf(i))i∈N is infinite and (B,⊑) is a wqo, there are i < j so
that bf(i) ⊑ bf(j). With strict monotonicity, we found indices f(i) < f(j) with
af(i) ¹ af(j) and bf(i) ⊑ bf(j). Thus, (af(i), bf(i)) ¹⊑ (af(j), bf(j)) holds. ¥

208

8.1 Well-Quasi-Orderings and the Rooted Tree Embedding

It is interesting to note that an induction on the previous lemma proves Dick-
son’s result, which is well-known in Petri net theory. It states that for every k ∈ N

the set (Nk,≤k) is wqo, where v ≤k w holds for two vectors v = (v1, . . . , vk) and
w = (w1, . . . , wk), if vi ≤ wi for all i. By definition, wqos are closed under taking
subsets.

Lemma 8.1.10
If (A,¹) be a wqo and B ⊆ A, then (B,¹) is a wqo.

If we have a qo (X,¹) whose subsets (A,¹) and (B,¹) are wqos, then the
union (A ∪ B,¹) is a wqo. Wqos are not closed under arbitrary union. More
precisely, if (A,¹) and (B,⊑) are wqos then (A ∪ B,¹ ∪ ⊑) is a wqo only if A
and B are disjoint. Otherwise, transitivity (and hence even qo) may fail.

Lemma 8.1.11
Let (X,¹) be a qo with A, B ⊆ X. If (A,¹) and (B,¹) are wqos then (A∪B,¹)
is a wqo.

Proof
Let (ci)i∈N ↓A be the projection of the infinite sequence (ci)i∈N in A∪B onto the
elements in A and similar for (ci)i∈N ↓B. If both sequences were finite, (ci)i∈N

would be finite as it consists of elements in A and B only. A contradiction.
Thus, at least one of the sequences, say (ci)i∈N ↓ A, has to be infinite. Since
(ci)i∈N ↓A = (cf(i))i∈N is a sequence in A and (A,¹) is a wqo, there are i < j
with cf(i) ¹ cf(j). As f is strictly monotonic, we have indices f(i) < f(j) with
cf(i) ¹ cf(j). ¥

If we already established a set (A,¹) to be wqo, then of course any larger
ordering ⊑ that includes ¹ will also yield a wqo.

Lemma 8.1.12
If (A,¹) is a wqo and ¹⊆⊑ (set inclusion) then (A,⊑) is a wqo.

Before we turn to the proof of Proposition 8.1.7, we state a set-theoretic obser-
vation. The trees of height at most n+1 in T (A) can be viewed as the Cartesian
product of A with the trees of height at most n.

Lemma 8.1.13 (and Definition)
Let T (A)+n := T (A)∗n \ {ε} denote the non-empty sequences of trees of height at
most n. With this definition, the following equality holds:

A × T (A)+n = T (A)n+1 \ T (A)0.

209

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Proof
The inclusion from left to right is clear. To show the reverse direction, consider
T ∈ T (A)n+1 \ T (A)0. This means T = (a, (T1, . . . , Tm)) with height(Ti) ≤ n for
all i. We delay the proof of this fact for a moment. Thus, all Ti are in T (A)n and
so (T1, . . . , Tm) is in T (A)+n . We conclude T = (a, (T1, . . . , Tm)) ∈ A × T (A)+n .

To see that T = (a, (T1, . . . , Tm)) with height(Ti) ≤ n has to hold, assume
height(Ti) > n for some Ti. Then

height(T) = 1 + max{height(Ti) p 1 ≤ i ≤ m} > 1 + n

and T /∈ T (A)n+1, a contradiction. If T = a, the height would be zero, which
means T ∈ T (A)0 and thus T /∈ T (A)n+1 \ T (A)0. Again a contradiction. ¥

Proof (of Proposition 8.1.7)
We do an induction on n.

Base Case Consider T (A)0. Since T (A)0 = A, a sequence (Ti)i∈N in T (A)0 is
a sequence in A. Since (A,¹) is a wqo, there are indices i < j with Ti = ai ¹
aj = Tj . With Rule (Elem) we conclude Ti ¹T Tj .

Induction Step Assume (T (A)n,¹T) is a wqo for some n ∈ N. We prove that
(T (A)n+1,¹T) is a wqo. With Higman’s result, (T (A)∗n,¹∗

T) is a wqo. Since
T (A)+n ⊆ T (A)∗n, we conclude that (T (A)+n ,¹∗

T) is a wqo with Lemma 8.1.10.
With Lemma 8.1.9, the product (A×T (A)+n ,¹¹∗

T) is a wqo. Lemma 8.1.13 yields
the equality A × T (A)+n = T (A)n+1 \ T (A)0. Thus, (T (A)n+1 \ T (A)0,¹¹∗

T) is
a wqo. Below we prove that ¹¹∗

T ⊆ ¹T . Lemma 8.1.12 allows us to take the
larger ordering, so (T (A)n+1 \T (A)0,¹T) is a wqo. Since (T (A)0,¹T) is a wqo,
the union ((T (A)n+1 \ T (A)0)∪T (A)0,¹T) is a wqo by Lemma 8.1.11. It is the
set (T (A)n+1,¹T) and so the statement holds.

To see that ¹¹∗
T ⊆ ¹T , consider (a, (T1, . . . , Ti)) ¹¹∗

T (a′, (T ′
1, . . . , T

′
j)). This

means, a ¹ a′ and (T1, . . . , Ti) ¹
∗
T (T ′

1, . . . , T
′
j). With Rule (Comp), we conclude

(a, (T1, . . . , Ti)) ¹T (a′, (T ′
1, . . . , T

′
j)). ¥

The rooted tree embedding is no wqo on the set of all trees over A. Consider
the sequence of trees where the height grows in every step, but no new branches
are created.

Example 8.1.14 (Counterexample for Wqo on T (A))
Let T1 = a, T2 = (a, (a)), T3 = (a, (a, (a))) etc. All these trees are incomparable,
i.e., for all i < j we have Ti 6¹T Tj . Hence, (T (A),¹T) is not a wqo. ¨

210

8.2 Well-Structure and Decidability in Bounded Depth

8.2 Well-Structure and Decidability in Bounded Depth

Our main result states that processes of bounded depth have well-structured
transition systems (WSTS) [Fin90, AČJT00, FS01]. A WSTS is an image-finite
transition system (S, Ã) with a wqo ¹ on the states, which is required to be a
simulation. By definition, the relation s ¹ t is a simulation if state t imitates the
transition behaviour of s.

Definition 8.2.1 (Well-Structured Transition System)
A well-structured transition system is a triple (S, Ã,¹) where S is a set of states,
Ã ⊆ S×S is a transition relation, and ¹ ⊆ S×S is a wqo and a simulation. This
means the following implication holds for all s ¹ t: if s Ã s′ then there is t′ ∈ S
with t Ã t′ and s′ ¹ t′. The WSTS has a non-terminating computation from
s0 ∈ S if an infinite sequence s0 Ã s1 Ã . . . exists. The set of states reachable
from s0 is Reach(s0) := {s ∈ S p s0 Ã

∗ s}. ¨

It is well-known that Petri nets have well-structured transition systems with
Dickson’s ordering (cf. Section 8.1). A comprehensive overview of models with
WSTS can be found in [FS01].

Consider the WSTS (S, Ã,¹). If Ã is effectively computable and ¹ is de-
cidable then the following algorithm decides termination and infinity of states
[Fin90, FS01]. For s0 ∈ S, we construct the finite reachability tree FRT (s0).
The root is labelled by s0. For every vertex labelled by s in the tree, we create
a new vertex for every successor t of s. We connect the vertex labelled by s and
the new vertex. If there is a vertex labelled by s′ on the path from the root to
the new vertex with s′ ¹ t, we label the new vertex by t+. Otherwise we label it
by t. We do not create successors for vertices t+. The idea is that t with s′ ¹ t
can simulate the behaviour of s′ and thus repeat s′ Ã . . . Ã t. Figure 8.2 shows
the finite reachability tree of a Petri net transition system. It is interesting to
compare it with the coverability tree in Figure 2.4. The latter also determines
the limits (1, 0, ω) of computation sequences [Fin90].

.

.

•

s0 s1 s2

t0 t1
(1, 0, 0) (0, 1, 0) (1, 0, 1)+

Figure 8.2:
A Petri net and the finite reachability tree FRT ((1, 0, 0)) of its transition
system. Since (1, 0, 0) ≤3 (1, 0, 1) but (1, 0, 1) 6≤3 (1, 0, 0), we conclude that
the Petri net does not terminate and that it has an infinite state space.

211

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Proposition 8.2.2 ([Fin90, FS01])
A WSTS (S, Ã,¹) has a non-terminating computation from s0 ∈ S if and only
if FRT (s0) contains a vertex t+. If ¹ is a partial ordering,1 then Reach(s0) is
infinite if and only if FRT (s0) contains t+ with some predecessor s so that s ¹ t+
and t+ 6¹ s. As ¹ is a wqo, the tree FRT (s0) is finite and both problems are
decidable.

To instantiate the framework, we define a qo ¹P on processes and prove it to
be a wqo on Reach(P) where P is bounded in depth (Section 8.2.1) and to be
a simulation (Section 8.2.2). In fact, our wqo is also a partial ordering but we
omit the proof here. We apply the decision procedures in Section 8.2.3.

8.2.1 An Adequate Well-Quasi-Ordering

Our wqo ¹P on processes is derived from a wqo on fragments. The idea of the
fragment ordering ¹F is to use the rooted tree embedding and close it under
structural congruence. The leafs in the trees are sequential processes or element-
ary fragments. Therefore, Rule (Elem) is mimicked by Rule (1): F e ¹F F e.
Fragment νa.(Πi∈IFi) is dominated by νa.(Πi∈IGi | Πj∈JGj) if the Gi dominate
the Fi. This imitates Rule (Comp). If F ′ is smaller than G′ then every F ≡ F ′

is smaller than G ≡ G′, Rule (3).

Definition 8.2.3 (Fragment Ordering)
The fragment ordering ¹F ⊆ PF × PF is defined by:

(1)
F e ¹F F e

(2)
Fi ¹F Gi for all i ∈ I

νa.(Πi∈IFi) ¹F νa.(Πi∈IGi | Πj∈JGj)

(3)
F ≡ F ′ ¹F G′ ≡ G

F ¹F G.

¨

While reflexivity of ¹F is immediate, the proof of transitivity is more involved.
It follows from Lemma 8.2.19 and we defer it until Section 8.2.2.

Lemma 8.2.4
(PF ,¹F) is a qo.

The crucial point is to prove that ¹F is a wqo on fragments of bounded depth.
We sketch the proof before we plunge into the details.

1A partial ordering is a quasi-ordering that is antisymmetric, i.e., if s ≤ t and t ≤ s then
s = t.

212

8.2 Well-Structure and Decidability in Bounded Depth

Proof Sketch
The idea is to conclude from wqo of the rooted tree embedding to wqo of the
fragment ordering. To this end, we interpret fragments F as trees T [[F]] (Defini-
tion 8.2.5). More precisely, we take the syntax tree of a fragment but do not de-
compose sequential processes. This means, the vertices in T [[F]] are the sequential
processes and the active restrictions in F (Lemma 8.2.6). The height of the result-
ing trees is the nesting of restrictions in the fragments, i.e., ||F ||ν = height(T [[F]])
holds (Lemma 8.2.7). Hence, we can now understand a sequence of fragments
(Fi)i∈N as a sequence of trees (T [[Fi]])i∈N over a set A, which contains the se-
quential processes and the active restrictions in all Fi.

If the height of the trees is bounded, wqo of the rooted tree embedding ensures
that there are two comparable trees, i.e., T [[Fi]] ¹T T [[Fj]] for some i < j. The
aim is now to conclude the fragment ordering Fi ¹F Fj from this. Lemma 8.2.8
shows that this conclusion is valid as long as A is ordered by the identity. Com-
bined with the requirement that (A, id) has to be a wqo in order for idT to be a
wqo (Proposition 8.1.7), we conclude that A has to be finite (exactly the finite
sets are wqos with the identity). To sum up, the sequence of fragments (Fi)i∈N

has to satisfy the following requirements. (1) The nesting of restrictions ||Fi||ν
needs to be bounded to ensure the height of the trees is bounded. (2) The se-
quential processes S(Fi) and the active restricted names arn(Fi) in the fragments
have to belong to a set A, to ensure we get trees over A. (3) The set A has to
be finite to conclude from rooted tree embedding to fragment ordering.

Proposition 8.2.13 shows that we can in fact assume our sequence of fragments
to satisfy these requirements. With the theory of derivatives in Section 4.2, we
construct fragments that consist of a finite set of sequential processes. With
the theory of anchored fragments in Section 7.3, we rewrite these fragments to
anchored fragments so that the nesting of restrictions is bounded by the depth.
There may still be arbitrarily many active restricted names composed in parallel:

νa.(νb.K⌊a, b⌋) → νa.(νb.K⌊a, b⌋ | νc.K⌊a, c⌋) → . . .

The idea is to reuse restricted names or, stated differently, to use one restricted
name for every nesting level. So, the above sequence is replaced by

νu0.(νu1.K⌊u0, u1⌋) → νu0.(νu1.K⌊u0, u1⌋ | νu1.K⌊u0, u1⌋) → . . .

Technically, the function con0 maps a fragment F with ||F ||ν = n to a fragment
con0(F) where the active restrictions are included in {u0, . . . , un} (Lemma 8.2.10).
Requirements (1), (2), and (3) above are met. We prove that the fragment or-
dering is a wqo in Lemma 8.2.14. ¥

We start with the interpretation of fragments as trees. An elementary fragment
F e is a tree consisting of a single leaf, a composed fragment νa.(F1 | . . . | Fn)
yields a composed tree where a is the root.

213

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Definition 8.2.5 (Interpretation of Fragments as Trees)
The function T [[−]] interprets a fragment F ∈ PF as a tree T [[F]] in T (A), where
the set A contains S(F) ∪ arn(F):

T [[F e]] := F e T [[νa.(F1 | . . . | Fn)]] := (a, (T [[F1]], . . . , T [[Fn]])).

¨

Lemma 8.2.6 shows that the codomain is correct, i.e., if the set A contains the
sequential processes and the active restrictions in F , then T [[F]] is a tree over A.

Lemma 8.2.6 (The Codomain of T [[−]] is Correct)
For every fragment F ∈ PF with S(F) ∪ arn(F) ⊆ A it holds T [[F]] ∈ T (A).

Since the rooted tree embedding is a wqo only on trees of bounded height, it is
crucial that the tree interpretation T [[F]] yields trees where the height is related
to the depth of F . The following lemma relates it to the nesting of restrictions.
We create the relationship to the depth of F by translating an anchored fragment
FA ≡ F into a tree T [[FA]].

Lemma 8.2.7
For all fragments F ∈ PF we have ||F ||ν = height(T [[F]]).

The following lemma allows us to conclude fragment ordering F ¹F G from
rooted tree embedding T [[F]] ¹T T [[G]], as long as the trees are ordered by the
identity.

Lemma 8.2.8 (From Rooted Tree Embedding to Fragment Ordering)
Consider a qo (A, id). If T [[F]]idT T [[G]] then F ¹F G holds for all fragments
F, G ∈ PF .

Proof
We do an induction on the structure of F and show that for all G the ordering
T [[F]]idT T [[G]] implies F ¹F G.

Base Case An elementary fragment F e is interpreted as a a single leaf, T [[F e]] =
F e. Since we assume T [[F e]]idT T [[G]] and only Rule (Elem) allows us to derive
an ordering on leaves, we conclude that T [[G]] = Ge is a single leaf as well. As
F eidT Ge means F e = Ge, we conclude F e ¹F Ge with Rule (1).

Induction Step Assume the proposition holds for the fragments F1, . . . , Fm

and consider F = νa.(F1 | . . . | Fm). We derive the ordering

T [[F]] = (a, (T [[F1]], . . . , T [[Fm]]))idT T [[G]]

214

8.2 Well-Structure and Decidability in Bounded Depth

only with Rule (Comp). Thus, T [[G]] = (b, (T [[G1]], . . . , T [[Gn]])) with a = b
and (T [[F1]], . . . , T [[Fm]])id∗

T (T [[G1]], . . . , T [[Gn]]). Higman’s ordering id∗
T implies

there are indices 1 ≤ i1 < . . . < im ≤ n with T [[Fk]]idT T [[Gik
]]. The hypothesis

gives Fk ¹F Gik
. With Rule (2), we conclude

νa.(F1 | . . . | Fm) ¹F νa.(Gi1 | . . . | Gim | Πi∈Irem Gi),

where the index set Irem contains the remaining indices different from the ik.
With structural congruence we reorder the fragments Gi:

νa.(F1 | . . . | Fm) ¹F νa.(Gi1 | . . . | Gim | Πi∈Irem Gi) ≡ νa.(G1 | . . . | Gn).

Rule (3) yields F ¹F G. ¥

To conclude ¹F is a wqo from the fact that idT is a wqo with Lemma 8.2.8,
(A, id) needs to be a wqo (cf. Proposition 8.1.7). This is the case if (and only
if) A is finite. Thus, we need fragments that consist of a finite set of sequential
processes and a finite set of restricted names. As discussed above, the idea is to
reuse restricted names. Technically, we apply the function coni to a give a unique
name ui to every nesting level i of restrictions. This means, for fragments coni(F)
we relax the requirement that a name is bound at most once, Convention 2.1.11.

Definition 8.2.9 (coni : PF → PF)
For every i ∈ N the function coni : PF → PF renames the active restrictions in
a fragment into fresh names:

coni(F
e) := F e

coni(νa.(F1 | . . . | Fn)) := νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a}),

where without loss of generality {ui} is fresh for all coni+1(Fk) with 1 ≤ k ≤ n,
i.e., {ui} ∩ (fn(coni+1(Fk)) ∪ bn(coni+1(Fk))) = ∅. ¨

Of course, renaming yields structurally congruent fragments, i.e., F ≡ coni(F),
and the nesting of restrictions ||F ||ν does not change in coni(F). Most important
is the fact that the nesting of restrictions ||F ||ν determines the number of restric-
ted names in coni(F) in the following way: arn(coni(F)) ⊆ {ui, . . . , ui+||F ||ν}.
Finally, the function coni only changes the sequential processes by a substitution.

Lemma 8.2.10 (Properties of coni)
For every F ∈ PF and every i ∈ N we have coni(F) ∈ PF , coni(F) ≡ F ,
||coni(F)||ν = ||F ||ν , arn(coni(F)) ⊆ {ui, . . . , ui+||F ||ν}, and S(coni(F)) = S(F)σ,
where σ : arn(F) → arn(coni(F)).

215

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Proof
We do an induction on the structure of fragments. The base case of element-
ary fragments is trivial. We directly turn to the induction step where we as-
sume the proposition holds for the fragments F1, . . . , Fn and consider F =
νa.(F1 | . . . | Fn). We have

coni(F) = νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a}).

By the hypothesis, each coni+1(Fk) is a fragment. As substitutions only change
free names, the set of fragments is closed under the application of substitutions
and coni+1(Fk){ui/a} is a fragment. Since F is a fragment, we have a ∈ fn(Fk).
Free names are preserved under structural congruence, so a ∈ fn(coni+1(Fk))
holds. Hence, ui ∈ fn(coni+1(Fk)){ui/a} = fn(coni+1(Fk){ui/a}) by application
of Lemma 2.1.16. We conclude that coni(F) is a fragment in PF .

To show structural congruence, we observe:

νa.(F1 | . . . | Fn)

(Hypothesis) ≡ νa.(coni+1(F1) | . . . | coni+1(Fn))

(α-conversion) ≡ νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a})

(Def. coni) = coni(νa.(F1 | . . . | Fn)).

To see that the nesting of restrictions ||F ||ν does not change under coni, we exploit
the invariance of || − ||ν under the application of substitutions:

||coni(F)||ν

(Def. coni) = ||νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a})||ν

(Def. || − ||ν) = 1 + max{||coni+1(Fk){ui/a}||ν p 1 ≤ k ≤ n}

(||Fσ||ν = ||F ||ν) = 1 + max{||coni+1(Fk)||ν p 1 ≤ k ≤ n}

(Hypothesis) = 1 + max{||Fk||ν p 1 ≤ k ≤ n}

(Def. || − ||ν) = ||F ||ν .

We check the restricted names:

arn(coni(F))

(Def. coni) = arn(νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a}))

(Def. arn) = {ui} ∪ arn(coni+1(F1){ui/a}) ∪ . . . ∪ arn(coni+1(Fn){ui/a}).

Substitutions do not change the active restrictions, i.e., arn(Fσ) = arn(F). With
this observation, we continue the equation:

= {ui} ∪ arn(coni+1(F1)) ∪ . . . ∪ arn(coni+1(Fn))

(Hypothesis) ⊆ {ui} ∪ {ui+1, . . . , ui+1+||F1||ν} ∪ . . . ∪ {ui+1, . . . , ui+1+||Fn||ν}

216

8.2 Well-Structure and Decidability in Bounded Depth

(Def. max) = {ui, . . . , ui+1+max{||Fk||ν p 1≤k≤n}}

(Def. || − ||ν) = {ui, . . . , ui+||F ||ν}.

Finally, we consider the sequential processes:

S(coni(F))

(Def. coni) = S(νui.(coni+1(F1){ui/a} | . . . | coni+1(Fn){ui/a}))

(Def. S) = S(coni+1(F1){ui/a}) ∪ . . . ∪ S(coni+1(Fn){ui/a})

(Lemma 2.1.21) = S(coni+1(F1)){ui/a} ∪ . . . ∪ S(coni+1(Fn)){ui/a}

(Hypothesis) = S(F1)σ1{ui/a} ∪ . . . ∪ S(Fn)σn{ui/a},

where σk : arn(Fk) → arn(coni+1(Fk)). By Convention 2.1.11, a name is bound
at most once in F . Hence, the sets of restricted names arn(Fk) are all disjoint
and disjoint with {a}. Consequently, the substitutions σk as well as {ui/a},
which are sets of pairs, are disjoint. So their union is well defined:

σ := σ1 ∪ . . . ∪ σn ∪ {ui/a}.

In the following step, we exploit the equality S(Fk)σk{ui/a} = S(Fk)σ. To see
that it holds, assume we have a name b ∈ fn(S(Fk)), which is mapped by σ while
it is kept identical by σk{ui/a}. Then there is some σl with b in its domain. This
means, b ∈ arn(Fl) and at the same time free in Fk. Since the bound and free
names are disjoint in F , this cannot be the case. The equality holds:

= S(F1)σ ∪ . . . ∪ S(Fn)σ

(Applic. σ to sets) = (S(F1) ∪ . . . ∪ S(Fn))σ

(Def. S) = (S(νa.(F1 | . . . | Fn))σ.

We check that the domain of σ is arn(F) and the codomain is arn(coni(F)). For
the domain, we have:

arn(F)

= {a} ∪ arn(F1) ∪ . . . ∪ arn(Fn),

which is the domain of σ = σ1 ∪ . . . ∪ σn ∪ {ui/a}. For the codomain, we get

arn(coni(F))

(Def. arn) = {ui} ∪ arn(coni+1(F1){ui/a}) ∪ . . . ∪ arn(coni+1(Fn){ui/a})

= {ui} ∪ arn(coni+1(F1)) ∪ . . . ∪ arn(coni+1(Fn)),

where we again exploit the invariance of the active restrictions under substitu-
tions. The last term is the codomain of σ, which concludes the proof. ¥

217

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Example 8.2.11
Consider FA = νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋). An application of
con0 yields con0(F

A) = νu0.(νu1.K⌊u0, u1⌋ | νu1.L⌊u0, u1⌋ | νu1.L⌊u0, u1⌋). ¨

In the next Proposition 8.2.13, we construct the particular fragments that
satisfy the Requirements (1), (2), and (3) above. In Section 8.2.3, we consider a
larger example that illustrates the concept.

Remark 8.2.12
The proof of Proposition 8.2.13 exploits all deeper results in this thesis, from the
characterisation of structural congruence with the restricted form in Section 3.2
over the construction of derivatives in Section 4.2 to the anchored fragments in
Section 7.3. In the following Lemma 8.2.14, we combine the proposition with
the rooted tree embedding in Section 8.1 to show that the fragment ordering is
a wqo. With respect to the required foundations, we consider Proposition 8.2.13
and Lemma 8.2.14 to be the deepest results in this thesis. At the same time,
they are the most beautiful results as they shed new light on the order-theoretic
structure of the transition systems of π-Calculus processes.

We furthermore remark that the proofs of Proposition 8.2.13 and Lemma 8.2.14
are both remarkably simple: straightforward derivations. All previous results fit
together smoothly and are just plugged in at the right position. This justifies our
claim that the elaborated theories—restricted form, derivatives, depth, anchored
fragments, and rooted tree embedding—are natural notions. They should be ap-
plicable also outside the theory of structural stationarity. ¨

Proposition 8.2.13 (Particular Fragments)
Consider process P ∈ P and the reachable fragment F ∈ fg (rf (Reach(P))).
There is a fragment G ≡ F so that ||G||ν ≤ 2||F ||D − 1, arn(G) ⊆ {u0, . . . , u||G||ν},
and S(G) ⊆ {Qσ p Q ∈ derivatives(P) and σ : fn(Q) → fn(P) ∪ arn(G)}.

Proof
Let F ∈ fg (rf (Reach(P))) be reachable. With Proposition 4.2.2, we have

F ≡ νã.Q 6=ν , where Q 6=ν = Πi∈IQiσi

with Qi ∈ derivatives(P) and σi : fn(Qi) → ã ∪ fn(P). With Lemma 3.2.7, we
compute the restricted form νã.Q 6=ν ≡ rf (νã.Q 6=ν). Proposition 3.2.10 yields
restricted equivalence:

F = rf (F) ≡rf rf (νã.Q 6=ν).

Since F is a fragment, restricted equivalence ensures rf (νã.Q 6=ν) is a fragment.
For rf (νã.Q 6=ν), we compute the structurally congruent anchored fragment with

218

8.2 Well-Structure and Decidability in Bounded Depth

Proposition 7.3.4. We denote it by FA. Applying con0 to FA yields the desired
fragment G, i.e., we now have

G = con0(F
A) ≡ FA ≡ rf (νã.Q 6=ν) ≡ νã.Q 6=ν ≡ F.

We first check the nesting of restrictions:

||G||ν

(Def. G) = ||con0(F
A)||ν

(Lemma 8.2.10) = ||FA||ν

(Corollary 7.4.5) ≤ 2||FA||D − 1

(Invariance of || − ||D under ≡) = 2||F ||D − 1.

The active restrictions are included in the set {u0, . . . , u||G||ν} with the properties
of con0. More precisely:

arn(G)

(Def. G) = arn(con0(F
A))

(Lemma 8.2.10) ⊆ {u0, . . . , u||FA||ν}

(||G||ν = ||FA||ν , Lemma 8.2.10) ⊆ {u0, . . . , u||G||ν}.

It remains to be shown that the sequential processes satisfy the conditions above.
In the following chain of equations, we omit the domains and codomains of σ and
σ′. We discuss that they are correct afterwards:

S(G)

(Def. G) = S(con0(F
A))

(Lemma 8.2.10) = S(FA)σ

(Proposition 7.3.4) = S(rf (νã.Q 6=ν))σ

(Lemma 3.2.7) = S(νã.Q 6=ν)σ

(Def. S, form of Q6=ν) = {Qσ′
p Q ∈ derivatives(P)}σ

= {Qσ′σ p Q ∈ derivatives(P)}.

We now have to show that σ′σ maps fn(Q) into fn(P)∪arn(G). With Lemma 2.1.15,
it is sufficient to show fn(Qσ′σ) ⊆ fn(P) ∪ arn(G). We prove this as follows:

fn(Qσ′σ)

(Qσ′σ ∈ S(G), Lemma 2.1.22) ⊆ fn(G) ∪ arn(G)

(fn(G) = fn(F), Lemma 2.1.19) = fn(F) ∪ arn(G).

219

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Let F be a fragment in fg (rf (R)), where R is a reachable process of P . This
means, rf (R) = Rrf

1 | F | Rrf
2 . Hence, the free names of F are included in the

free names of rf (R). This continues the inclusion:

⊆ fn(rf (R)) ∪ arn(G)

(rf (R) ≡ R, Lemma 2.1.19) = fn(R) ∪ arn(G)

(R ∈ Reach(P), Lemma 2.1.37) ⊆ fn(P) ∪ arn(G).

This concludes the proof. ¥

The fragment ordering is a wqo on fragments of bounded depth.

Lemma 8.2.14
For every process P ∈ PD<∞ the set (fg (rf (Reach(P))) ,¹F) is a wqo.

Proof
Consider P ∈ PD<∞ where kD ∈ N is a bound on the depth of the reachable
fragments. Our aim is to understand the reachable fragments as trees over a
suitable set A. This set is defined by

A := {u0, . . . , u2kD−1}

∪ {Qσ p Q ∈ derivatives(P) and σ : fn(Q) → fn(P) ∪ {u0, . . . , u2kD−1}}.

Since the set of derivatives is finite by Lemma 4.2.5, the set A is finite as well.
Any finite set is a wqo with the identity as ordering, i.e., (A, id) is a wqo.

Consider a sequence (Fi)i∈N in fg (rf (Reach(P))). We show that it contains
two comparable elements. Every Fi is structurally congruent with a fragment Gi

as defined in Proposition 8.2.13: ||Gi||ν ≤ 2||Fi||D −1, arn(Gi) ⊆ {u0, . . . , u||Gi||ν},
and S(Gi) ⊆ {Qσ p Q ∈ derivatives(P) and σ : fn(Q) → fn(P) ∪ arn(Gi)}.
To see that the tree T [[Gi]] is in T (A), the set A needs to contain all active
restrictions and sequential processes in Gi. This is the case, because

||Gi||ν ≤ 2||Fi||D − 1 ≤ 2kD − 1

with the boundedness assumption on ||Fi||D. Hence, T [[Gi]] ∈ T (A) for all i.
According to Lemma 8.2.7, the height of T [[Gi]] is equal to the nesting of

restrictions in Gi. Thus, we have a sequence (T [[Gi]])i∈N of trees in T (A)2kD−1.
With Proposition 8.1.7, (T (A)2kD−1, idT) is a wqo. Hence there are i < j with
T [[Gi]]idT T [[Gj]]. Since A is ordered by the identity, Gi ¹F Gj with Lemma 8.2.8.
With Rule (3), we conclude Fi ¹F Fj . The lemma holds. ¥

Recall that the states in the transition system T (P) are the classes of the
reachable processes of P under structural congruence. Hence, to prove the trans-
ition system of a process P ∈ PD<∞ to be well-structured requires a qo ¹P on

220

8.2 Well-Structure and Decidability in Bounded Depth

the congruence classes Reach(P)/≡. The idea is to exploit the restricted form of
a process and define ¹P in terms of the fragment ordering. We have [Q] ¹P [R]
if every fragment in the restricted form of Q is dominated by a fragment in the
restricted form of R. Since parallel composition is associative and commutative,
we can assume that the fragments Fi in rf (Q) and Gi in rf (R) are ordered so
that Fi is dominated by Gi. For example, [Q] = [F | F] ¹P [G | G′ | H] = [R] if
F ¹F G and F ¹F G′.

Definition 8.2.15 (¹P ⊆ P/≡ × P/≡)
With Lemma 3.2.7, every process P ∈ P is structurally congruent to a parallel
composition of fragments. Therefore, we define the relation ¹P ⊆ P/≡ ×P/≡ by

[Πi∈IFi] ¹P [Πi∈IGi | Πj∈JGj],

where Fi ¹F Gi for all i ∈ I. ¨

Note that in particular the stop process 0 is dominated by any process as it is
represented by Πi∈∅Fi, where the index set is empty.

Lemma 8.2.16
(P/≡,¹P) is a qo.

Proof
Reflexivity of ¹P follows immediately from reflexivity of ¹F .

Transitivity Assume that [P] ¹P [Q] ¹P [R]. With [P] ¹P [Q], we have
[P] = [Πi∈IFi] ¹P [Πi∈IGi | Πj∈JGj] = [Q] so that Fi ¹F Gi for all i ∈ I.
Similarly, [Q] ¹P [R] means [Q] = [Πk∈KG′

k] and [R] = [Πk∈KHk | Πl∈LHl] so
that G′

k ¹F Hk for all k ∈ K. Since structural congruence and restricted equi-
valence coincide on processes in restricted form due to Corollary 3.2.11, we have
Πi∈IGi | Πj∈JGj ≡rf Πk∈KG′

k. This means, the fragments G′
k can be reordered

so that Πk∈KG′
k ≡rf Πki∈KI

G′
ki

| Πkj∈KJ
G′

kj
with Gi ≡ G′

ki
and Gj ≡ G′

kj
. We

also reorder the fragments Hk: Πk∈KHk ≡rf Πki∈KI
Hki

| Πkj∈KJ
Hkj

so that
G′

ki
¹F Hki

. We now have Gi ≡ G′
ki

¹F Hki
. Rule (3) in the definition of ¹F

yields Gi ¹F Hki
. With transitivity of ¹F , we conclude Fi ¹F Hki

. Transitivity
of ¹P holds:

[P] = [Πi∈IFi]

¹P [Πki∈KI
Hki

| Πkj∈KJ
Hkj

| Πl∈LHl]

= [Πk∈KHk | Πl∈LHl]

= [R].

¥

221

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

The main result in this section states that ¹P is a wqo on the reachable
processes of P ∈ PD<∞. This follows from Lemma 8.2.14 and Higman’s result.

Proposition 8.2.17 (¹P is a WQO for PD<∞)
If P ∈ PD<∞, then (Reach(P)/≡,¹P) is a wqo.

Proof
Consider P ∈ PD<∞. With Lemma 8.2.14, (fg (rf (Reach(P))) ,¹F) is a wqo.
Thus, the words over fg (rf (Reach(P))) are a wqo with the ¹∗

F ordering according
to Higman’s result. We interpret the parallel composition of fragments Πi∈IFi =
Fi1 | . . . | Fin as such a word (Fi1 , . . . , Fin). Since every process Q is structurally
congruent with a process in restricted form, in every infinite sequence ([Pi])i∈N

in Reach(P)/≡ there are i < j with

Pi ≡ Πi∈IFi ¹
∗
F Πj∈JGj ≡ Pj .

The ordering ¹∗
F demands that each Fi is dominated by some Gji

. We reorder
the fragments Gj so that JI contains these indices ji. This gives

[Pi] = [Πi∈IFi] ¹P [Πj∈JI
Gj | Πj∈J\JI

Gj] = [Pj].

Thus, (Reach(P)/≡,¹P) is a wqo. ¥

To conclude, we remark that ¹P is in fact a partial ordering. We omit the proof
as it requires a number of additional insights about the fragment ordering ¹F ,
the number of sequential processes in fragments ||−||S , and structural congruence.

Remark 8.2.18
The ordering ¹P ⊆ P/≡ × P/≡ is antisymmetric and so a partial ordering. ¨

8.2.2 Proof of Simulation

In the proof that ¹P is a simulation, the following Lemma 8.2.19 is crucial.
It relates the fragment ordering F ¹F G with the standard form of F . This
standard form is covered by G in a way that reveals ¹F is a simulation. We do
not use the function sf as it is more convenient in the induction step to have the
freedom of structural congruence.

Lemma 8.2.19
For all F, G ∈ PF we have F ¹F G if and only if F ≡ νã.P 6=ν in standard form
and G ≡ νã.(P 6=ν | R) for some R ∈ P.

222

8.2 Well-Structure and Decidability in Bounded Depth

Proof
⇒ We proceed by induction on the derivations of ¹F . In the base case, we
have elementary fragments F e ¹F F e, which are are non-empty choices or calls
to identifiers and hence in standard form. The proposition holds with R = 0.

Induction Step Let the statement hold for F ¹F G and Fi ¹F Gi with i ∈ I.

Rule (2) Consider νa.(Πi∈IFi) ¹F νa.(Πi∈IGi | Πj∈JGj). By the hypothesis,
we have Fi ≡ νãi.P

6=ν
i and G ≡ νãi.(P

6=ν
i | Ri). Since structural congruence

is preserved by α-conversion, we can assume ãi disjoint from the free names in
P 6=ν

j | Rj , in particular ãj , and from the free names in Gj for all j 6= i. Therefore,
the scope extrusions in the following two systems of congruences are correct. We
start with the form of νa.(Πi∈IFi) and let I = {i1, . . . , in}:

νa.(Πi∈IFi)

(Hypothesis) ≡ νa.(Πi∈Iνãi.P
6=ν
i)

(Scope extrusion) ≡ νa, ãi1 , . . . , ãin .(Πi∈IP 6=ν
i).

To see that the latter process is in standard form, we check that a is in the free
names of some P 6=ν

i . This holds even for all i ∈ I, since a ∈ fn(Fi) = fn(νãi.P
6=ν
i)

by the definition of fragments and the invariance of free names under structural
congruence. For the process νa.(Πi∈IGi | Πj∈JGj) we proceed similarly:

νa.(Πi∈IGi | Πj∈JGj)

(Hypothesis) ≡ νa.(Πi∈Iνãi.(P
6=ν
i | Ri) | Πj∈JGj)

(Scope extrusion) ≡ νa, ãi1 , . . . , ãin .(Πi∈I(P
6=ν
i | Ri) | Πj∈JGj)

(Assoc. and commut. |) ≡ νa, ãi1 , . . . , ãin .(Πi∈IP 6=ν
i | Πi∈IRi | Πj∈JGj)

(R := Πi∈IRi | Πj∈JGj) ≡ νa, ãi1 , . . . , ãin .(Πi∈IP 6=ν
i | R).

Rule (3) Consider F ′ ¹F G′ where F ′ ≡ F and G′ ≡ G. By the hypothesis,
we have structurally congruent processes in the required form for F and G. By
transitivity of structural congruence, they also work for F ′ and G′.

⇐ Let F ≡ νã.P 6=ν and G ≡ νã.(P 6=ν | R) with P 6=ν = Πi∈IPi. We re-
strict the scopes of all a ∈ ã to get fragments:

νã.P 6=ν

(Let ã = ak, . . . , a1) = νak, . . . , a1.(Πi∈IPi)

(i ∈ Il iff al ∈ fn(Pi)) ≡ νak.(. . . νa1.(Πi∈I1Pi) . . . Πi∈Ik\(Ik−1∪...∪I1)Pi).

Similarly, we get

νã.(P 6=ν | R)

223

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

(Let rf (R) = Πj∈JHj) ≡ νak, . . . , a1.(Πi∈IPi | Πj∈JHj)

(j ∈ Jl iff al ∈ fn(Hj)) ≡ νak.(. . . νa1.(Πi∈I1Pi | Πj∈J1
Hj) . . .

Πi∈Ik\(Ik−1∪...∪I1)Pi | Πj∈Jk\(Jk−1∪...∪J1)Hj).

Since fragments cannot be decomposed (cf. definition of ≡rf) and since G is a
fragment, for every Hj there is a name al ∈ fn(Hj). With Rule (1) and (2), we
establish the fragment ordering

νak.(. . . νa1.(Πi∈I1Pi) . . . Πi∈Ik\(Ik−1∪...∪I1)Pi)

¹F νak.(. . . νa1.(Πi∈I1Pi | Πj∈J1
Hj) . . .

Πi∈Ik\(Ik−1∪...∪I1)Pi | Πj∈Jk\(Jk−1∪...∪J1)Hj).

Since F ≡ νã.P 6=ν and G ≡ νã.(P 6=ν | R), we conclude F ¹F G with Rule (3)
and the congruences for νã.P 6=ν and νã.(P 6=ν | R) above. ¥

The lemma immediately shows that the fragment ordering is transitive.

Proof (of Lemma 8.2.4)
Consider F, G, H ∈ PF with F ¹F G ¹F H. We establish F ¹F H. As F ¹F G,
Lemma 8.2.19 gives F ≡ νã.P 6=ν in standard form and G ≡ νã.(P 6=ν | R) for
some R ∈ P. We inspect G:

G

≡ νã.(P 6=ν | R)

(Lemma 2.1.28: sf (R) = νãR.R 6=ν) ≡ νã.(P 6=ν | νãR.R 6=ν)

(Scope extrusion) ≡ νã, ãR.(P 6=ν | R 6=ν).

We justify the scope extrusion in the last step. By Convention 2.1.11, the free
names in P 6=ν are disjoint from the bound names in R. With Lemma 2.1.28,
we get ãR = arn(sf (R)) ⊆ arn(R). Hence, ãR ∩ fn(P 6=ν) = ∅ and the scope
extrusion is correct.

As G ¹F H, Lemma 8.2.19 gives G ≡ νc̃.Q 6=ν and H ≡ νc̃.(Q6=ν | S) for some
process S ∈ P. We now have νc̃.Q 6=ν ≡ G ≡ νã, ãR.(P 6=ν | R 6=ν), where the first
and the last process are in standard form. Structural congruence and standard
equivalence coincide on processes in standard form according to Corollary 2.1.32,
i.e., we have νã, ãR.(P 6=ν | R 6=ν) ≡sf νc̃.Q 6=ν . With Lemma 2.1.33, there is a
bijective substitution σ : c̃ → ã ∪ ãR so that Q 6=νσ ≡sf P 6=ν | R 6=ν . We apply
this substitution to H and get

H

(Form of H) ≡ νc̃.(Q6=ν | S)

(Applic. σ above) ≡ νã, ãR.(Q 6=νσ | Sσ)

224

8.2 Well-Structure and Decidability in Bounded Depth

(Q 6=νσ ≡sf P 6=ν | R 6=ν above) ≡ νã, ãR.(P 6=ν | R 6=ν | Sσ)

(Scope extrusion, ãR ∩ fn(P 6=ν) = ∅ above) ≡ νã.(P 6=ν | νãR.(R 6=ν | Sσ)).

Lemma 8.2.19 gives F ¹F H. ¥

We now show that the ordering ¹P is a simulation relation. This concludes
the proof that processes of bounded depth have WSTS. Before we turn to the
technicalities, we briefly outline our arguments. The ordering

[P] = [Πi∈IFi] ¹P [Πi∈IGi | Πj∈JGj] = [Q],

means each fragment Fi is dominated by Gi in the fragment ordering, i.e.,
Fi ¹F Gi. For the moment, let us assume we have a single fragment F ¹F G.
Lemma 8.2.19 shows that F is structurally congruent with a process νã.P 6=ν in
standard form, while G is structurally congruent with νã.(P 6=ν | R). By a case
distinction, we check that νã.P 6=ν → νã.Q 6=ν can be mimicked by νã.(P 6=ν | R) →
νã.(Q 6=ν | R). To show that the resulting processes are related by the fragment
ordering, i.e., to establish [νã.Q 6=ν] ¹P [νã.(Q 6=ν | R)], we apply the direction
from right to left in Lemma 8.2.19. Of course, in the proof of Proposition 8.2.20,
we consider several fragments Fi. We first extrude the scopes of the names ãi

and then proceed in the explained way.

Proposition 8.2.20 (¹P is a Simulation)
The relation ¹P ⊆ P/≡ × P/≡ is a simulation.

Proof
Let [P] = [Πi∈IFi] ¹P [Πi∈IGi | Πj∈JGj] = [Q]. We show that for all [P ′] ∈ P/≡

with [P] →T [P ′] there is [Q′] ∈ P/≡ with [Q] →T [Q′] and [P ′] ¹P [Q′].
The definition of ¹P gives Fi ¹F Gi for all i ∈ I. With Lemma 8.2.19, every Fi

is structurally congruent with a standard form νãi.P
6=ν
i . The Gi are structurally

congruent with νãi.(P
6=ν
i | Ri). Structural congruence allows us to assume that

the names ãi are disjoint from the free names of the other P 6=ν
k , Rk, and the free

names in the processes Gj . Hence, we can extrude the scopes of the name ãi:

P ≡ Πi∈IFi

(Lemma 8.2.19) ≡ Πi∈Iνãi.P
6=ν
i

(Scope extrusion, ã :=
S

i∈I ãi) ≡ νã.(Πi∈IP 6=ν
i)

(P 6=ν := Πi∈IP 6=ν
i) = νã.P 6=ν .

Similarly we get for Q:

Q ≡ Πi∈IGi | Πj∈JGj

(Lemma 8.2.19) ≡ Πi∈Iνãi.(P
6=ν
i | Ri) | Πj∈JGj

225

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

(Scope extrusion, ã defined above) ≡ νã.(Πi∈I(P
6=ν
i | Ri)) | Πj∈JGj

(Assoc. and commut.) ≡ νã.(P 6=ν | R) | Πj∈JGj ,

where P 6=ν is defined above as P 6=ν := Πi∈IP 6=ν
i and R := Πi∈IRi.

Consider the reaction P → P ′. With Rule (Struct) we get νã.P 6=ν → P ′.
According to Proposition 2.1.38, there are three possibilities for this reaction.
Either a process identifier calls its defining equation, a τ -action is consumed,
or two processes communicate. We consider the latter case, where we assume
without loss of generality that the first two processes communicate, i.e., νã.P 6=ν =
νã.(P1 | P2 | P 6=ν

rem) with P1 = M1 + a(x).P ′
1 + N1 and P2 = M2 + a〈b〉.P ′

2 + N2.
Proposition 2.1.38 gives

P ′ ≡ νã.(P ′
1{b/x} | P ′

2 | P 6=ν
rem).

We compute the standard form sf (P ′
1) = νb̃1.P

6=ν
1 and extrude the scope of the

names b̃1. We observe that b̃1 ⊆ bn(P ′
1) ⊆ bn(P1). Hence, with the disjointness

of bn(P1) and fn(P2 | P 6=ν
rem), we can extrude the scope without α-conversion:

νã.(P ′
1{b/x} | P ′

2 | P 6=ν
rem)

(Standard form) ≡ νã.((νb̃1.P
6=ν
1){b/x} | P ′

2 | P 6=ν
rem)

(Applic. σ) = νã.(νb̃1.(P
6=ν
1 {b/x}) | P ′

2 | P 6=ν
rem)

(Scope extrusion) ≡ νã, b̃1.(P
6=ν
1 {b/x} | P ′

2 | P 6=ν
rem)

(Treat P ′
2 similarly) ≡ νã, b̃1, b̃2.(P

6=ν
1 {b/x} | P 6=ν

2 | P 6=ν
rem)

=: P ′′.

We prove that Q can mimic the reaction. The argumentation above yields

νã.(P 6=ν | R) → νã, b̃1, b̃2.(P
6=ν
1 {b/x} | P 6=ν

2 | P 6=ν
rem | R) =: Q′.

As Q ≡ νã.(P 6=ν | R) | Πj∈JGj we get Q → Q′ | Πj∈JGj with Rule (Par) and
Rule (Struct).

We now have to show that [P ′] ¹P [Q′ | Πj∈JGj]. Process P ′′ need not be
structurally congruent with a single fragment. To apply Lemma 8.2.19 we com-
pute its restricted form, which consists of several fragments: rf (P ′′) = Πi∈IH

Hi.
Consider such a fragment H. We compute the standard form, H ≡ νc̃.Q 6=ν .
Computing the restricted form and the standard form does not change the se-
quential processes, so S(H) = S(Q 6=ν) ⊆ S(P ′′). Furthermore, α-conversion is
not required and thus c̃ ⊆ ã ∪ b̃1 ∪ b̃2.

We compute the restricted form rf (Q′) = Πi∈IH
H ′

i | Πj∈JH
Hj . Again this

does not change the sequential processes. So there are fragments Hj that consist
of sequential processes in R only. For every fragment Hi there is a fragment
H ′

i which consists of at least the sequential processes Q6=ν and the names c̃ but

226

8.2 Well-Structure and Decidability in Bounded Depth

may additionally contain processes R 6=ν and names c̃R from R. We compute the
standard form of such a H ′ and shrink the scopes of the names c̃R:

H ′ ≡ νc̃, c̃R.(Q 6=ν | R 6=ν) ≡ νc̃.(Q6=ν | νc̃R.R 6=ν).

Lemma 8.2.19 now gives Hi ¹F H ′
i for all i ∈ IH . We thus have P ′ ≡ P ′′ ≡

Πi∈IH
Hi and Q′ ≡ Πi∈IH

H ′
i | Πj∈JH

Hj , which means [P ′] ¹P [Q′ | Πj∈JGj]. ¥

With Proposition 8.2.17, Proposition 8.2.20, and the fact that the reaction
relation is image-finite up to structural congruence (Lemma 2.1.39) we conclude
that processes of bounded depth have WSTS.

Theorem 8.2.21 (Well-Structure in Bounded Depth)
If P ∈ PD<∞, then (Reach(P)/≡,→T ,¹P) is a WSTS.

8.2.3 Decidability Results

The reaction relation is effectively computable and ¹P is decidable. Hence, we
can instantiate the decidability result for termination and infinity of states in
Proposition 8.2.2 for processes of bounded depth.

Corollary 8.2.22 (Decidability Results)
For a process P ∈ PD<∞ it is decidable whether there is a non-terminating
computation starting from [P] and whether Reach(P)/≡ is infinite.

Figure 8.2 shows the finite reachability tree of a Petri net. To illustrate the
decidability result in Corollary 8.2.22, we complement the picture by the fi-
nite reachability tree of a process of bounded depth. Recall that the bag data
structure in the previous chapter was defined by the equation BAG(in, out) :=
in(y).(out〈y〉 | BAG⌊in, out⌋). We observed that the system

F0 = νin.(FILL⌊in⌋ | νout .BAG⌊in, out⌋)

with FILL(in) := νc.in〈c〉.FILL⌊in⌋ is bounded in depth by two. Hence, its
transition system is well-structured by Theorem 8.2.21. We explain the compu-
tation of the finite reachability tree FRT ([F0]) depicted in Figure 8.3. We give
for every reachable fragment the particular fragment in Proposition 8.2.13.

The root of the tree is [F0]. Note that F0 is structurally congruent with

νu0.(FILL⌊u0⌋ | νu1.BAG⌊u0, u1⌋).

A call to the defining equation of FILL yields [F0] →T [F1] with

F1 = νin.(νc.in〈c〉.FILL⌊in⌋ | νout .BAG⌊in, out⌋)

227

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

.

.

[F0][F1] [F2][F3] [F3][F4]+ [F4]+

Figure 8.3:
The finite reachability tree of a process of bounded depth. The processes are
explained in the text.

≡ νu0.(νu1.u0〈u1〉.FILL⌊u0⌋ | νu1.BAG⌊u0, u1⌋).

We insert a new vertex into the tree and check that [F0] 6¹P [F1]. Hence, the
vertex is labelled by [F1] and not marked by a +. If BAG calls its definition first,
we get the reaction [F0] →T [F2] with

F2 = νin.(FILL⌊in⌋ | νout .in(y).(out〈y〉 | BAG⌊in, out⌋))

≡ νu0.(FILL⌊u0⌋ | νu1.u0(y).(u1〈y〉 | BAG⌊u0, u1⌋)).

Since also [F0] 6¹P [F2], a new vertex is inserted that is labelled by [F2]. Consider
[F1], where in the next step the BAG identifier unfolds its definition. This results
in [F1] →T [F3] with

F3 = νin.(νc.in〈c〉.FILL⌊in⌋ | νout .in(y).(out〈y〉 | BAG⌊in, out⌋))

≡ νu0.(νu1.u0〈u1〉.FILL⌊u0⌋ | νu1.u0(y).(u1〈y〉 | BAG⌊u0, u1⌋)).

We create a new vertex labelled by [F3] as [F0] 6¹P [F3] and [F1] 6¹P [F3]. In F3,
the FILL process passes content νc to the bag, which gives [F3] →T [F4] with

F4 = νin.(FILL⌊in⌋ | νout .νc.(out〈c〉 | BAG⌊in, out⌋))

≡ νu0.(FILL⌊u0⌋ | νu1.(νu2.u1〈u2〉 | BAG⌊u0, u1⌋)).

We create a new vertex and check the labels on the path from the root to the
new vertex. In fact, νu1.BAG⌊u0, u1⌋ ¹F νu1.(νu2.u1〈u2〉 | BAG⌊u0, u1⌋) and
thus F0 ¹F F4. By definition of ¹P , we conclude [F0] ¹P [F4] and label the
new vertex by [F4]+. The successors of [F2] are computed similarly. With Co-
rollary 8.2.22, we have the following result.

Result 8.2.23
The bag process νin.(FILL⌊in⌋ | νout .BAG⌊in, out⌋) does not terminate since
the finite reachability tree contains [F4]+. Moreover, as ¹P is a partial ordering
and [F0] ¹P [F4] but [F4] 6¹P [F0] the state space is not finite.

228

8.3 Undecidability in Bounded Breadth

8.3 Undecidability in Bounded Breadth

There are several machine models with the ability to perform arithmetic op-
erations on data variables, which are known to be Turing complete. For the
undecidability proofs in this thesis, we use a model introduced by Minsky in
[Min67]. Although Minsky called his formalism a program machine that operates
on registers, the model is nowadays well-known under the name of (2-)counter
machines acting on counter variables. In this section, we exploit Turing complete-
ness of counter machines to show Turing completeness for processes of bounded
depth and to establish undecidability of structural stationarity, boundedness in
depth, and boundedness in breadth. In Section 9.3, counter machines help us
prove undecidability of reachability for processes of depth one.

8.3.1 Counter Machines

A 2-counter machine has two counters c1 and c2 that store arbitrarily large
natural numbers and a finite sequence of labelled instructions l : op. There are
two kinds of operations op. The first increments a counter, say c1, by one and
then jumps to the instruction labelled by l ′:

c1 := c1 + 1 goto l ′ (8.1)

The second operation has the form

if c1 = 0 then goto l ′; else c1 := c1 − 1; goto l ′′; (8.2)

It checks counter c1 for being zero and—if this is the case—jumps to the instruc-
tion labelled by l ′. If the value of c1 is positive, the counter is decremented by
one and the machine jumps to l ′′.

More formally, a (2-)counter machine is a triple CM = (c1, c2, instr), where
c1, c2 are counters and

instr = l0 : op0; . . . , ln : opn; ln+1 : halt

is a finite sequence of the labelled instructions defined above. The sequence
ends with operation halt , which terminates the execution. The set of all counter
machines is CM.

To define the operational semantics of a counter machine CM , we require the
notion of a state. A state of CM is a triple s = (v1, v2, l), where vi ∈ N is the
current value of counter ci with i = 1, 2 and l ∈ {l0, . . . , ln+1} is the label of the
operation to be executed next. A finite or infinite sequence of states

s0, s1, s2, . . .

229

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

is called a run of CM . Runs are subject to the following constraints. Initially,
the counter values are zero and instruction l0 is executed, i.e., s0 = (0, 0, l0). For
every state change si, si+1 with si = (v1, v2, l) the values of the counters and the
instruction are changed according to the current operation op with l : op. In
case op is an increment operation for the first counter as defined in (8.1), we have
si+1 = (v1 + 1, v2, l

′), i.e., value v1 is incremented, v2 is not changed, and the
current label is changed to l ′. The decrement operation on c1 in (8.2) depends on
whether v1 = 0 holds. In this case, we jump to instruction l ′ without modifying
the counter values, i.e., si+1 = (v1, v2, l

′). If the content of c1 is positive, we
decrement it and jump to l ′′, which yields si+1 = (v1 − 1, v2, l

′′). Action halt
does not change a state.

We say that counter machine CM terminates if all its runs are finite. A state
s = (v1, v2, l) is reachable in CM , if there is a run s0, s1, s2, . . . with si = s
for some i ∈ N. Since counter machines are Turing complete, termination and
reachability are undecidable.

Theorem 8.3.1 (Theorem 14.1-1 in [Min67])
Counter machines are Turing complete. Hence, for a counter machine CM and a
state s = (v1, v2, l) it is undecidable whether (1) CM terminates and (2) whether
s is reachable in CM .

We shall need undecidability of termination in this section, undecidability of
reachability is exploited in Section 9.3 to separate processes of depth one from
finite place/transition Petri nets.

8.3.2 From Counter Machines to Bounded Breadth

The construction we present in this section is folklore in concurrency theory and
can be found, e.g. in [Mil89]. For the π-Calculus, Amadio and Meyssonnier
presented several variants in [AM02].

The idea is to encode counters as list processes as introduced in Section 7.6.
The number of list items represents the value of the counter. To model tests
for zero, we extend the definition in Example 7.6.1. Every list item and list
end has three channels it communicates on—reflecting the three operations on
counters. Channel i is used for increment operations. It corresponds to the
append operation in the previous list model. Communications on channel d
decrement the counter value. A message on t is a test for zero. We first explain
the behaviour of a list item. To keep the definition short, we abbreviate the
parameters i, d, t by c̃. Similarly, the channels i′, d′, t′ of the following list element
are abbreviated by c̃′:

LI (c̃, c̃′) := i.i′.LI⌊c̃, c̃′⌋ + d.
`
d′.LI ⌊c̃, c̃′⌋ + t′.LE⌊c̃⌋

´
.

230

8.3 Undecidability in Bounded Breadth

An increment operation received on channel i is passed to the following list
element with the send action i′. As a list item stands for a positive counter
value, the test for zero fails, i.e., a list item does not communicate on channel
t. If a list item receives a decrement operation, it contacts the following list
element. Since it is unknown whether this is a list item LI or a list end LE , the
current list item tries to communicate on both channels d′ and t′. If the next
element is a list item, it answers the decrement call. A list end receives the t′

message and as reaction to it terminates. Now the current list item is the last
element and therefore calls the defining equation LE⌊c̃⌋ with

LE(c̃) := t + i.νc̃′.(LI⌊c̃, c̃′⌋ | LE⌊c̃′⌋).

As explained, the list end terminates on a test for zero. As it represents counter
value zero, it does not listen on the decrement channel. If the list end receives
an increment operation, it creates new control channels c̃′ = i′, d′, t′ and a new
list end process LE⌊c̃′⌋. The former list end becomes a list item by calling the
defining equation LI ⌊c̃, c̃′⌋.

Every instruction l : op of the counter machine is translated into a process
identifier Kl whose defining process is determined by the operation op. For the
increment operation (8.1) on counter c1, we get

Kl(c̃1, c̃2) := i1.Kl′⌊c̃1, c̃2⌋.

The parameters c̃1 = i1, d1, t1 and c̃2 = i2, d2, t2 are the control channels of the
lists that represent the counters c1 and c2, respectively.

The encoding of the decrement operation in (8.2) contains a subtlety. If the
test for zero is successful, we delete the list end of counter c1 and have to create
a new one. This yields

Kl(c̃1, c̃2) := t1.νc̃′1.
`
Kl′⌊c̃

′
1, c̃2⌋ | LE⌊c̃′1⌋

´
+ d1.Kl′′⌊c̃1, c̃2⌋.

The instruction l : halt is translated into Kl(c̃1, c̃2) := halt . The send action will
be helpful later to prove undecidability of boundedness in breadth.

To sum up, the counter machine CM is translated into the process

PB<∞
CM [[CM]] := νc̃1.νc̃2.(LE⌊c̃1⌋ | LE⌊c̃2⌋ | Kl0⌊c̃1, c̃2⌋)

It uses the defining equations we just discussed. To provide an intuition to the
encoding of counter values in lists, we give a brief example.

Example 8.3.2 (PB<∞
CM : CM → PB<∞)

Consider the state (2, 0, l) of a counter machine. It is represented by

νc̃1.(νc̃′1.(LI ⌊c̃1, c̃
′
1⌋ | νc̃′′1 .(LI ⌊c̃′1, c̃

′′
1⌋ | LE⌊c̃′′1⌋)) | νc̃2.(LE⌊c̃2⌋ | Kl⌊c̃1, c̃2⌋)).

There are two list items in the list for c1 to represent counter value two. Similarly,
the list of counter c2 consists of a single list end. The label of the current
instruction can be deduced from the process identifier Kl . ¨

231

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

Example 8.3.2 suggests a tight relationship between the states reachable in a
counter machine CM and the processes reachable in its encoding PB<∞

CM [[CM]].
We do not bother with the technicalities here and just remark that the encoding
preserves termination.

Proposition 8.3.3
The counter machine CM terminates if and only if PB<∞

CM [[CM]] terminates.

Like lists in Example 8.3.2, the process representation of a counter machine is
bounded in breadth by two. We exploit this observation in the following section
to establish undecidability of boundedness in depth and breadth.

Lemma 8.3.4
For every counter machine CM we have PB<∞

CM [[CM]] ∈ PB<∞.

With proper synchronisation mechanisms (cf. action act in Section 4.5.1) the
construction can be modified so that the steps of the counter machine coincide
with step sequences of the corresponding process of bounded breadth.

Remark 8.3.5
Processes of bounded breadth PB<∞ are Turing complete. ¨

8.3.3 Undecidability Results

To show undecidability of structural stationarity for processes of bounded breadth,
we reduce the termination problem of counter machines. This works since non-
structurally stationary processes do not terminate and for structurally stationary
processes we can use the structural semantics to decide termination.

Proposition 8.3.6 (Undecidability of Structural Stationarity)
For a process P ∈ PB<∞ it is undecidable whether P is structurally stationary,
i.e., whether P ∈ PFG<∞ holds.

Proof
Assume structural stationarity is decidable for processes of bounded breadth
using the procedure isStructurallyStationary . The algorithm in Table 8.1 then
decides termination of a given counter machine CM as follows. We compute the
process PB<∞

CM [[CM]] ∈ PB<∞. If the process is not structurally stationary it

232

8.3 Undecidability in Bounded Breadth

Let CM be the given counter machine;

Compute PB<∞
CM [[CM]];

If ¬isStructurallyStationary(PB<∞
CM [[CM]])

return CM does not terminate;

else

return terminates(N [[PB<∞
CM [[CM]]]]);

Table 8.1:
Proof of undecidability of structural stationarity. The procedure checks
whether a counter machine terminates, under the assumption the procedure
isStructurallyStationary decides structural stationarity for processes in PB<∞.
Procedure terminates decides termination for finite place/transition Petri nets.

does not terminate according to Lemma 4.1.4. By Proposition 8.3.3 CM does
not terminate.

If PB<∞
CM [[CM]] is a structurally stationary process, the structural semantics

N [[PB<∞
CM [[CM]]]] is a finite place/transition Petri net by Lemma 4.1.2. For finite

place/transition Petri nets, termination is decidable, e.g. by inspecting the finite
reachability tree (cf. Proposition 8.2.2). Moreover, the net terminates if and only
if the counter machine does due to the following equivalence:

CM terminates

(Proposition 8.3.3) ⇔ PB<∞
CM [[CM]] terminates

(Theorem 3.4.3) ⇔ N [[PB<∞
CM [[CM]]]] terminates.

Hence we would be able to decide termination of a counter machine. So, the
assumption that structural stationarity is decidable for PB<∞ has to be false. ¥

For a process of bounded breadth the condition of structural stationarity is
equivalent to boundedness in depth according to Theorem 7.2.8. Since structural
stationarity is undecidable, boundedness in depth is.

Corollary 8.3.7 (Undecidability of Boundedness in Depth)
Consider a process P ∈ PB<∞. It is undecidable whether P ∈ PD<∞ holds.

To conclude the section, we reduce termination of a counter machines CM

233

Chapter 8 Decidability in Bounded Depth and Undecidability in
Bounded Breadth

to deciding boundedness in breadth. Again, we exploit the fact that our pro-
cess representation of counter machines is bounded in breadth. The idea of the
reduction is to compose PB<∞

CM [[CM]] in parallel with

halt .νa.KB=∞⌊a⌋.

The process consumes the halt message and starts an execution where fragments
of unbounded breadth are generated. The counter machine terminates if and
only if the parallel composition is not bounded in breadth.

Lemma 8.3.8 (Undecidability of Boundedness in Breadth)
For a process P ∈ P it is undecidable whether P is bounded in breadth, i.e.,
whether P ∈ PB<∞ holds.

Proof
Consider the counter machine CM and the process

PB<∞
CM [[CM]] | halt .νa.KB=∞⌊a⌋

with KB=∞(a) = a〈a〉 | KB=∞⌊a⌋. The counter machine terminates if and only
if it reaches its halt operation. This is the case if and only if process PB<∞

CM [[CM]]
reaches a process that contains the send action halt . Since PB<∞

CM [[CM]] is
bounded in breadth, reachability of halt is equivalent to unboundedness in breadth
for PB<∞

CM [[CM]] | halt .νa.KB=∞⌊a⌋. ¥

8.4 Related Work and Conclusion

We investigated the expressiveness of processes of bounded depth and processes
of bounded breadth. The main result is that processes of bounded depth have
WSTS, and with our instantiation of the framework termination and infinity of
states are decidable. This thesis is the first to instantiate the WSTS framework
for the π-Calculus. Compatibility with the reaction relation required a non-trivial
ordering ¹P on the reachable processes. For processes of bounded breadth, we
recalled a simulation of counter machines that is folklore in concurrency theory
and proves this class Turing complete. Moreover, the encoding shows unde-
cidability of structural stationarity, boundedness in depth, and boundedness in
breadth—which is not surprising as all properties are semantical.

Finkel generalised the coverability graph procedure for Petri nets to what
he called WSTS [Fin90]. He presented algorithms to decide termination and
boundedness problems in the general setting. Abdulla et. al. generalised decid-
ability results of temporal properties and simulation relations for lossy channel
systems to their notion of WSTS [AČJT00]. Both definitions were unified by
Finkel and Schnoebelen in [FS01].

234

8.4 Related Work and Conclusion

In [BGZ03, BGZ04, BGZ08], the expressiveness of CCS with recursion, replic-
ation, and iteration is investigated. The authors employ the WSTS framework
to prove termination decidable for processes with replication—while it is unde-
cidable for those with with recursion. We remark that their ordering is related
to our fragment ordering, but it is considerably simpler to establish well-quasi-
orderedness in their setting due to the limited expressiveness of CCS (without
mobility of names). Recall that we rely on the theory of anchored fragments
from Section 7.3 to find flat representations for fragments.

In [BGZ04, BGZ08], it is shown to be decidable whether a process is reachable
that communicates on some public channel (the process has a so-called barb).
It is likely that this property is decidable also for processes of bounded depth.
Practically more relevant is the question whether boundedness in breadth is de-
cidable for processes of bounded depth. If this is the case, an implementation of
the algorithm inside Petruchio [SM08] can check a system of interest for struc-
tural stationarity and hence decide whether it is amenable to verification with
the structural semantics. Recall that for processes of bounded depth, structural
stationarity is equivalent to boundedness in breadth with Theorem 7.2.8.

Based on a translation of π-Calculus into multisets, orderings on processes
defined by multiset containment relations are studied in [EG01]. The main res-
ult is that the orderings of Engelfriet and Gelsema characterise structural con-
gruence: P ¹ Q and Q ¹ P holds if and only if P ≡ Q. The authors call this
equivalence a Cantor Bernstein property. We considered the more intricate wqos,
i.e., ¹P needed to be well-behaved under reaction. Moreover, we remark that
also our fragment ordering satisfies the Cantor Bernstein property and we rely
on it when proving ¹P to be antisymmetric, i.e., [P] ¹P [Q] and [Q] ¹P [P]
implies [P] = [Q].

In [YBH04, DS06], type systems for the π-Calculus were presented that ensure
termination of well-typed processes. We argue that our result is more general in
the sense that we do not define a dedicated analysis, but instantiate the WSTS
framework for processes of bounded depth and then derive decidability of termin-
ation and infinity of states as a corollary of the finite reachability construction.
While our approach is restricted to processes of bounded depth, the type sys-
tems above apply to any process but—as termination is undecidable—may not
succeed in typing it although it terminates. Recently, the authors proposed a
so-called dynamic typing system [DHS08]. It statically inspects a process term
and annotates it with assertions, which are then checked at runtime. If they are
found violated, an exception is raised and the system terminates.

To conclude the section, we remark that heuristics are needed to avoid comput-
ing the full finite reachability tree to detect infinity of states or non-termination.
Also approximations on the ordering ¹P should be developed to prune the finite
reachability tree and turn our decidability result into a practical procedure.

235

236

9 Structure and Concurrency

Contents
9.1 A Concurrency Semantics for the π-Calculus 239

9.1.1 Name-aware Transition System 239

9.1.2 Concurrency Semantics 242

9.1.3 Proofs of Lemma 9.1.6 and Lemma 9.1.9 250

9.2 Combining Structural and Concurrency Semantics 256

9.2.1 Mixed Normal Form 257

9.2.2 Mixed Semantics . 260

9.3 Completeness of Mixed Boundedness 263

9.4 Related Work and Conclusion 267

Processes of bounded depth have well-structured transition systems. This in-
sight from the previous chapter allows us to decide termination and infinity of
states on the finite reachability tree of such a process. However, this decidab-
ility result is unsatisfactory in two respects. It is limited to the two mentioned
properties and it does not give us tool support—we first have to implement the
algorithm that decides ¹P . For structurally stationary processes, the situation
is more convenient. Our translation allows us to reuse all existing verification
approaches and in particular all tools for Petri nets. Therefore, the aim of this
chapter is to recover a Petri net translation for processes of bounded depth.1 The
main finding is that for a strictly larger class than structurally stationary pro-
cesses and within bounded depth, we can still give a translation into Petri nets.
Unfortunately, the full class PD<∞ turns out more expressive than Petri nets as
we prove reachability to be undecidable (already in depth one). The approach
to extend the structurally stationary processes is as follows.

1Note that the results in the previous chapter do not forbid the existence of such a transla-
tion.

237

Chapter 9 Structure and Concurrency

In the introduction, we mentioned that dynamically reconfigurable systems
are an extension of concurrent systems. For concurrent systems, classical Petri
net semantics highlight the interaction between the sequential processes inside
the system. Therefore, these semantics are called concurrency semantics as op-
posed to the structural semantics that reflects the connection structure between
sequential processes.

We show that the view to processes taken by the structural semantics is ortho-
gonal to the classical view of concurrency semantics. The main result is that both
semantics can be combined by typing the restrictions in a process. Restrictions
of type one are handled according to the structural semantics and restrictions
of type two according to the concurrency semantics. This yields a Petri net
translation that extends both, classical concurrency semantics and the structural
semantics in Chapter 3, in the following sense. If the process yields a finite Petri
net under one of the semantics, then it does so under the mixed semantics. The
result is stronger, we show that the process can be typed so that the mixed se-
mantics yields the same Petri net as the original semantics. Conversely, there
are processes that are finitely represented under the mixed semantics but neither
under the structural nor the concurrency semantics.

To conclude the section, we show that the mixed semantics forms the border-
line to place/transition Petri nets. If we leave the class of processes it finitely
represents reachability becomes undecidable. Our contributions are as follows:

• We define a concurrency semantics for the π-Calculus. It is the first that
satisfies three indispensable quality criteria. It yields a bisimilar transition
system and so retrievability holds (fails for [BG95, BG09]). It is express-
ive as it allows for translating processes with restricted names (fails for
[AM02]). It has an intuitive finiteness characterisation (fails for [Eng96]).
The technical tool that facilitates the definition is the so-called name-aware
transition system of a process, which manages the use of restricted names.

• We combine the concurrency semantics with the structural semantics in
Chapter 3. The idea is to type the restricted names. The definition of the
semantics itself again requires a (mixed) normal form on processes. For
names of type one, it resembles the restricted form, for names of type two
it imitates the standard form. The combined semantics is finite if and only
if names of type one form finitely many fragments and only finitely many
names of type two are used.

• We prove that this combined semantics is the borderline to place/transition
Petri nets in the following sense. If we relax the finiteness requirement and
consider a strictly larger class of processes, reachability becomes undecid-
able. Hence, there can be no translation into place/transition Petri nets.
In this sense, the process class is complete.

238

9.1 A Concurrency Semantics for the π-Calculus

The chapter is organised as follows. In Section 9.1, we define the name-aware
transition system and the concurrency semantics. We combine the latter with
the structural semantics in Section 9.2. In Section 9.3, we show that the result-
ing class of processes cannot be extended since reachability becomes undecidable
outside. We conclude with a discussion of related concurrency semantics in Sec-
tion 9.4.

9.1 A Concurrency Semantics for the π-Calculus

Concurrency semantics reflect the communications between sequential processes.
As opposed to the structural semantics, the scopes of restricted names are not im-
portant. Therefore, the idea to define concurrency semantics is to treat restricted
names as if they were global. If a restricted name that was hidden by a prefix
is discovered, a fresh global name is invented. In Section 9.1.1, we define the
name-aware transition system of the π-Calculus in order to invent fresh names
in a systematic way and to trace the names that have been invented so far. These
name-aware transition systems are the basis for the definition of our concurrency
semantics.

9.1.1 Name-aware Transition System

The name-aware transition system of the π-Calculus uses so-called name-aware
processes of the form (P 6=ν , ã), i.e., pairs of processes in standard form P 6=ν and
sets of names ã. The idea is that in an execution sequence leading to process
(P 6=ν , ã) the restricted names ã have been invented. A second characteristic of
name-aware transition systems is that restricted names, which are discovered and
have to be added to the set ã, may not be chosen arbitrarily but are computed.
To allow for this computation, we assume that every restricted name carries an
index. More precisely, we stick to the following convention.

Convention 9.1.1
Consider a process P ∈ P that relies on the defining equations Ki(x̃i) := Pi for
1 ≤ i ≤ m. We make the following assumptions:

• Every restricted name has the form an, i.e., it carries an index n ∈ N. We
assume that the indices in process P as well as Pi are 0.

• α-conversion only changes the index n but not the name a of a restricted
name an.

¨

239

Chapter 9 Structure and Concurrency

Definition 9.1.2
For a set ã of names that carry indices, we define ã + 1 := {an+1 p an ∈ ã}. ¨

To illustrate the computation of the restricted names, consider the name-aware
process (τ.νb0.K⌊b0⌋, {b0, b1, b2}) for some process identifier K. It consumes a
silent action and generates a restricted name bk. The idea is to take the restricted
name b3 since k = 3 is the smallest index so that bk /∈ {b0, b1, b2}.

Definition 9.1.3 (Name-aware Reaction Relation)
The name-aware reaction relation, denoted by →na , is defined as follows:

(P 6=ν , ã) →na (Q 6=ν , ã ⊎ b̃) :⇔ (1) P 6=ν → νb̃.Q 6=ν in standard form and

(2) ∀bk ∈ b̃ : k − 1 = max{i p bi ∈ ã}.

For the empty set, the maximum is defined by max∅ = 0, i.e., we choose 0 as
index if there is no name bi ∈ ã. Note that disjointness of ã and b̃ is always
satisfied by constraint (2). For a process (P 6=ν , ã), we define the set of processes
reachable by the name-aware reaction relation:

Reachna((P 6=ν , ã)) := {(Q 6=ν , b̃) p (P 6=ν , ã)→na∗(Q 6=ν , b̃)},

where →na∗ is the reflexive and transitive closure of →na . ¨

The name-aware reaction relation in fact determines the restricted name b3 for
the example process (τ.νb0.K⌊b0⌋, {b0, b1, b2}) defined above:

(τ.νb0.K⌊b0⌋, {b0, b1, b2}) →
na (K⌊b3⌋, {b0, b1, b2} ⊎ {b3}).

Like for the reaction relation, we define the name-aware transition system by fac-
torising the reachable processes Reachna((P 6=ν , ã)) along structural congruence,
denoted by Reachna((P 6=ν , ã))/≡. This means, we take process ([P 6=ν], ã) instead
of (P 6=ν , ã) as a state in the transition system. The transition relation is lifted
like for the reaction relation.

Definition 9.1.4 (Name-aware Transition System)
The name-aware transition system of process (P 6=ν , ã) is

Tna((P 6=ν , ã)) := (Reachna((P 6=ν , ã))/≡,→na
T , ([P 6=ν], ã)),

where ([Q 6=ν], b̃) →na
T ([R 6=ν], c̃) :⇔ (Q 6=ν , b̃) →na (R 6=ν , c̃). ¨

Before we turn to the precise relationship between the name-aware transition
system and the original transition system of a π-Calculus process, we give a more
elaborate example illustrating name-aware behaviour.

240

9.1 A Concurrency Semantics for the π-Calculus

Example 9.1.5 (Name-aware Transition System)
Consider P0 = a〈b〉 | a〈c〉 | a(y).K⌊a, y⌋ with K(a, x) := νz0.x〈z0〉 | a(y).K⌊a, y⌋.
Two processes a〈b〉 and a〈c〉 send on the public channel a. Their messages b and
c are received by the process a(y).K⌊a, y⌋, which generates in response a message
b〈z0〉 and c〈z0〉, respectively, where z0 is a restricted name. After a〈b〉 and a〈c〉
have sent their messages, the system deadlocks.

Figure 9.1 gives the original and the name-aware transition system of P0. Note
that in the name-aware transition system the ordering of messages a〈b〉 and a〈c〉
leads to different states. Process P7 contains c〈z0〉 and b〈z1〉 while process P8

contains b〈z0〉 and c〈z1〉. In the original transition system, both processes are
represented by [νz0.νz1.P7] = [νz0.νz1.P8]. ¨

T (P0)
[P0]

[P1]

[P2]

[νz0.P3]

[νz0.P4]

[νz0.P5]

[νz0.P6]

[νz0.νz1.P7] = [νz0.νz1.P8]

Tna((P0, ∅))
([P0], ∅)

([P1], ∅)
([P2], ∅)

([P3], {z0})
([P4], {z0})

([P5], {z0})
([P6], {z0})

([P7], {z0, z1})
([P8], {z0, z1})

R

P0 = a〈b〉 | a〈c〉 | a(y).K⌊a, y⌋

P1 = a〈b〉 | K⌊a, c⌋ P2 = a〈c〉 | K⌊a, b⌋

P3 = a〈b〉 | c〈z0〉 | a(y).K⌊a, y⌋ P4 = a〈c〉 | b〈z0〉 | a(y).K⌊a, y⌋

P5 = c〈z0〉 | K⌊a, b⌋ P6 = b〈z0〉 | K⌊a, c⌋

P7 = c〈z0〉 | b〈z1〉 | a(y).K⌊a, y⌋ P8 = b〈z0〉 | c〈z1〉 | a(y).K⌊a, y⌋

Figure 9.1:
The original transition system T (P0) and the name-aware transition system
Tna((P0, ∅)) of process P0 in Example 9.1.5. The dotted lines illustrate the
bisimilarity between the two, which is established in Lemma 9.1.6.

241

Chapter 9 Structure and Concurrency

Lemma 9.1.6 states bisimilarity of the name-aware and the original transition
system of a process. We defer the proof until Section 9.1.3

Lemma 9.1.6 (Bisimilarity)
Let P ∈ P with sf (P) = νã.P 6=ν . The bisimilarity T (P) ≈ Tna(P 6=ν , ã) holds.

9.1.2 Concurrency Semantics

Before we turn to the technicalities, we explain the definition of the concurrency
semantics. Starting with the name-aware transition system of a process, we
compute two disjoint sets of places. The first set is given by the names ã in
the reachable name-aware processes ([P 6=ν], ã). The second set is given by the
sequential processes in P 6=ν , more precisely, by the structural congruence classes
of sequential processes. We also refer to the first set of places as name places
and to the second set as process places.

Like the set of places, the initial marking is composed of two disjoint markings,
M0 = MP

0 + MN
0 . Function MP

0 marks the process places while MN
0 marks the

name places. Let ([P 6=ν
0], ã0) be the initial process in the name-aware transition

system. The initial marking MP
0 is given by the sequential processes in P 6=ν

0 .
Marking MN

0 puts a single token on all name places that have index zero—
except the names ã0. If a0 ∈ ã0, the name a1 is marked by one token. In fact,
all name places will be safe in the concurrency semantics. We briefly explain the
intuition to the construction and marking of name places.

If a name place is marked, the name is the next to be invented in the name-
aware transition system. For example, if we have ([τ.νb0.K⌊b0⌋], {b0, b1, b2})
inventing the name b3, we expect the name place b3 to be marked. The transition
that corresponds to the reaction

([τ.νb0.K⌊b0⌋], {b0, b1, b2}) →
na
T ([K⌊b3⌋], {b0, b1, b2, b3})

moves the token from b3 to the name place b4. This means b4 is the next name
to be invented and b3, b2, b1, b0 have already been invented. Technically, the
transitions imitating the name-aware behaviour are defined as follows.

Like for the structural semantics we have two disjoint sets of transitions. The
first set contains transitions of the form ([F e], ã, [Q 6=ν]) with the requirement
that the sequential process F e reacts to νã.Q 6=ν . In the example above, we have
a transition ([τ.νb0.K⌊b0⌋], {b3}, [K⌊b3⌋]).

The preset of a transition ([F e], ã, [Q 6=ν]) are the process place [F e] and the
name places ã. Having ã in the preset reflects the idea that names can only
be invented if their places are marked. The postset is given by the sequential

242

9.1 A Concurrency Semantics for the π-Calculus

processes in Q 6=ν and the names ã + 1. Thus, the transition moves a token from
ak ∈ ã and to ak+1 as required in the explanation above.

The second set of transitions models communications between sequential pro-
cesses. Here we have transitions ([F e

1 | F e
2], ã, [Q 6=ν]) with the condition that

F e
1 | F e

2 reacts to νã.Q 6=ν . The preset are the sequential processes in F e
1 | F e

2 .
More precisely, we have an arc weighted two from place [F e] to the transition
if [F e] coincides with [F e

1] and [F e
2]. In this case, two structurally congruent

sequential processes communicate.2 If place [F e] is one of the sequential pro-
cesses, i.e., [F e] = [F e

1] or [F e] = [F e
2], we draw an arc weighted one from place

[F e] to the transition. In any other case there is no arc, which means the trans-
ition represents a reaction the process is not involved in. Like for the first set of
transitions, the places ã in the preset ensure restricted names are invented in the
correct order. The postset is similar as well.

Note that a process P 6=ν in restricted form is a parallel composition of sequen-
tial processes, which are elementary fragments. Hence, we can use the fragment
function fg and the decomposition function dec to access the sequential pro-
cesses and their numbers in P 6=ν . More precisely, fg

`
(P 6=ν , ã)

´
:= fg

`
P 6=ν

´
and

dec((P 6=ν , ã)) := dec(P 6=ν). By nms((P 6=ν , ã)) := ã we refer to the names in a
name-aware process.

Definition 9.1.7 (Concurrency Semantics NC : P → PN)
Consider a process P ∈ P with sf (P) = νã.P 6=ν . The concurrency semantics
is the function NC : P → PN defined in Table 9.1. It assigns to P a Petri net
NC [[P]], which we also call the concurrency semantics of process P . ¨

We comment on the definition. The inclusion nms(Reachna((P 6=ν , ã)))+1 ⊆ S
ensures that for every name ak reachable in the name-aware transition system,
we also have ak+1 as place. Hence, there is always a place an+1 to move the
token to even if only the names a0, . . . , an are invented. This eases the definition
of the bisimulation relation in the proof of Lemma 9.1.9. Without these places,
bisimilarity still holds but the proof is less elegant.

Like the structural semantics, the concurrency semantics has additional trans-
itions of the form ([F e

1 | F e
2], ã, [Q 6=ν | F e

2]), where F e
1 reacts to νã.Q 6=ν and thus

F e
1 | F e

2 reacts to νã.(Q 6=ν | F e
2).3 We again safely omit them when computing

the Petri net. We do not exclude them by definition as this induces additional
case distinctions in the proof of bisimilarity in Lemma 9.1.9. To become familiar
with the concurrency semantics, we illustrate it on the process in Example 9.1.5.
Afterwards, we establish the mentioned bisimilarity.

2See the explanation of transitions ([F1 | F2], [Q]) in the structural semantics in Section 3.3,
where a similar phenomenon occurs when structurally congruent fragments communicate.

3For the structural semantics, Figure 3.3 illustrates the additional transitions.

243

Chapter 9 Structure and Concurrency

S := fg
“

Reachna((P 6=ν
0 , ã0))

”

/≡

∪ nms(Reachna((P 6=ν
0 , ã0))) ∪ nms(Reachna((P 6=ν

0 , ã0))) + 1.

Let the fragments [F e], [F e
1], and [F e

2] as well as the names ã be places in S:

T := {([F e], ã, [Q 6=ν]) p F e → νã.Q 6=ν ∈ Psf }

∪ {([F e
1 | F e

2], ã, [Q 6=ν]) p F e
1 | F e

2 → νã.Q 6=ν ∈ Psf }.

Consider transitions t = ([F e], ã, [Q 6=ν]), t′ = ([F e
1 | F e

2], ã, [Q 6=ν]), and places
a and [Ge]. To avoid case distinctions, we let a condition a ∈ ã or a ∈ (ã + 1)
yield 1 if it is satisfied and 0 otherwise:

W ([Ge], t) := (dec(F e))([Ge]) W ([Ge], t′) := (dec(F e
1 | F e

2))([Ge])

W (a, t) := a ∈ ã W (a, t′) := a ∈ ã

W (t, [Ge]) := (dec(Q6=ν))([Ge]) W (t, [Ge]) := (dec(Q6=ν))([Ge])

W (t, a) := a ∈ (ã + 1) W (t′, a) := a ∈ (ã + 1).

The initial marking is M0 := MP
0 + MN

0 . Since name places receive a single
token, we define MN

0 by the set of marked places:

MP
0 := dec(P 6=ν)

MN
0 := ({a0 ∈ S} \ ã0) ∪ (ã0 + 1).

Table 9.1:

Definition of NC [[P0]] = (S, T, W, M0) for process P0 with sf (P0) = νã0.P
6=ν
0 .

Example 9.1.8 (Concurrency Semantics)
Consider P0 = a〈b〉 | a〈c〉 | a(y).K⌊a, y⌋ with K(a, x) := νz0.x〈z0〉 | a(y).K⌊a, y⌋.
The concurrency semantics is depicted in Figure 9.2. To begin with, we compute
the set of process places. It is given by the fragments reachable in the name-aware
transition system. With respect to Figure 9.1, we get

fg (Reachna((P0, ∅)))/≡ = (fg (P0) ∪ . . . ∪ fg (P8))/≡.

Computing the fragment function gives the set of process places in Figure 9.2.
Only the names z0 and z1 are reachable in the name-aware transition system.
With nms(Reachna((P 6=ν , ã))) + 1 ⊆ S we also add the name place z2.

Initially, the processes a〈b〉, a〈c〉, and a(x).K⌊a, x⌋ are present. Hence the
corresponding places are marked by MP

0 . The marking MN
0 is given by

({z0 ∈ S} \ ∅) ∪ (∅ + 1) = {z0}.

244

9.1 A Concurrency Semantics for the π-Calculus

.

.

•[a〈b〉] •

[a(y).K⌊a, y⌋]

• [a〈c〉]

[K⌊a, b⌋] [K⌊a, c⌋]

[b〈z0〉]

[b〈z1〉]

[c〈z0〉]

[c〈z1〉]

•

z0

z1

z2

t1

t2

t3

t4

Figure 9.2:
The concurrency semantics of process P0 in Example 9.1.5. The construction
as well as transition names are explained in Example 9.1.8.

We now explain the transition set. The processes a〈b〉 and a(x).K⌊a, x⌋ react
to K⌊a, b⌋ without inventing restricted names. This behaviour is reflected by
transition t1 = ([a〈b〉 | a(y).K⌊a, y⌋], ∅, [K⌊a, b⌋]), which takes a token from [a〈b〉]
and from [a(y).K⌊a, y⌋] and puts a token on K⌊a, b⌋.

The process K⌊a, b⌋ reacts to νzk.(b〈zk〉 | a(y).K⌊a, y⌋) for any k. Since we
only have z0, z1, and z2 as name places, we get three different transitions:

t2 = ([K⌊a, b⌋], {z0}, [b〈z0〉 | a(y).K⌊a, y⌋])

t3 = ([K⌊a, b⌋], {z1}, [b〈z1〉 | a(y).K⌊a, y⌋])

t4 = ([K⌊a, b⌋], {z2}, [b〈z2〉 | a(y).K⌊a, y⌋]).

Transition t2 invents the restricted name z0. It removes the token from z0 and
adds a token to z1. If a〈c〉 and a(x).K⌊a, x⌋ communicate first, z0 has already
been invented. In this case, no token on z0 but a token on z1 is present. Therefore,
transition t2 is disabled, which forbids reinventing z0. Instead, transition t3
allows for generating z1. The transition moves the token from z1 to z2. Like t2 it
consumes a token from [K⌊a, b⌋] and creates a token on [a(y).K⌊a, y⌋], but while
t2 puts a token on [b〈z0〉], transition t3 marks [b〈z1〉].

We expect transition t4 to behave similar to t2 and t3, i.e., to put a token on
z3 and [b〈z3〉]. But since the weight function W is determined by the reachable

245

Chapter 9 Structure and Concurrency

processes and names and as z3 and b〈z3〉 are not reachable, they are not con-
sidered. The name-aware transition system in Figure 9.1 shows that no name z2

is generated, therefore transition t4 is never enabled.
To conclude the example, we observe that the set of places determines the

transition set, as shown by the computation of the dead transition t4. A similar
phenomenon occurred in Example 3.3.8, where a dead transition (also named t4)
was created in the structural semantics. ¨

The transition system of the concurrency semantics NC[[P0]] in Figure 9.2 is
isomorphic to the name-aware transition system of P0 in Figure 9.1. We conjec-
ture that this isomorphism holds in general. In the following Lemma 9.1.9, we
only establish bisimilarity between the transition systems. The reason is that
we combine the result with Lemma 9.1.6 to prove bisimilarity between a process
and its concurrency semantics in Theorem 9.1.10. Example 9.1.5 now shows that
the bisimilarity in Lemma 9.1.6 cannot be strengthened to isomorphism. Hence,
combining the lemmas only yields bisimilarity for the composed relation.

Lemma 9.1.9
Consider P ∈ P with sf (P) = νã.P 6=ν . We have T (NC [[P]]) ≈ Tna((P 6=ν , ã)).

We defer the proof until Section 9.1.3 and continue with the first main result.
The transition system of a process and that of its concurrency semantics are
bisimilar. Moreover, the bisimulation allows us to compute the reachable pro-
cesses from the markings. Note that this is the first concurrency semantics for
the π-Calculus that deals with restricted names and yields a bisimilar and finite
place/transition Petri net. We discuss the problems with related approaches in
Section 9.4.

Theorem 9.1.10 (Full Retrievability)
For every process P ∈ P we have T (NC [[P]]) ≈ T (P).

Proof
Consider process P0 ∈ P with sf (P0) = νã0.P

6=ν
0 . By Lemma 9.1.6 we have

Tna((P 6=ν
0 , ã0)) ≈ T (P0) .

With Lemma 9.1.9

T (NC [[P0]]) ≈ Tna((P 6=ν
0 , ã0)).

By transitivity of bisimilarity we derive

T (NC [[P0]]) ≈ T (P0) .

246

9.1 A Concurrency Semantics for the π-Calculus

We give the bisimulation relation that connects T (NC[[P0]]) and T (P0). It is the
composition of the two bisimulations in the Lemmas 9.1.9 and 9.1.6:

R :=
˘
(MP + MN , [νã.P 6=ν]) p P 6=ν ≡ Π[F e]∈supp(MP)Π

MP ([F e])F e

ã = {ai ∈ S p MN (ak) = 1 with k > i}
¯
.

Hence, we can compute from a given marking the corresponding reachable process
and full retrievability holds. ¥

Our second main result is a finiteness characterisation for the concurrency
semantics. The semantics is finite if and only if the process generates finitely
many restricted names. We call those processes restriction bounded. Since in
the original transition system unused restrictions can be removed by νa.P ≡ P if
a /∈ fn(P), we again rely on the name-aware transition system to define restriction
boundedness.

Definition 9.1.11 (Restriction Boundedness)
Consider a process P ∈ P with sf (P) = νã.P 6=ν . We call P restriction bounded
if there is a finite set of names m̃ so that for every process (Q, b̃) reachable in the
name-aware transition system T

`
P 6=ν , ã

´
the inclusion b̃ ⊆ m̃ holds, i.e.,

∃m̃ ⊆ N : ∀(Q, b̃) ∈ Reachna(P 6=ν , ã) : b̃ ⊆ m̃ and |m̃| < ∞.

¨

If the process is not restriction bounded, clearly the concurrency semantics
is infinite as every restricted name leads to a place. The main task is to show
the reverse. If we assume that a bounded number of restricted names is used
in all reachable processes, then the concurrency semantics is a finite Petri net.
Theorem 9.1.12 shows that this is the case. The proof again uses the theory of
derivatives and in particular applies Proposition 4.2.2.

Theorem 9.1.12 (Finiteness Characterisation)
For any process P ∈ P, the concurrency semantics NC[[P]] is finite if and only if
P is restriction bounded.

Proof
⇐ Consider a restriction bounded process P0 ∈ P with sf (P0) = νã0.P

6=ν
0 .

Let m̃ be the finite set of names that contains the names b̃ of all processes (Q 6=ν , b̃)
reachable in the name-aware transition system.

Like for the structural semantics, we observe that the concurrency semantics
is finite if and only if its set of places is. For the set of name places finiteness
holds by definition of restriction boundedness. To establish finiteness of the set

247

Chapter 9 Structure and Concurrency

of process places, consider (Q 6=ν , b̃) ∈ Reachna((P0, ã0)). We show that for any
fragment F e ∈ fg

`
Q 6=ν

´
we have

F e ≡ Rσ with R ∈ derivatives(P0) and σ : fn(R) → m̃ ∪ fn(P0).

This shows that the process places are included in

{Rσ p R ∈ derivatives(P0) and σ : fn(R) → m̃ ∪ fn(P0)}/≡,

which is a finite set. By Lemma 4.2.5, the set of derivatives is finite. Moreover,
fn(R), fn(P0), and m̃ are finite. Hence, there are finitely many mappings from
fn(R) into m̃ ∪ fn(P0).

To prove that any fragment F e ∈ fg
`
Q 6=ν

´
is structurally congruent with a

process Rσ, we observe that νb̃.Q 6=ν is reachable from P0 by the bisimilarity in
Lemma 9.1.6. Without loss of generality, we assume the process to be in standard
form.4 Proposition 4.2.2 shows that

νb̃.Q 6=ν ≡ νc̃.R 6=ν ,

where the latter process is in standard form and moreover R 6=ν = Πi∈IRiσi with
Ri ∈ derivatives(P0) and σi : fn(Ri) → fn(P0) ∪ c̃ holds. With Corollary 2.1.32
we strengthen the relationship to standard equivalence, νb̃.Q 6=ν ≡sf νc̃.R 6=ν . By
Lemma 2.1.33 there is a substitution σ : νc̃ → νb̃ so that

R 6=νσ = Πi∈IRiσiσ ≡sf Q 6=ν .

By definition of standard equivalence, for every sequential process F e ∈ fg
`
Q 6=ν

´

there is a structurally congruent process Riσiσ. Since νb̃.(R 6=νσ) ≡ νb̃.Q 6=ν the
process is reachable. Hence, fn(νb̃.(R 6=νσ)) ⊆ fn(P0) by Lemma 2.1.37. We con-
clude fn(Riσiσ) ⊆ fn(P0) ∪ b̃ ⊆ fn(P0) ∪ m̃, which shows that the codomain of
σiσ is correct.

⇒ If process P ∈ P is not restriction bounded, then for every finite set of
names m̃ a reachable process (Q, b̃) exists in the name-aware transition system
where b̃ contains a name outside m̃. Since the set of name places in NC [[P]] is the
union of all sets b̃, it is not finite and so the concurrency semantics is not. ¥

Corollary 9.1.13 (Restriction Boundedness and Bounded Depth)
If P ∈ P is restriction bounded, then P is bounded in depth, i.e., P ∈ PD<∞.

Proof
Assume m̃ ⊆ N is the finite set of names that includes all names reachable in
the name-aware transition system. Then |m̃| bounds the depth of all reachable
fragments with the bisimilarity in Theorem 9.1.10. ¥

4If this is not the case, we remove the names from νb̃ that are not in fn(Q6=ν).

248

9.1 A Concurrency Semantics for the π-Calculus

To illustrate that the classes of structurally stationary and restriction bounded
processes are incomparable, we consider two examples.

.

.
N [[νa0.K⌊a0⌋]]

•

[νa0.K⌊a0⌋]

NC [[νa0.L⌊a0⌋]]

a0

•

a1

•

[L⌊a0⌋] [a0〈a0〉]

Figure 9.3:
Structurally stationary and restriction bounded processes are incomparable,
νa0.K⌊a0⌋ defined in Example 9.1.14 is not restriction bounded but struc-
turally stationary. Its structural semantics is depicted to the left. Process
νa0.L⌊a0⌋ in the same example is restriction bounded but not structurally
stationary. Its concurrency semantics is depicted to the right.

Example 9.1.14 (Structurally Stationary and Restriction-bounded Pro-
cesses)
The following two processes separate the classes. The corresponding semantics
that finitely represent them are depicted in Figure 9.3.

1. In Example 4.3.8, we considered νa0.K⌊a0⌋ with K(x) := νb0.K⌊b0⌋. It
has the reaction sequence

νa0.K⌊a0⌋ → νb0.K⌊b0⌋ → νb1.K⌊b1⌋ → . . .

We observed that the process is structurally stationary, but as it generates
a new restricted name in every reaction it is not restriction bounded.

2. In Section 7.2, we defined νa0.L⌊a0⌋ with L(x) := x〈x〉 | L⌊x⌋, which
generates processes that send on the restricted channel a0. The sequence

νa0.L⌊a0⌋ → νa0.(a0〈a0〉 | L⌊a0⌋) → νa0.(a0〈a0〉 | a0〈a0〉 | L⌊a0⌋) → . . .

forms fragments of arbitrary breadth and therefore the process is not struc-
turally stationary with Theorem 7.2.8. It is restriction bounded as only one
restricted name is generated in all execution sequences.

Note that both processes are bounded in depth. ¨

Before we turn to the combination of the presented concurrency semantics with
our structural semantics, we give the proofs missing in this section.

249

Chapter 9 Structure and Concurrency

9.1.3 Proofs of Lemma 9.1.6 and Lemma 9.1.9

We first show bisimilarity between the original and the name-aware transition
system of a process.

Proof (of Lemma 9.1.6)
Consider process P0 ∈ P with sf (P0) = νã0.P

6=ν
0 . The index of ã0 indicates

that by Convention 9.1.1 all names in the initial process carry zero as index. As
bisimulation relation we choose

R :=
˘ “

([P 6=ν], ã), [νã.P 6=ν]
”

p ([P 6=ν], ã) ∈ Reachna(([P 6=ν
0], ã0))/≡

and [νã.P 6=ν] ∈ Reach(P0)/≡

¯
.

To show that R is indeed a bisimulation, we establish the following:

(1) The relation R connects the initial states, i.e., (([P 6=ν
0], ã0), [νã0.P

6=ν]) ∈ R.

(2) For all (([P 6=ν], ã), [P]) ∈ R two implications hold.

(2.1) If ([P 6=ν], ã) →na
T ([Q 6=ν], ã ⊎ b̃) then there is [Q] ∈ Reach(P0)/≡ so

that [P] →T [Q] and Q ≡ νã.νb̃.Q 6=ν .

(2.2) If [P] →T [Q] then there is ([Q 6=ν], ã ⊎ b̃) ∈ Reachna(([P 6=ν
0], ã0))/≡

with ([P 6=ν], ã) →na
T ([Q 6=ν], ã ⊎ b̃) and Q ≡ νã.νb̃.Q 6=ν .

Case (1) With Lemma 2.1.28, we have P0 ≡ sf (P0) = νã0.P
6=ν
0 . Hence,

“

([P 6=ν
0 , ã0]), [P0]

”

∈ R.

Case (2.1) Consider the name-aware reaction ([P 6=ν], ã) →na
T ([Q 6=ν], ã ⊎ b̃).

By definition of →na this means

P 6=ν → νb̃.Q 6=ν .

We prove that [P] = [νã.P 6=ν] can imitate the reaction. Since P 6=ν → νb̃.Q 6=ν we
get νã.P 6=ν → νã.νb̃.Q 6=ν with Rule (Res). We choose [Q] = [νã.νb̃.Q 6=ν] to get

“

([Q 6=ν], ã ⊎ b̃), [Q]
”

∈ R.

Case (2.2) Let [P] = [νã.P 6=ν] →T [Q], which means νã.P 6=ν → Q. Without
loss of generality, let νã.P 6=ν be in standard form.5 By Proposition 2.1.38 there
are three possibilities for the reaction νã.P 6=ν → Q. We consider the consump-
tion of τ -actions, which we assume to take place in the first sequential process.
Proposition 2.1.38 yields

νã.P 6=ν = νã.(M + τ.R + N | P 6=ν
rem)

5Otherwise we remove the names in ã that are not free in P 6=ν .

250

9.1 A Concurrency Semantics for the π-Calculus

Q ≡ νã.(R | P 6=ν
rem).

To find a corresponding name-aware reaction, we observe that

P 6=ν = M + τ.R + N | P 6=ν
rem → R | P 6=ν

rem .

Let the standard form of R be sf (R) = νx̃.R 6=ν . We change the indices of x̃ as
required for a name-aware reaction, i.e., we rename x̃ to b̃ so that for all bk ∈ b̃
we have k = max{i p bi ∈ ã} + 1 or k = 0 if there is no bi ∈ ã. To extrude the
scope of b̃, we argue that b̃∩ fn(P 6=ν

rem) = ∅. Since νã.(R | P 6=ν
rem) is reachable from

P0, we have fn(P 6=ν
rem) ⊆ ã ∪ fn(P0) with Lemma 2.1.37. Since the names x̃ are

bound in P0, they are disjoint with fn(P0) and so the names b̃ where the indices
are changed are disjoint with fn(P0). By construction b̃∩ ã = ∅. Scope extrusion
of b̃ is valid:

R | P 6=ν
rem

(R ≡ sf (R) = νx̃.R 6=ν , Lemma 2.1.28) ≡ νx̃.R 6=ν | P 6=ν
rem

(α-conversion) ≡ νb̃.(R 6=ν{b̃/x̃}) | P 6=ν
rem

(Scope extrusion) ≡ νb̃.(R 6=ν{b̃/x̃} | P 6=ν
rem).

With Rule (Struct) we derive

P 6=ν = M + τ.R + N | P 6=ν
rem → νb̃.(R 6=ν{b̃/x̃} | P 6=ν

rem).

By construction of b̃, the requirements of →na are satisfied and we have the
name-aware reaction

(P 6=ν , ã) →na (R 6=ν{b̃/x̃} | P 6=ν
rem , ã ⊎ b̃).

Furthermore, with R | P 6=ν
rem ≡ νb̃.(R 6=ν{b̃/x̃} | P 6=ν

rem) it holds

Q ≡ νã.(R | P 6=ν
rem) ≡ νã.νb̃.(R 6=ν{b̃/x̃} | P 6=ν

rem).

We thus have
“

([R 6=ν{b̃/x̃} | P 6=ν
rem], ã ⊎ b̃), [Q]

”

∈ R.

This shows that R is a bisimulation relation and concludes the proof. ¥

We now turn to the bisimilarity between the name-aware transition system
and the concurrency semantics.

Proof (of Lemma 9.1.9)
Consider P0 ∈ P with sf (P0) = νã0.P

6=ν
0 . As bisimulation relation we choose

R :=
˘ “

MP + MN , ([P 6=ν], ã)
”

p P 6=ν ≡ Π[F e]∈supp(MP)Π
MP ([F e])F e and

ã = {ai ∈ S p MN (ak) = 1 with k > i}
¯
.

To prove that R is a bisimulation, we establish the following:

251

Chapter 9 Structure and Concurrency

(1) The initial states are related by R, i.e., (M0, ([P
6=ν
0], ã0)) ∈ R.

(2) For all
`
MP + MN , ([P 6=ν], ã)

´
∈ R we have two implications.

(2.1) If MP + MN → NP + NN then there is a process ([Q 6=ν], ã ⊎ b̃) with
([P 6=ν], ã) →na

T ([Q 6=ν], ã ⊎ b̃) and (NP + NN , ([Q 6=ν], ã ⊎ b̃)) ∈ R.

(2.2) If ([P 6=ν], ã) →na
T ([Q 6=ν], ã ⊎ b̃) then there is a marking NP + NN so

that MP + MN → NP + NN and (NP + NN , ([Q 6=ν], ã ⊎ b̃)) ∈ R.

Case (1) Since P 6=ν
0 is in restricted form, we can apply the elementary equi-

valence in Lemma 3.3.4:

P 6=ν
0

(Lemma 3.3.4) ≡ Π
[F e]∈supp(dec(P

6=ν
0

))
Π(dec(P

6=ν
0

))([F e])F e

(Def. MP
0 := dec(P 6=ν)) ≡ Π[F e]∈supp(MP

0
)Π

MP
0

([F e])F e.

To show that the sets of names coincide, we observe

{ai ∈ S p MN
0 (ak) = 1 with k > i}

(Def. MN
0) = {a0 p a1 ∈ (ã0 + 1)}

(Def. ã0 + 1) = ã0.

This shows (MP
0 + MN

0 , ([P 6=ν
0], ã0)) ∈ R.

Case (2.1) Consider the transition M → N with M = MP + MN and
N = NP + NN . The following equivalences hold by definition:

M → N

⇔ ∃t ∈ T : M(s) ≥ W (s, t) for all s ∈ •t and

N(s) = M(s) − W (s, t) + W (t, s) for all s ∈ S.

We consider the case t = ([F e], b̃, [Q 6=ν]), the case of two communicating sequen-
tial processes is similar but technically more involved. The choice of t gives

MP([F e]) ≥ W ([F e], ([F e], b̃, [Q 6=ν])) = 1 and

MN (b) ≥ W (b, ([F e], b̃, [Q 6=ν])) = 1 for all b ∈ b̃.

The process P 6=ν contains a fragment F e, since

P 6=ν

(Def. R) ≡ Π[Ge]∈supp(MP)Π
MP ([Ge])Ge

(Assoc. and comm. |) ≡ F e | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge.

252

9.1 A Concurrency Semantics for the π-Calculus

The last equivalence is correct for two reasons. We showed MP([F e]) ≥ 1 above,
hence we can extract a parallel composition of F e. Furthermore, by definition
of W we get W ([Ge], t) = (dec([F e]))([Ge]) = 1, if Ge ≡ F e and 0 otherwise.
Hence, the term W ([Ge], t) compensates for the extraction of F e.

By definition of the transition set we have the reaction F e → νb̃.Q 6=ν . We
derive the following reaction of P 6=ν :

P 6=ν

(Argumentation above) ≡ F e | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge

(Rule (Par)) → νb̃.Q 6=ν | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge

(Scope extrusion) ≡ νb̃.(Q 6=ν | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge).

Scope extrusion in the last step requires some consideration. We have

fn(Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge) ⊆ fn(P 6=ν) ⊆ ã ∪ fn(νã0.P

6=ν
0),

where the latter inclusion relies on νã.P 6=ν ∈ Reach(νã0.P
6=ν
0) and Lemma 2.1.37.

That νã.P 6=ν is reachable from νã0.P
6=ν
0 holds with the previous Lemma 9.1.6

and the fact that ([P 6=ν], ã) ∈ Reachna(([P 6=ν
0], ã0))/≡.

We now show that b̃ is disjoint with ã as well as fn(νã0.P
6=ν
0). For the latter,

this holds by the fact that b̃ is a set of bound names and bound names are
disjoint with free names. To see disjointness with ã, we observe that names in
b̃ are marked while by definition of R the names in ã are dominated by marked
names, i.e., if ai ∈ ã then there is a name ak with M(ak) = 1 and k > i. Hence,
ã ∩ b̃ = ∅ and the scope extrusion is correct.

To establish the name-aware reaction

(P 6=ν , ã) →na (Q 6=ν | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge, ã ⊎ b̃),

we have to show that the index of bk ∈ b̃ is correct, i.e., k−1 = max{i p bi ∈ ã}:

max{i p bi ∈ ã}

(Def. R) = max{i p MN (bl) = 1 for some bl with l > i}

(l = k since t fires) = max{i p MN (bk) = 1 with k > i}

= k − 1.

This proves the reaction. We now establish

(NP + NN , ([Q 6=ν | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge], ã ⊎ b̃)) ∈ R.

To begin with, we show that the process is given by the marking NP . This holds
(a) by the elementary equivalence in Lemma 3.3.4, (b) by definition of W , (c) by

253

Chapter 9 Structure and Concurrency

associativity and commutativity of parallel composition, and (d) by the equation
defining the marking N with M [t〉N :

Q 6=ν | Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge

(a) ≡ Π[Ge]∈supp(dec(Q 6=ν))Π
(dec(Q 6=ν))([Ge])Ge |

Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge

(b) ≡ Π[Ge]∈supp(dec(Q 6=ν))Π
W (t,[Ge]Ge |

Π[Ge]∈supp(MP)Π
MP ([Ge])−W ([Ge],t)Ge

(c) ≡ Π[Ge]∈(supp(dec(Q 6=ν))∪supp(MP))Π
MP ([Ge])−W ([Ge],t)+W (t,[Ge])Ge

(d) ≡ Π[Ge]∈supp(NP)Π
NP ([Ge])Ge.

The following equations show that the set of names is correct. They hold by
definition of R and W :

ã ⊎ b̃

= {ai p MN (ak) = 1 with k > i} ⊎ {bk p W (bk, t) = 1)}

= {ai p MN (ak) = 1 with k > i} ⊎ {bk p NN (bk+1) = 1 = MN (bk)}

= {ai p NN (ak) = 1 with k > i}.

The inclusion ⊆ in the last equation holds since only the indices of names
b ∈ b̃ have been increased. To see that ⊇ holds, we distinguish two cases. If
NN (ak) = MN (ak) then all ai with i < k are in {ai p MN (ak) = 1 with k > i}.
If NN (bk+1) = 1 but MN (bk) = 1 then the name is included in the second set.
Hence, the two sets are equal and R holds.

Case (2.2) Consider the name-aware reaction

([P 6=ν], ã) →na
T ([Q 6=ν], ã ⊎ b̃).

We show that there is a transition enabled in M that can imitate the behaviour.

By definition of name-aware reactions, we have P 6=ν → νb̃.Q 6=ν . By Pro-
position 2.1.38, there are three possible sources for this reaction. We consider
consumption of τ -actions in the first component, i.e., P 6=ν = M +τ.R+N | P 6=ν

rem .
Communications between sequential processes and calls to identifiers are similar
but require handling of substitutions. The main point in all proofs is to show
that exactly the b̃ places are marked. An application of Proposition 2.1.38 yields

P 6=ν = M + τ.R + N | P 6=ν
rem

νb̃.Q 6=ν ≡ R | P 6=ν
rem .

254

9.1 A Concurrency Semantics for the π-Calculus

We compute the standard form sf (R) = νx̃.R 6=ν and rename x̃ to a set of names
ỹ that is disjoint with the free names in P 6=ν

rem . Then we extrude the scope of ỹ:

R | P 6=ν
rem

(R ≡ sf (R) = νx̃.R 6=ν , Lemma 2.1.28) ≡ νx̃.R 6=ν | P 6=ν
rem

(α-conversion) ≡ νỹ.(R 6=ν{ỹ/x̃}) | P 6=ν
rem

(Scope extrusion) ≡ νỹ.(R 6=ν{ỹ/x̃} | P 6=ν
rem).

Since νb̃.Q 6=ν as well as νỹ.(R 6=ν{ỹ/x̃} | P 6=ν
rem) are both in standard form and

structurally congruent, Corollary 3.3.6 yields

νb̃.Q 6=ν ≡sf νỹ.(R 6=ν{ỹ/x̃} | P 6=ν
rem).

By Lemma 2.1.33 there is a substitution σ : ỹ → b̃ so that

Q 6=ν ≡sf R 6=ν{ỹ/x̃}σ | P 6=ν
remσ.

Abbreviating {ỹ/x̃}σ by σ′ and referring to M + τ.R + N by F e, we get

F e → R ≡ νx̃.R 6=ν ≡ νb̃.(R 6=νσ′),

where the second congruence α-converts the names x̃. Rule (Struct) gives the
reaction F e → νb̃.(R 6=νσ′).

Since ([P 6=ν], ã) is a reachable process, ([Q 6=ν], ã⊎ b̃) is. Hence, the names b̃ as
well as [F e] are places. By construction of the transition set, we have a transition
t = ([F e], b̃, [R 6=νσ′]). To see that t is enabled, note that by definition of R

F e | P 6=ν
rem = P 6=ν ≡ Π[Ge]∈supp(MP)Π

MP ([Ge])Ge.

Thus, place [F e] is marked by at least one token. To see that the name places b̃
are marked, we observe that bk ∈ b̃ implies

k − 1 = max{i p bi ∈ ã} = max{i p M(bl) = 1 with l > i}.

The first equation holds by definition of name-aware reactions, the second by
definition of R. We conclude l = k, which means M(bk) = 1 and transition t is
enabled. Its firing yields marking N with

N(s) = M(s) − W (s, t) + W (t, s) for all s ∈ S.

The proof that R relates N and ([Q 6=ν], ã ⊎ b̃) is similar to the one in (2.1).
The difference is that we need to show that b̃+1 as well as supp(dec(R 6=νσ′)) are
included in the set of places. For b̃+1 this holds with the fact that b̃ is reachable
by a name-aware reaction and thus by nms(Reachna((P 6=ν

0 , ã0)))+1 ⊆ S we also
have b̃ + 1 ⊆ S. For the support, we argue as follows:

supp(dec(R 6=νσ′))

255

Chapter 9 Structure and Concurrency

(Lemma 3.3.2) = fg
“

R 6=νσ′
”

/≡

(Def. fg) ⊆ fg
“

R 6=νσ′ | P 6=ν
remσ

”

/≡

(See below) = fg
“

Q 6=ν
”

/≡

(Def. S) ⊆ S.

For the second equality, note that with Corollary 3.3.6 R 6=νσ′ | P 6=ν
remσ ≡ Q6=ν

implies dec(R 6=νσ′ | P 6=ν
remσ) = dec(Q6=ν). Hence, we get

fg
“

R 6=νσ′ | P 6=ν
remσ

”

/≡

(Lemma 3.3.2) = supp(dec(R 6=νσ′ | P 6=ν
remσ))

(dec(R 6=νσ′ | P 6=ν
remσ) = dec(Q6=ν)) = supp(dec(Q 6=ν))

(Lemma 3.3.2) = fg
“

Q 6=ν
”

/≡.

This concludes the proof of bisimilarity. ¥

Remark 9.1.15
Both bisimilarity proofs only rely on the fact that P 6=ν is in restricted form.
Hence, they hold with an arbitrary process P rf in restricted form instead of
P 6=ν . As a consequence, the correctness of the mixed semantics defined in the
following section reduces to the correctness proof for the concurrency semantics
we just gave. ¨

9.2 Combining Structural and Concurrency Semantics

The idea to combine the structural and the concurrency semantics is to have two
types of restricted names. Depending on the type, a name is handled according to
the concurrency semantics or according to the structural semantics. Technically,
restricted names νa may carry a tag C.6 Tagged names νaC are translated by the
concurrency semantic while names νa without tag are handled by the structural
semantics. This means tagged names νaC yield name places in the Petri net
while untagged names form fragments, which are used like process places in the
concurrency semantics. This combined semantics raises two problems. (1) It
requires the definition of a name-aware transition system to make the invention
of tagged names explicit. (2) For every reachable process, the fragments induced
by untagged names need to be computed. The solution to both problems is a

6We still assume that restricted names carry indices.

256

9.2 Combining Structural and Concurrency Semantics

normal form for processes, which combines the standard and the restricted form.
It is introduced in the following Section 9.2.1, the combined semantics itself is
presented in Section 9.2.2.

We aim at a clear but informal introduction of the combined semantics. Simil-
arly, the statements of bisimilarity and finiteness are given informally. As pointed
out in the previous section, the proofs for the concurrency semantics should still
hold in the new setting. We refuse to formalise the statements as this causes over-
head which distracts from the idea and does not provide new insights. Important
definitions are illustrated on the example of a bag data structure introduced in
Section 7.6 and also considered in Section 8.2.3. We briefly restate it using the
tagged names defined above.

Example 9.2.1 (The Bag Data Structure)
The bag data structure together with a process that fills it forms the system
νinC

0 .νoutC0 .(FILL⌊inC
0 ⌋ | BAG⌊inC

0 , outC0⌋), where

BAG(inC
0 , outC0) := inC

0 (y).(outC0 〈y〉 | BAG⌊inC
0 , outC0⌋)

FILL(inC
0) := νval .inC

0 〈val〉.FILL⌊inC
0 ⌋.

In Section 7.6, we observed that the outC0 channel is shared by arbitrarily many
processes. Therefore, we type it by C to treat it by the concurrency semantics.
Conversely, we observed that arbitrarily many instances of the value val are cre-
ated. By omitting the type, the name is handled like in the structural semantics.
Since the structural semantics does not need indices, we omit them. For the
name inC

0 we are free to tag it. Also the untagged name in would lead to a finite
Petri net representation in the mixed semantics. ¨

9.2.1 Mixed Normal Form

The idea of the mixed normal form is to maximise the scopes of tagged names
aC and to minimise the scopes of untagged names a. The result is a process
where the tagged names surround a process in restricted form, i.e., a process
Pmf = νãC .P rf so that P rf only contains untagged names. We call Pmf a
process in mixed normal form. More formally, the class is defined by

Pmf ::= P rf
p νaC .Pmf ,

where aC ∈ fn(Pmf) and P rf is a process in restricted form with aC∩arn(P rf) = ∅,
i.e., there is no tagged name in the active restrictions of P rf . The set of all
processes in mixed normal form is Pmf .

257

Chapter 9 Structure and Concurrency

Example 9.2.2 (Mixed Normal Form)
Consider the following processes P and Pmf :

P = νinC
0 .νoutC0 .(FILL⌊inC

0 ⌋ | BAG⌊inC
0 , outC0⌋ | outC0 〈val〉)

Pmf = νinC
0 .νoutC0 .(FILL⌊inC

0 ⌋ | BAG⌊inC
0 , outC0⌋ | νval .outC0 〈val〉).

Both, P and Pmf are in mixed normal form. The process νval .P , where an
untagged outermost restriction is added, is not in mixed normal form. ¨

The mixed normal form Pmf = νãC .P rf combines standard form P sf = νã.P 6=ν

and restricted form P rf . Like in the standard form, tagged names surround a
parallel composition of processes, with the difference that P 6=ν uses elementary
fragments P 6=ν = Πi∈IF e

i while P rf = Πi∈IFi composes proper fragments. Com-
pared with the restricted form, the mixed normal form additionally restricts free
names in P rf .

Before we introduce the name-aware transition system of a tagged process,
we make sure that every process is structurally congruent to a process in mixed
normal form. To this end, we use a function mf : P → Pmf that combines
the definitions of sf : P → Psf and rf : P → Prf . We explain the recursive
definition in detail. Empty sums M=0 = 0 + . . . + 0 are represented by 0,
which are empty parallel compositions of fragments and thus in mixed normal
form, 0 = Πi∈∅Fi ∈ Prf ⊆ Pmf . Since any non-empty sequential process is in
restricted form, it is also in mixed normal form. We have

mf (M=0) := M=0 mf (F e) := F e.

For the parallel composition P | Q, we recursively compute the mixed normal
forms of P and Q. Let them be mf (P) = νãC

P .P rf 6= 0 6= νãC
Q.Qrf = mf (Q).

Like the standard form, the mixed normal form mf (P | Q) extrudes the scopes
of both sets of names:

mf (P | Q) := νãC
P .νãC

Q.(P rf | Qrf).

Since P rf and Qrf are parallel compositions of fragments, the process P rf | Qrf

is in restricted form as well.
Restricted names are treated according to whether they are tagged. Tagged

names are handled like in the standard form, i.e., for νaC .P with aC ∈ fn(P) we
define

mf (νaC .P) := νaC .mf (P).

For a process νa.P with an untagged name a ∈ fn(P), we recursively compute the
mixed normal form mf (P) = νãC .P rf . This singles out the tagged names ãC in P .
We commute νa with νãC , which yields νãC .νa.P rf . Let P rf = Πi∈IFi. Similar
to the function rf , the indices Ia of those fragments Fi are determined that have

258

9.2 Combining Structural and Concurrency Semantics

a as a free name. The scope of a is then restricted accordingly, which yields
νãC .(νa.(Πi∈IaFi) | Πi∈I\Ia

Fi). By construction νa.(Πi∈IaFi) is a fragment and
thus νa.(Πi∈IaFi) | Πi∈I\Ia

Fi is in restricted form. To sum up, we get

mf (νa.P) := νaC .
`
νa.(Πi∈IaFi) | Πi∈I\Ia

Fi

´
.

Example 9.2.3 (mf : P → Pmf)
In Example 9.2.2, we observed that the process νval .P with

P = νinC
0 .νoutC0 .(FILL⌊inC

0 ⌋ | BAG⌊inC
0 , outC0⌋ | outC0 〈val〉)

is not in mixed normal form. We compute the process mf (νval .P). To begin
with, we recursively determine the mixed normal form of P , which is P itself,
i.e., mf (P) = P . Commuting val over the tagged names yields

νinC
0 .νoutC0 .νval .(FILL⌊inC

0 ⌋ | BAG⌊inC
0 , outC0⌋ | outC0 〈val〉).

We determine the fragments in FILL⌊inC
0 ⌋ | BAG⌊inC

0 , outC0⌋ | outC0 〈val〉 that

use the name val . This is outC0 〈val〉. Restricting the scope of val gives

mf (νval .P) = νinC
0 .νoutC0 .(νval .outC0 〈val〉 | FILL⌊inC

0 ⌋ | BAG⌊inC
0 , outC0⌋).

The process is in mixed normal form. ¨

Although we have not checked the details, it should be easy to show mf (P) ≡ P
and mf (P) ∈ Pmf . The proof should be similar to the proofs of Lemma 2.1.28
for the function sf and Lemma 3.2.7 for the function rf . Moreover, it should be
straightforward to adapt the standard equivalence ≡sf to a mixed equivalence
≡mf , which characterises structural congruence over the mixed normal form, i.e.,
P ≡ Q if and only if mf (P) ≡mf mf (Q). Again the proof should be similar
to the proofs of Proposition 2.1.31 and Proposition 3.2.10. The propositions
characterise structural congruence by standard equivalence ≡sf and by restricted
equivalence ≡rf , respectively. The relation ≡mf differs from ≡sf in two aspects.
The rules containing processes P 6=ν are replaced by similar rules where processes
in restricted form P rf are used. Moreover, the rule

νã.(M 6=0 | P 6=ν) ≡sf νã.(N 6=0 | P 6=ν), where M 6=0 ≡ N 6=0

is replaced by

νãC .(F | P rf) ≡sf νãC .(G | P rf), where F ≡ G.

We observe that the latter rule also mimics the replacement of fragments by
structurally congruent ones as allowed for in the restricted equivalence ≡rf . We
now turn to the definition of the mixed semantics.

259

Chapter 9 Structure and Concurrency

9.2.2 Mixed Semantics

Like the concurrency semantics, the combined semantics relies on a name-aware
transition system to keep track of the tagged restricted names that are used. With
the mixed normal form νãC .P rf in mind, we define a new form of name-aware
processes, namely (P rf , νãC) where the active restrictions in P rf are untagged.
For these name-aware processes, the name-aware reaction relation →na is adap-
ted accordingly. The only difference to Definition 9.1.3 is the use of the mixed
normal form instead of the standard form:

(P rf , ãC) →na (Qrf , ãC ⊎ b̃C) :⇔ (1) P rf → νb̃C .Qrf in mixed normal form and

(2) ∀bCk ∈ b̃C : k − 1 = max{i p bCi ∈ ãC}.

It is straightforward to modify the definition of the name-aware transition system
as well. Without change of notation, let it be Tna((P rf , νãC)). Figure 9.4 illus-
trates it on the bag data structure. As discussed in Section 9.1.3, the bisimilarity

Tna((F0 | F1, {in
C
0 , outC0}))

([F0 | F1], {in
C
0 , outC0})

([F2 | F1], {in
C
0 , outC0}) ([F0 | F3], {in

C
0 , outC0})

([F2 | F3], {in
C
0 , outC0})

([F0 | F1 | F4], {in
C
0 , outC0})

F0 = FILL⌊inC
0 ⌋ F1 = BAG⌊inC

0 , outC0⌋

F2 = νval .inC
0 〈val〉.FILL⌊inC

0 ⌋ F3 = inC
0 (y).(outC0 〈y〉 | BAG⌊inC

0 , outC0⌋)

F4 = νval .outC0 〈val〉

Figure 9.4:
The name-aware transition system of the bag process in Example 9.2.1.

of the name-aware and the original transition system only makes use of the fact
that P 6=ν is a parallel composition of fragments. Hence, we claim it holds for the
adapted definition as well, i.e., if mf (P0) = νãC

0 .P rf
0 then

Tna((P rf
0 , ãC

0)) ≈ T (P0) .

260

9.2 Combining Structural and Concurrency Semantics

Also the mixed semantics is an adaptation of the concurrency semantics. We use
the new name-aware transition system to define the places. They are now proper
fragments like in the structural semantics and no longer elementary fragments.
Similarly, the set of transitions is changed. They are of the form

([F], ãC , [Qrf]) and ([F1 | F2], ã
C , [Qrf])

with the condition that F →na νãC .Qrf so that the latter process is in mixed
normal form. The weight function is changed accordingly. Formally, the mixed
semantics is a function NM : P → PN obtained from Table 9.1 by dropping the
superscripts of elementary fragments and replacing processes P 6=ν and Q 6=ν by
P rf and Qrf . Figure 9.5 gives the mixed semantics for the bag data structure.
It is worth noting that neither the structural nor the concurrency semantics can
finitely represent the process.

.

.

•

[F0]

•

[F1]

[F2] [F3]

[F4]

outC0

• outC1

inC
0

•inC
1

t0 t1

t2

Figure 9.5:
The mixed semantics of the bag data structure. The fragments F0 to F4 are
defined in Figure 9.4. Obviously, the fragments form the places like in the
structural semantics and the tagged names yield name places like in the con-
currency semantics. The transitions are t0 = ([F0], ∅, [F2]), t1 = ([F1], ∅, [F3]),
and t3 = ([F2 | F3], ∅, [F0 | F1 | F4]).

We also discussed that the proof of bisimilarity in Lemma 9.1.9 does not dis-
tinguish between elementary fragments and proper fragments. So it still holds
for the combined semantics and with mf (P0) = νãC

0 .P rf
0 we have:

T (NM[[P0]]) ≈ Tna((P rf
0 , ãC

0)).

Combining both bisimilarities, we obtain bisimilarity for the mixed semantics,

Tna(NM[[P0]]) ≈ T (P0) ,

261

Chapter 9 Structure and Concurrency

and like for the structural and concurrency semantics, the processes can be re-
constructed from the markings.

It is interesting to observe that for processes without tagged names the mixed
semantics degenerates to the structural semantics. The absence of tagged names
in the process leads to absence of name places in the semantics. Hence, transitions
do not create names and have the form ([F], ∅, [Qrf]) or ([F1 | F2], ∅, [Q

rf]).
They can be identified with the transitions in the structural semantics. In case
all names are tagged in the process under consideration, the mixed semantics
corresponds to the concurrency semantics. This follows from the fact that the
mixed normal form coincides with the standard form for these processes. Hence,
the places in the mixed semantics are sequential processes.

Remark 9.2.4 (Conservative Extension)
Consider process P ∈ P. If the process does not use tagged names, the mixed
semantics coincides with the structural semantics, i.e., NM[[P]] = N [[P]]. If
the process only uses tagged names, the mixed semantics coincides with the
concurrency semantics, i.e., NM[[P]] = NC [[P]]. ¨

We conclude the section with a finiteness characterisation for the mixed se-
mantics. According to Lemma 4.1.2, the structural semantics is finite exactly
if the process is structurally stationary, i.e., there are finitely many fragments
the restricted form of every reachable process consists of. Theorem 9.1.12 states
that the concurrency semantics is finite if and only if the process is restriction
bounded, i.e., the name-aware transition system generates finitely many restric-
ted names. We prove the mixed semantics to be finite if and only if

• the untagged names form finitely many fragments and

• only finitely many tagged names are generated.

Technically, a process P0 with mf (P0) = νãC
0 .P rf

0 is mixed-bounded, if there is a
finite set of fragments {F1, . . . , Fn} and a finite set of names m̃C so that for every
reachable process (Qrf , ãC) we have

∀F ∈ fg
“

Qrf
”

: ∃i : F ≡ Fi and ãC ⊆ m̃C .

We first show that the mixed semantics NM[[P]] is finite if P is mixed-bounded.
Note that—like for the structural and for the concurrency semantics—finiteness
of the set of places yields finiteness of the mixed semantics. Finiteness of the set
of name places immediately follows from the definition of mixed boundedness,
which requires a finite set of names m̃C including the names ãC of all reachable
name-aware processes. Likewise, finiteness of the set of fragment places is ensured
by the structural stationarity condition, which asks for a finite set of fragments
containing up to structural congruence all reachable fragment.

262

9.3 Completeness of Mixed Boundedness

Conversely, if the mixed semantics is a finite Petri net, then in particular the
set of places is finite. Mixed boundedness of the translated process follows from
the definition of the set of places.

Theorem 9.2.5 (Finiteness Characterisation)
The mixed semantics NM[[P]] is finite if and only if P is mixed-bounded.

Corollary 9.2.6 (Mixed-Bounded Processes are Bounded in Depth)
If P ∈ P is mixed-bounded, then P is bounded in depth, P ∈ PD<∞.

Proof
Let P be mixed-bounded, so that all tagged names are included in m̃C and all
fragments are structurally congruent with F1, . . . , Fn. Then the depth of all
reachable fragments is bounded by |m̃C | + max{||Fi||D p 1 ≤ i ≤ n}. ¥

Theorem 9.2.5 yields the following implication. If a process is mixed-bounded,
then there is a faithful representation of the process as finite place/transition
Petri net. Hence, mixed boundedness is a sound characterisation of processes
with respect to place/transition Petri net semantics. The following section shows
that it is also complete. If a process class is not mixed-bounded, then there is no
faithful finite place/transition Petri net representation. This shows that mixed-
bounded processes form the borderline between the π-Calculus and Petri nets.

9.3 Completeness of Mixed Boundedness

We argue that the class of mixed bounded processes is complete with respect to
finite Petri net semantics. If we have a superclass of mixed bounded processes,
there will be no reachability-preserving translation into finite place/transition
Petri nets. Since it is always possible to handle particular classes of processes by
specialised translations, we make our argument precise. We show that in slight
extensions of mixed bounded processes reachability becomes undecidable. Since
the problem is decidable for finite place/transition Petri nets [May84, Kos82],
there can be no reachability-preserving translation for the extended process class.

The processes we consider are bounded in depth by one. They are not mixed
bounded since (1) they create an arbitrary number of restricted names and since
(2) their fragments are not bounded in breadth. Condition (1) states that the
restricted names cannot be handled by the concurrency semantics while Condi-
tion (2) ensures the processes do not yield a finite structural semantics.

To establish undecidability of reachability, we reduce the reachability problem
for 2-counter machines (cf. Section 8.3.1). Since the resulting processes are

263

Chapter 9 Structure and Concurrency

bounded in depth by one, the encoding of counter machines presented in this
section drastically differs from the one in Section 8.3.2. It is an adaptation of a
construction in [DFS98], which shows that reachability is undecidable for Petri
nets with transfer.

.

.

•l

c1

c′
1

strash

l ′′

l ′

(a)

t

t0

l

c1

c′
1

strash

l ′′

• l ′

(b)

t

t0

•l

••c1

••c′
1

strash

l ′′

l ′

(c)

t

t0

l

••c1

c′
1

•• strash

l ′′

• l ′

(d)

t

t0

Figure 9.6:
A Petri net with transfer modelling a test for zero in a counter machine.
Dashed lines represent transfer arcs of t0 that move all tokens in c′

1 to the
trash place strash when the transition is fired. Note that t0 is enabled as
long as place l carries a token—even if c′1 is zero. For example, firing t0 in
the transfer net in (a) yields the marking in (b). Firing t0 in (c) yields the
marking depicted in (d).

The idea of Dufourd, Finkel, and Schnoebelen is to represent a counter c1 by
two places c1 and c′

1. The test for zero

if c1 = 0 then goto l ′; else c1 := c1 − 1; goto l ′′; (9.1)

is modelled by the transfer net in Figure 9.6. To test counter c1 for being zero,
transition t0 transfers the content of place c′

1 to a trash place strash . Since the
transition is enabled although c′

1 is empty (Figure 9.6 (a) and (b)), the content of
c1 and c′

1 coincides as long as the net properly simulates the counter machine. If
a transfer operation is executed although c′

1 is not empty, the amount of tokens in
c1 and c′

1 becomes different (Figure 9.6 (c) and (d)). Since increment operations

264

9.3 Completeness of Mixed Boundedness

always add the same amount of tokens to c1 and c′
1, this difference is preserved

throughout the computation. Hence, a state (v1, v2, l) is reachable in the counter
machine if and only if a marking is reachable in the transfer net where place l is
marked, counter c1 as well as its copy c′1 carry v1 tokens, and similarly c2 and
c′
2 carry v2 tokens.
To adapt the model of Dufourd. et. al. to processes, we represent a counter

value by a parallel composition of processes, e.g., c1 = 3 by a | a | a. The
transfer operation requires us to change arbitrarily many processes with one
communication. We achieve this by attaching the processes a to a so-called
process bunch PB⌊a, ic1 , dc1 , tc1⌋. For the counter value c1 = 3, this results in
the process

νa.(PB⌊a, ic1 , dc1 , tc1⌋ | a | a | a).

The processes a are attached to the process bunch PB⌊a, ic1 , dc1 , tc1⌋ by sharing
the restricted name a. The index c1 of the free names ic1 , dc1 , and tc1 shows
that the process bunch models counter c1. Since a is a restricted name, the
process bunch has exclusive access to its processes. It offers three operations
to modify their numbers: ic1 , dc1 , and tc1 . A communication on ic1 stands for
increase and creates a new process a. Similarly, a message on dc1 decreases the
process number by consuming a process a. A test for zero on tc1 creates a new
and empty process bunch for counter c1. The old process bunch terminates. A
process νa.(a | a | a) without process bunch PB⌊a, ic1 , dc1 , tc1⌋ is considered to
belong to the trash place. To sum up, a process bunch is defined by

PB(a, dx, ix, tx) := ix.(PB⌊a, dx, ix, tx⌋ | a)

+dx.a.PB⌊a, dx, ix, tx⌋

+tx.νb.PB⌊b, ix, dx, tx⌋.

The translation of the labelled instructions is similar to the one in Section 8.3.2.
The increment operation on counter c1

l : c1 := c1 + 1 goto l ′

yields a process identifier Kl with defining equation

Kl(c̃1, c̃
′
1, c̃2, c̃

′
2) := ic1 .ic′

1
Kl′⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋.

The parameter lists are c̃1 = ic1 , dc1 , tc1 and similar for the other counters. Note
that both, c1 and c′1, are incremented to keep the numbers of processes in both
bunches equal. Like for Petri nets with transfer, the test for zero in (9.1) only
changes the value of counter c′

1. The decrement operation acts on both counters:

Kl(c̃1, c̃
′
1, c̃2, c̃

′
2) := tc′

1
.Kl′⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋ + dc1 .dc′

1
.Kl′′⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋.

265

Chapter 9 Structure and Concurrency

In one respect, our process model is different from the encoding of Dufourd et.
al. In the transfer net, a decrement happens only if the places c1 and c′1 carry
a token. A process bunch accepts a decrement operation although it might be
empty. In this case, the system deadlocks and reachability is preserved. Finally,
a halt instruction l : halt is translated into Kl(c̃1, c̃

′
1, c̃2, c̃

′
2) := halt . The full

translation of a counter machine CM yields the process

PD<∞
CM [[CM]] = Π

x∈{c1,...,c′
2
}
νax.PB⌊ax, x̃⌋ | Kl0⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋. (9.2)

Example 9.3.1 (PD<∞
CM : CM → PD<∞)

Consider the counter machine CM = (c1, c2, instr) with

instr :

l0 : c1 := c1 + 1; goto l1;

l1 : if c1 = 0 then goto l1; else c1 := c1 − 1; goto l2;

l2 : halt .

The machine sets c1 to one, the following check for zero fails, c1 is decremented,
and the machine stops. The corresponding process has the form in (9.2) with the
following defining equations:

Kl0(c̃1, c̃
′
1, c̃2, c̃

′
2) := ic1 .ic′

1
Kl1⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋

Kl1(c̃1, c̃
′
1, c̃2, c̃

′
2) := tc′

1
.Kl1⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋ + dc1 .dc′

1
.Kl2⌊c̃1, c̃

′
1, c̃2, c̃

′
2⌋

Kl2(c̃1, c̃
′
1, c̃2, c̃

′
2) := halt .

¨

The reachable states of the counter machine CM can be computed from the
reachable processes of PD<∞

CM [[CM]]. More precisely, the counter machine CM
reaches the state (v1, v2, l) if and only if its encoding reaches the process

Π
x∈{c1,c′

1
}
νax.(PB⌊ax, x̃⌋ | Πv1ax)

| Π
x∈{c2,c′

2
}
νax.(PB⌊ax, x̃⌋ | Πv2ax)

| Kl⌊c̃1, c̃
′
1, c̃2, c̃

′
2⌋.

The first parallel composition ensures that the bunches for c1 and c′
1 contain v1

processes, the construction for the counters c2 and c′
2 is similar. Combined with

the observation that the process PD<∞
CM [[CM]] is always bounded in depth by one,

we arrive at the desired undecidability theorem.

266

9.4 Related Work and Conclusion

Theorem 9.3.2 (Undecidability of Reachability in Depth One)
Consider two processes P, Q ∈ PD<∞ where the depth is bounded by one. The
problem whether [Q] ∈ Reach(P)/≡ is undecidable.

Note that Theorem 9.3.2 implies undecidability of reachability for the class
PD<∞. This means, for processes of bounded depth reachability is undecidable
by a reduction from counter machines but termination is decidable according
to Corollary 8.2.22. Hence, our mapping PD<∞

CM cannot preserve termination
since this is undecidable for counter machines. Example 9.3.1 gives a counter
machine CM that terminates but whose process representation PD<∞

CM [[CM]] has
an infinite run.

Since reachability is decidable for finite place/transition Petri nets [May84,
Kos82], we conclude that there does not exist a reachability-preserving translation
into finite place/transition Petri nets for any class of processes subsuming those
of depth one.

Corollary 9.3.3 (Completeness of Mixed Boundedness)
Consider a class of processes P ′ ⊆ P that contains all processes of depth one.
For any mapping f : P ′ → PN one of the following holds. Either f(P) is infinite
for some processes or reachability is not preserved, i.e., there is no algorithm to
decide on the Petri net f(P) whether a given process [Q] is reachable from P .

In our opinion, mixed bounded processes are close to processes of depth one.
Any reasonable extension of this class will subsume the processes of depth one.
Hence, the extension will not be translatable into finite place/transition Petri
nets without losing reachability. This closes our argumentation for completeness
of mixed bounded processes with respect to finite place/transition Petri nets.

9.4 Related Work and Conclusion

We investigated the translation of processes of bounded depth into place trans-
ition Petri nets. The main result is that the structural semantics from Chapter 3
and a new concurrency semantics are orthogonal and that they can be com-
bined to a mixed semantics. The class of processes that are finitely represented
by the mixed semantics generalises both, structurally stationary and restriction
bounded processes (Remark 9.2.4), the latter are finitely represented by the con-
currency semantics (Theorem 9.1.12). Mixed processes still lie within the class
of processes of bounded depth (Corollary 9.2.6). Figure 9.7 illustrates the rela-
tionship between the process classes. We showed it to be impossible to further
generalise mixed bounded processes while still achieving reachability-preserving
translations to Petri nets. The reason is that reachability becomes undecid-

267

Chapter 9 Structure and Concurrency

able immediately outside mixed boundedness, in particular processes of bounded
depth are strictly more expressive than Petri nets. In this sense, mixed bounded
processes are complete with respect to finite place/transition Petri net semantics.

Recursion-free

Terminating

FCP

Finitary

Bounded

Restriction-free

PFH

PFG<∞

Restriction bounded

Mixed bounded

PD<∞PB<∞

:= Syntactic class := Semantic class := Set inclusion ⊆

Figure 9.7: A more complete hierarchy of processes.

Although several concurrency Petri net semantics for the π-Calculus have
been proposed in the literature [Eng96, BG95, BG09, AM02, KKN06, DKK06a,
DKK06b, DKK08], we found them all defective in the sense that they do not
satisfy the quality criteria we require for Petri net semantics to be usable for
verification purposes. Therefore, we presented a new concurrency semantics. To
the best of our knowledge, it is the first that translates processes with restricted
names (expressiveness) into bisimilar (retrievability) place/transition Petri nets
(analysability), so that finiteness of the nets can be characterised. The proof
of bisimilarity and finiteness rely on a new transition system for the π-Calculus
that keeps track of the identities of restricted names. It is missing in related
approaches.

We discuss the problems with previous results. Engelfriet [Eng96] trans-
lates processes with replication into bisimilar place/transition Petri nets. Since
the Petri net representation is infinite as soon as the replication operator is
used the requirement for finiteness is not satisfied. Amadio and Meyssonnier
[AM02] translate recursive but restriction-free processes into bisimilar and finite
place/transition Petri nets. Hence, their semantics does not handle an express-

268

9.4 Related Work and Conclusion

ive class of processes. Similar to our approach, Busi and Gorrieri [BG95, BG09]
translate restriction bounded processes into finite place/transition Petri nets.
More precisely, they use primitive inhibitor nets and show that the inhibiting
places can be removed if reaction semantics is considered. They fail to prove
bisimilarity, so retrievability does not hold. Koutny et. al. [KKN06, DKK06a,
DKK06b, DKK08] achieve a bisimilar translation into finite but high-level Petri
nets, thus violating the requirement for analysability by using a Turing complete
formalism.

The definition of the mixed semantics relies on a typing mechanism for re-
stricted names. If a name carries a tag C, it is translated according to the
concurrency semantics, otherwise according to the structural semantics. In our
tool Petruchio—that besides the structural also implements the concurrency
and the mixed semantics—we do not expect a user to type restrictions. Instead,
Strazny implemented two algorithms that infer the types of restrictions automat-
ically. The first tries to handle every name with the structural semantics. If it
detects unbounded breadth for some name (with an approximate algorithm), it
changes the type of the name and repeats the compilation with the new process.
The second algorithm tags all names so that they are handled by the concurrency
semantics and then iteratively removes the tags.

In Section 9.3, we showed how to imitate an undecidability result for Petri nets
with transfer (to a trash place) in processes of bounded depth. In fact, an exten-
sion of the presented construction shows that every Petri net with transfer (to
a trash place) can be modelled bisimilarly by a process of bounded depth. This
has an interesting decidability-theoretic consequence. We discussed in Section 4.5
that action-based linear-time logics are decidable for Petri nets [Esp94] and con-
jectured that they should be decidable for structurally stationary processes. For
Petri nets with transfer, decidability of these logics has been settled negatively
[RB04]. Hence, we conjecture that model checking processes of bounded depth
against these logics will be undecidable. A comprehensive overview of decidabil-
ity results for this extended Petri net model can be found in [Gee07]. A second
remark about the more general encoding of transfer nets (with trash place) into
processes of bounded depth is that it proves input-bounded unique receiver sys-
tems to be bisimilarly reflectable in bounded depth. Amadio and Meyssonnier
encode their processes into Petri nets with transfer [AM02], which we then in
turn model in bounded depth.

269

270

10 Conclusion

Contents
10.1 Summary . 271

10.2 Future Work . 273

We summarise the main results in this thesis and make a remark on the cor-
responding publications. Afterwards we discuss future work.

10.1 Summary

We presented finite representations of infinite-state DRS classes, which allow
for the application of computer-aided verification techniques. The main subject
were structurally stationary systems and their representation in the structural
semantics. For systems of bounded depth we showed how to compute the finite
reachability tree. Restriction bounded systems are finitely represented under the
concurrency semantics and mixed bounded systems under the mixed semantics.
Systems of bounded breadth turned out Turing complete, so there does not exist
a finite and decidable representation. We clarified the relationship among the
classes and to existing classes in the literature and obtained a fairly complete
picture (Figure 9.7). Moreover, the tight relationship to (extended) Petri net
models provides a good intuition to decidability of verification problems for the
different classes. To sum up, given a π-Calculus model to be verified, we can (1)
judge the class of systems it belongs to, (2) compute a finite representation for
it, and (3) depending on the class provide a number of verification techniques.

We organised the thesis along a list of quality criteria finite representations
have to satisfy in order to be useful for verification purposes, namely retrievability,

271

Chapter 10 Conclusion

finiteness, expressiveness, analysability, intuitivity, and maximality. We briefly
recapitulate the contributions of the three parts.

Part I was devoted to the theory of structural stationarity. We observed that
π-Calculus processes may be interpreted as groups of unconnected graphs and
formalised this intuition in terms of a normal form for processes. The main in-
gredients are fragments, groups of processes connected by restricted names. This
restricted form gave rise to the definition of the structural place/transition Petri
net semantics. We showed that the transition systems of process and Petri net
are isomorphic and that the structural semantics is fully abstract with respect to
structural congruence. We then defined the property of structural stationarity
for processes, which requires a finite set of fragments every reachable process
consists of. The structural semantics is finite precisely for structurally stationary
processes. A complete characterisation shows that a process is structurally sta-
tionary if and only if there is a bound on the number of sequential processes in all
reachable fragments. The corresponding theorem proved structural stationarity
for finitary and for restriction-free processes. To the best of our knowledge, the
structural semantics is the first automata-theoretic representation that finitely
represents both classes. With the aim of modelling client-server architectures,
we defined finite handler processes and proved them structurally stationary. We
concluded the investigation with a translation of Petri nets back into structurally
stationary systems, which showed that the size of the structural semantics is not
bounded by a primitive recursive function in the size of the process.

Part II was concerned with automatic verification techniques for structurally
stationary processes. We showed how to exploit a particularly efficient verifica-
tion techniques for safe Petri nets for the verification of finite control processes,
a subclass of structurally stationary processes, and applied the resulting tool
chain to verify a number of benchmark case studies. Most notably, we verified
a realistic model of an automated transportation system. On a highway con-
trol system, we demonstrated that also other well-known verification techniques
from Petri net theory can be applied successfully to prove structurally stationary
systems correct.

Part III aims at an intuitive understanding of structurally stationary systems.
The main finding is that the property of structural stationarity can be decom-
posed into two boundedness requirements. Based on a formalisation of the graph-
theoretic interpretation of processes, we showed that boundedness in the novel
function depth can be characterised by forbidding list structures. Boundedness
in the measure breadth says that there is a bound on the distribution of restricted
names. We proved processes of bounded depth to have well-structured transition
systems (WSTS) and inherited the finite reachability tree procedure, which allows

272

10.2 Future Work

us to decide termination and infinity of states. For systems of bounded breadth,
we recalled a folklore construction to prove Turing completeness. Finally, we
combined our structural semantics with a classical concurrency semantics to a
mixed translation. It forms the borderline to place/transition Petri nets as for
processes just beyond this class (but within bounded depth) reachability becomes
undecidable.

Publications Chapter 3 and Chapter 4, the verification of the car platoon
system, and the second characterisation of structural stationarity can be found
in [Mey09]. The unfolding-based verification technique in Chapter 5 appeared as
[MKS08] and with full proofs and the transportation case study as journal version
[MKS09]. The characterisation of boundedness in depth and the instantiation
of the well-structured transition system framework is [Mey08]. Concurrency and
mixed semantics have been presented in [MG09].

10.2 Future Work

We gave hints for future work at the end of every chapter, and only summarise
the main ideas here.

Compositionality The structural semantics is a non-compositional function.
Operators ⊕ on Petri nets should be investigated, which validate an equation
N [[P | Q]] ≈ N [[P]] ⊕ N [[Q]] [BDK01]. This composition operator is difficult to
define as a restricted name sent from outside comes with all processes that use
this name. So, communication between the parts is not restricted to synchronisa-
tion but exchanges higher-order objects [SW01]. However, such a compositional
semantics would offer the possibility for compositional verification. A property
of interest for N [[P | Q]] is split up into subproperties for the system parts N [[P]]
and N [[Q]]. These are proven separately and imply the full property taking into
account the composition [dRdBH+01].

Logics The theory of structural stationarity should also be extended by a suit-
able logic to specify properties of processes. Candidate logics are restrictions
of the spatial logic of Caires and Cardelli that specify correctness of connections
between processes—a crucial property in DRS [CC03]. The idea to check whether
a process P satisfies a formula φ is to compute the structural semantics N [[P]]
and likewise to compile down the property to an ordinary temporal logic property
for Petri nets θPN (φ). The equivalence

P |= φ ⇔ N [[P]] |= θPN (φ).

273

Chapter 10 Conclusion

reduces the problem P |= φ to checking a Petri net property with standard Petri
net verification tools. First steps towards such a translation have been achieved
by Sven Linker in his Master’s thesis [Lin08].

The logic of Linker only talks about the temporal evolution of structures,
hereby neglecting process identities. Properties of DRS often refer to the identit-
ies of processes (e.g. if free agent x receives a car ahead message now, it will be
a follower later on, cf. [Dam96, FGMP03, Wes08, Tob08] for further examples).
Those properties are neither expressible in the logic developed by Linker nor can
they be verified with help of the structural semantics. As explained in Section 6.3,
the latter loses the identities of restricted names when fragment F evolves to Q
with a transition ([F], [Q]). A possible solution is to equip the transitions in the
structural semantics with labels relating the restricted names in pre and postset,
similar to History-Dependent automata [MP95a, Pis99, MP01].

Bisimilarity Checking For some processes (e.g. closed ones), the structural
semantics yields communication-free Petri nets, which are known to be equivalent
to Basic Parallel Processes. For Basic Parallel Processes, bisimulation equival-
ence is known to be decidable [BCMS01]. It would be interesting to investigate
whether the procedure can be adapted to decide a standard bisimilarity on struc-
turally stationary processes—in particular barbed bisimulation equivalence. For
the full class of structurally stationary processes, checking bisimilarity is likely
to be undecidable due to the negative results for Petri nets [Jan95].

Bounded Depth For systems of bounded depth, we presented the finite reach-
ability tree for analysis purposes. For practical applications, abstractions of the
tree are required to efficiently evaluate the state space. A second aspect is de-
cidability of more intricate temporal logic properties. Like in the coverability
tree for Petri nets, it should be possible to compute the limits of computation
sequences for processes of bounded depth. However, the construction in Sec-
tion 9.3 combined with the results in [RB04] make a decision procedure for full
LTL unlikely.

Bounded Breadth Systems of unbounded depth but bounded breadth deserve
more attention. Although we rendered the full and large class Turing complete,
there may be reasonable constraints which yield interesting decidable subclasses.

274

Bibliography

[AČJT00] P. A. Abdulla, K. Čerans, B. Jonsson, and Y.-K. Tsay. Algorithmic
analysis of programs with well quasi-ordered domains. Information
and Computation, 160(1–2):109–127, 2000.

[AM02] R. M. Amadio and C. Meyssonnier. On decidability of the con-
trol reachability problem in the asynchronous π-calculus. Nordic
Journal of Computing, 9(1):70–101, 2002.

[Ama00] R. M. Amadio. On modelling mobility. Theoretical Computer Sci-
ence, 240(1):147–176, 2000.

[AVA04] Automatic Verification and Analysis of Complex Systems. URL:
http://www.avacs.org, last access 2008-11-22, since 2004.

[Bas94] D. A. Basin. A term equality problem equivalent to graph iso-
morphism. Information Processing Letters, 51(2):61–66, 1994.

[Bau06] J. Bauer. Analysis of Communication Topologies by Partner Ab-
straction. PhD thesis, Department of Computer Science, Saarland
University, 2006.

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Proc.
of the 17th Annual ACM Symposium on Principles of Programming
Languages, POPL, pages 81–94. ACM Press, 1990.

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of
infinite structures. In J.A. Bergstra, A. Ponse, and S. A. Smolka,
editors, Handbook of Process Algebra, chapter 9, pages 545–623.
Elsevier Science, 2001.

[BDK01] E. Best, R. Devillers, and M. Koutny. Petri Net Algebra.
Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2001.

275

Bibliography

[BDNN98] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control
flow analysis for the π-calculus. In Proc. of the 9th International
Conference on Concurrency Theory, CONCUR, volume 1466 of
LNCS, pages 84–98. Springer-Verlag, 1998.

[BG95] N. Busi and R. Gorrieri. A Petri net semantics for π-calculus. In
Proc. of the 6th International Conference on Concurrency Theory,
CONCUR, volume 962 of LNCS, pages 145–159. Springer-Verlag,
1995.

[BG09] N. Busi and R. Gorrieri. Distributed semantics for the π-calculus
based on Petri nets with inhibitor arcs. Journal of Logic and Al-
gebraic Programming, 78(1):138–162, 2009.

[BGZ03] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive
definitions in channel based calculi. In Proc. of the 30th Inter-
national Colloquium on Automata, Languages and Programming,
ICALP, volume 2719 of LNCS, pages 133–144. Springer-Verlag,
2003.

[BGZ04] N. Busi, M. Gabbrielli, and G. Zavattaro. Comparing recursion,
replication, and iteration in process calculi. In Proc. of the 31th
International Colloquium on Automata, Languages and Program-
ming, ICALP, volume 3142 of LNCS, pages 307–319. Springer-
Verlag, 2004.

[BGZ08] N. Busi, M. Gabbrielli, and G. Zavattaro. On the expressive power
of recursion, replication, and iteration in process calculi. 27 pages,
under consideration for publication in Mathematical Structures of
Computer Science, 2008.

[BR01] A. Braatz and A. Ritter. Referenzfallstudie Produktionstech-
nik. Technical report, IFF University Stuttgart and Fraunhofer
IPA Stuttgart, 2001. Version 1.3: http://tfs.cs.tu-berlin.de/

projekte/indspec/SPP/RefPAv13.ps, version 2.0: http://tfs.

cs.tu-berlin.de/projekte/indspec/SPP/RefPAv2.ps, last ac-
cess 2008-11-28.

[BRdS86] G. Boudol, G. Roucairol, and R. de Simone. Petri nets and algeb-
raic calculi of processes. In Advances in Petri Nets 1985, covers the
6th European Workshop on Applications and Theory of Petri Nets-
selected papers 1986, volume 222 of LNCS, pages 41–58. Springer-
Verlag, 1986.

276

Bibliography

[BTW07] J. Bauer, T. Toben, and B. Westphal. Mind the shapes: Abstrac-
tion refinement via topology invariants. In Proc. of the 5th In-
ternational Symposium on Automated Technology for Verification
and Analysis, ATVA, volume 4762 of LNCS, pages 35–50. Springer-
Verlag, 2007.

[Bus02] N. Busi. Analysis issues in Petri nets with inhibitor arcs. Theoret-
ical Computer Science, 275(1–2):127–177, 2002.

[Cai04] L. Caires. Behavioural and spatial observations in a logic for the
π-Calculus. In Proc. of the 7th International Conference on Found-
ations of Software Science and Computation Structures, FOSSACS,
volume 2987 of LNCS, pages 72–89. Springer-Verlag, 2004. Spatial

Logic Model Checker: http://ctp.di.fct.unl.pt/SLMC/, last
access 2008-11-28.

[CC03] L. Caires and L. Cardelli. A spatial logic for concurrency (part I).
Information and Computation, 186(2):194–235, 2003.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchron-
ization skeletons using branching-time temporal logic. In Logic of
Programs: Workshop, Yorktown Heights, New York, May 1981,
volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. of the
12th International Conference on Computer Aided Verification,
CAV, volume 1855 of LNCS, pages 154–169. Springer-Verlag, 2000.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, 1999.

[CL04] L. Caires and É. Lozes. Elimination of quantifiers and undecidab-
ility in spatial logics for concurrency. In Proc. of the 15th Inter-
national Conference on Concurrency Theory, CONCUR, volume
3170 of LNCS, pages 240–257. Springer-Verlag, 2004.

[Dam96] M. Dam. Model checking mobile processes. Information and Com-
putation, 129(1):35–51, 1996.

[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between
decidability and undecidability. In Proc. of the 25th International
Colloquium on Automata, Languages and Programming, ICALP,
volume 1443 of LNCS, pages 103–115. Springer-Verlag, 1998.

277

Bibliography

[DHS08] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Static and dy-
namic typing for the termination of mobile processes. In Proc.
of the 5th IFIP International Conference on Theoretical Computer
Science, IFIP TCS, volume 273 of IFIP, pages 413–427. Springer-
Verlag, 2008.

[Die06] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Math-
ematics. Springer-Verlag, 3rd edition, 2006.

[Dij68] E. W. Dijkstra. The structure of the “THE”-multiprogramming
system. Communications of the ACM, 11(5):341–346, 1968.

[DKK06a] R. Devillers, H. Klaudel, and M. Koutny. A Petri net semantics of
the finite π-Calculus terms. Fundamenta Informaticae, 70(3):203–
226, 2006.

[DKK06b] R. Devillers, H. Klaudel, and M. Koutny. A Petri net translation of
π-Calculus terms. In Proc. of the 3rd International Colloquium on
Theoretical Aspects of Computing, ICTAC, volume 4281 of LNCS,
pages 138–152. Springer-Verlag, 2006.

[DKK08] R. Devillers, H. Klaudel, and M. Koutny. A compositional Petri
net translation of general π-Calculus terms. Formal Aspects of
Computing, 20(4–5):429–450, 2008.

[DRB02] G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the auto-
mated verification of multithreaded java programs. In Proc. of the
8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS, volume 2280 of LNCS,
pages 173–187. Springer-Verlag, 2002.

[dRdBH+01] W.-P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Verification: In-
troduction to Compositional and Noncompositional Methods. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 2001.

[DS94] C. Dietz and G. Schreiber. A term representation of p/t systems.
In Proc. of the 15th International Conference on Application and
Theory of Petri Nets, ATPN, volume 815 of LNCS, pages 239–257.
Springer-Verlag, 1994.

[DS06] Y. Deng and D. Sangiorgi. Ensuring termination by typability.
Information and Computation, 204(7):1045–1082, 2006.

278

Bibliography

[EDD+04] H. Ehrig, W. Damm, J. Desel, M. Große-Rhode, W. Reif,
E. Schnieder, and E. Westkämper, editors. Integration of Software
Specification Techniques for Applications in Engineering, volume
3147 of LNCS. Springer-Verlag, 2004. Project URL: http://tfs.
cs.tu-berlin.de/projekte/indspec/SPP/index-eng.html, last
access 2008-11-22.

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Theory of
constraints and application conditions: From graphs to high-level
structures. Fundamenta Informaticae, 74(1):135–166, 2006.

[EG99] J. Engelfriet and T. Gelsema. Multisets and structural congruence
of the pi-calculus with replication. Theoretical Computer Science,
211(1-2):311–337, 1999.

[EG01] J. Engelfriet and T. Gelsema. Structural inclusion in the pi-calculus
with replication. Theoretical Computer Science, 258(1–2):131–168,
2001.

[EG04a] J. Engelfriet and T. Gelsema. The decidability of structural con-
gruence for replication restricted pi-calculus processes. Technical
report, Leiden Institute of Advanced Computer Science, 2004. Re-
vised 2005.

[EG04b] J. Engelfriet and T. Gelsema. A new natural structural congruence
in the pi-calculus with replication. Acta Informatica, 40(6):385–
430, 2004.

[EG07] J. Engelfriet and T. Gelsema. An exercise in structural congruence.
Information Processing Letters, 101(1):1–5, 2007.

[EH08] J. Esparza and K. Heljanko. Unfoldings. Monographs in Theoret-
ical Computer Science. An EATCS Series. Springer-Verlag, 2008.

[Eng96] J. Engelfriet. A multiset semantics for the pi-calculus with replic-
ation. Theoretical Computer Science, 153(1-2):65–94, 1996.

[ES01] J. Esparza and C. Schröter. Net reductions for LTL model-
checking. In Proc. of the 11th Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods,
CHARME, volume 2144 of LNCS, pages 310–324. Springer-Verlag,
2001.

[Esp94] J. Esparza. On the decidability of model checking for several µ-
calculi and Petri nets. In Proc. of the 19th International Col-
loquium on Trees in Algebra and Programming, CAAP, volume 787
of LNCS, pages 115–129. Springer-Verlag, 1994.

279

Bibliography

[Esp97a] J. Esparza. Decidability of model checking for infinite-state con-
current systems. Acta Informatica, 34(2):85–107, 1997.

[Esp97b] J. Esparza. Petri Nets, commutative context-free grammars, and
basic parallel processes. Fundamenta Informaticae, 31(1):13–25,
1997.

[FGMP03] G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-
checking verification environment for mobile processes. ACM
Transactions on Software Engineering and Methodology, 12(4):440–
473, 2003. HAL: http://fmt.isti.cnr.it:8080/hal/, last access
2008-11-28.

[Fin90] A. Finkel. Reduction and covering of infinite reachability trees.
Information and Computation, 89(2):144–179, 1990.

[FMPR01] S. Flake, W. Mueller, W. Pape, and J. Ruf. Analyzing timing con-
straints in flexible manufacturing systems. In Proc. of the Interna-
tional NAISO Symposium on Information Science Innovations in
Intelligent Automated Manufacturing, IAM 2001, 2001.

[Fok07] W. Fokkink. Modelling Distributed Systems. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, 2007.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1–2):63–92, 2001.

[Gee07] G. Geeraerts. Coverability and Expressiveness Properties of
Well-Structured Transition Systems. PhD thesis, Département
d’Informatique, Univesité Libre de Bruxelles, 2007.

[Gri07] P. Gringel. Modellierung und Verifikation eines holonischen Trans-
portsystems mit dem Pi-Kalkül. Bachelor’s thesis, Department of
Computing Science, University of Oldenburg, 2007.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages,
volume 643 of LNCS. Springer-Verlag, 1992.

[Hab97] P. Habermehl. On the complexity of the linear-time µ-calculus for
Petri-nets. In Proc. of the 18th International Conference on Ap-
plication and Theory of Petri Nets, ATPN, volume 1248 of LNCS,
pages 102–116. Springer-Verlag, 1997.

[Hel02] K. Heljanko. Combining Symbolic and Partial Order Methods for
Model Checking 1-Safe Petri Nets. PhD thesis, Department of
Computer Science and Engineering, Helsinki University of Tech-
nology, 2002.

280

Bibliography

[HESV91] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. Design of platoon
maneuver protocols for ivhs. Path research report, Institute of
Transportation Studies, University of California, Berkeley, 1991.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc.
London Math. Soc. (3), 2(7):326–336, 1952.

[Hir04] D. Hirschkoff. An extensional spatial logic for mobile processes. In
Proc. of the 15th International Conference on Concurrency Theory,
CONCUR, volume 3170 of LNCS, pages 325–339. Springer-Verlag,
2004.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some
related problems. Theoretical Computer Science, 148(2):281–301,
1995.

[Kho03] V. Khomenko. Model Checking Based on Prefixes of Petri Net
Unfoldings. PhD thesis, School of Computing Science, Newcastle
University, 2003.

[Kho08] V. Khomenko. PUNF homepage. URL: http://homepages.

cs.ncl.ac.uk/victor.khomenko/tools/tools.html, last access
2008-11-16, 2008.

[KK06] B. König and V. Kozioura. Counterexample-guided abstraction re-
finement for the analysis of graph transformation systems. In Proc.
of the 12th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS, volume 3920
of LNCS, pages 197–211. Springer-Verlag, 2006.

[KKN06] V. Khomenko, M. Koutny, and A. Niaouris. Applying Petri net un-
foldings for verification of mobile systems. In Proc. of the 4th Work-
shop on Modelling of Objects, Components and Agents, MOCA,
Bericht FBI-HH-B-267/06, pages 161–178. University of Hamburg,
2006.

[KKY04] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state encod-
ing conflicts in stg unfoldings using sat. Fundamenta Informaticae,
62(2):221–241, 2004.

[KM09] V. Khomenko and R. Meyer. Checking π-Calculus structural con-
gruence is graph isomorphism complete. In Proc. of the 9th In-
ternational Conference on Application of Concurrency to System
Design, ACSD, pages 70–79. IEEE Computer Society Press, 2009.

281

Bibliography

[Kos82] S. R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proc. of the 14th Annual ACM Symposium on Theory of
Computing, STOC, pages 267–281. ACM Press, 1982.

[Lin08] S. Linker. Model checking π-Calculus against temporal connected-
ness properties. Master’s thesis, Department of Computing Science,
University of Oldenburg, 2008.

[May84] E. W. Mayr. An algorithm for the general Petri net reachability
problem. SIAM Journal on Computing, 13(3):441–460, 1984.

[Mey08] R. Meyer. On boundedness in depth in the π-calculus. In Proc.
of the 5th IFIP International Conference on Theoretical Computer
Science, IFIP TCS, volume 273 of IFIP, pages 477–489. Springer-
Verlag, 2008.

[Mey09] R. Meyer. A theory of structural stationarity in the π-calculus.
Acta Informatica, 46(2):87–137, 2009.

[MG09] R. Meyer and R. Gorrieri. On the relationship between π-Calculus
and finite place/transition Petri nets. In Proc. of the 20th Interna-
tional Conference on Concurrency Theory 2009, CONCUR, volume
5710 of LNCS, pages 463–480. Springer-Verlag, 2009.

[Mil79] R. Milner. Flowgraphs and flow algebras. Journal of the Associ-
ation for Computing Machinery, 26(4):794–818, 1979.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[Mil92] R. Milner. Functions as processes. Mathematical Structures in
Computer Science, 2(2):119–141, 1992.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[Min67] M. L. Minsky. Computation: Finite and Infinite Machines. Pren-
tice Hall, 1967.

[MJ84] F. L. Morris and C. B. Jones. An early program proof by alan
turing. IEEE Annals of the History of Computing, 6(2):139–143,
1984.

[MKS08] R. Meyer, V. Khomenko, and T. Strazny. A practical approach to
verification of mobile systems using net unfoldings. In Proc. of the
29th International Conference on Application and Theory of Petri
Nets and Other Models of Concurrency, ATPN, volume 5062 of
LNCS, pages 327–347. Springer-Verlag, 2008.

282

Bibliography

[MKS09] R. Meyer, V. Khomenko, and T. Strazny. A practical approach to
verification of mobile systems using net unfoldings. Fundamenta
Informaticae, 94(3–4):439–471, 2009.

[MM79] G. Milne and R. Milner. Concurrent processes and their syntax.
Journal of the Association for Computing Machinery, 26(2):302–
321, 1979.

[MM81] E. W. Mayr and A. R. Meyer. The complexity of the finite con-
tainment problem for Petri nets. Journal of the Association for
Computing Machinery, 28(3):561–576, 1981.

[MORW04] M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim. Linking
csp-oz with uml and java: A case study. In Proc. of the 4th Inter-
national Conference on Integrated Formal Methods, IFM, volume
2999 of LNCS, pages 267–286. Springer-Verlag, 2004.

[MP95a] U. Montanari and M. Pistore. Checking bisimilarity for finitary
π-calculus. In Proc. of the 6th International Conference on Con-
currency Theory, CONCUR, volume 962 of LNCS, pages 42–56.
Springer-Verlag, 1995.

[MP95b] U. Montanari and M. Pistore. Concurrent semantics for the π-
calculus. Electronic Notes in Theoretical Computer Science, 1:411–
429, 1995.

[MP01] U. Montanari and M. Pistore. History dependent automata. Tech-
nical report, Instituto Trentino di Cultura, 2001.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses, part I. Information and Computation, 100(1):1–40, 1992.

[Old91] E.-R. Olderog. Nets, Terms and Formulas: Three Views of Con-
current Processes and Their Relationship. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1991.

[OP92] F. Orava and J. Parrow. An algebraic verification of a mobile
network. Formal Aspects of Computing, 4(6):497–543, 1992.

[PAT86] California Partners for Advanced Transit and Highways. URL:
http://www.path.berkeley.edu, last access 2008-11-22, since
1986.

[Pet62] C. A. Petri. Kommunikation mit Automaten. Schriften des IMM,
Nr. 2, Institut für Instrumentelle Mathematik, Bonn, 1962.

283

Bibliography

[Pis99] M. Pistore. History Dependent Automata. PhD thesis, Diparti-
mento di Informatica, Università di Pisa, 1999.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Computer Science Department,
University of Aarhus, 1981.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of the 18th
IEEE Symposium on Foundations of Computer Science, FOCS,
pages 46–57. IEEE Computer Society Press, 1977.

[PW03] L. Priese and H. Wimmel. Petri-Netze. Springer-Verlag, 2003.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of con-
current systems in CESAR. In Proc. of the 5th International Sym-
posium on Programming, volume 137 of LNCS, pages 337–351.
Springer-Verlag, 1982.

[RB04] J.-F. Raskin and L. Van Begin. Petri nets with non-blocking arcs
are difficult to analyze. Electronic Notes in Theoretical Computer
Science, 98:35–55, 2004.

[Rei85] W. Reisig. Petri nets: An Introduction. Monographs in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, 1985.

[Ren04] A. Rensink. Canonical graph shapes. In Proc. of the 13th European
Symposium on Programming, ESOP, volume 2986 of LNCS, pages
401–415. Springer-Verlag, 2004.

[RWKR04] J. Ruf, R. J. Weiss, T. Kropf, and W. Rosenstiel. Modeling and
formal verification of production automation systems. In Integra-
tion of Software Specification Techniques for Applications in En-
gineering, volume 3147 of LNCS, pages 541–566. Springer-Verlag,
2004.

[San01] D. Sangiorgi. Extensionality and intensionality of the ambient lo-
gic. In Proc. of the 28th Annual ACM Symposium on Principles of
Programming Languages, POPL, pages 4–13. ACM Press, 2001.

[SM08] T. Strazny and R. Meyer. Petruchio homepage. URL: http:

//petruchio.informatik.uni-oldenburg.de, last access 2008-11-
28, 2008.

[Sta03] P. H. Starke. INA homepage. URL: http://www2.informatik.
hu-berlin.de/lehrstuehle/automaten/ina, last access 2008-11-
16, 2003.

284

Bibliography

[Str07] T. Strazny. Entwurf und Implementierung von Algorithmen
zur Berechnung von Petrinetz-Semantiken für Pi-Kalkül-Prozesse.
Master’s thesis, Department of Computing Science, University of
Oldenburg, 2007.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[Tob08] T. Toben. Analysis of Dynamic Evolution Systems by Spotlight
Abstraction Refinement. PhD thesis, Department of Computing
Science, University of Oldenburg, 2008.

[Var91] M. Y. Vardi. Verification of concurrent programs: The automata-
theoretic framework. Annals of Pure and Applied Logic, 51(1–
2):79–98, 1991.

[VM94] B. Victor and F. Moller. The mobility workbench: A tool for the π-
calculus. In Proc. of the 6th International Conference on Computer
Aided Verification, CAV, volume 818 of LNCS, pages 428–440.
Springer-Verlag, 1994. MWB: http://www.it.uu.se/research/

group/mobility/mwb, last access 2008-11-28.

[Weh00] H. Wehrheim. Specification of an automatic manufacturing system:
A case study in using integrated formal methods. In Proc. of the
3rd International Conference on Fundamental Approaches to Soft-
ware Engineering, FASE, volume 1783 of LNCS, pages 334–348.
Springer-Verlag, 2000.

[Wes08] B. Westphal. Specification and Verification of Dynamic Topology
Systems. PhD thesis, Department of Computing Science, Univer-
sity of Oldenburg, 2008.

[WW07] B. Wachter and B. Westphal. The spotlight principle. on com-
bining process-summarising state abstractions. In Proc. of the 8th
International Conference on Verification, Model Checking, and Ab-
stract Interpretation, VMCAI, volume 4349 of LNCS, pages 182–
198. Springer-Verlag, 2007.

[YBH04] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the
π-Calculus. Information and Computation, 191(2):145–202, 2004.

285

Symbol Index

C
counter machine

CM .229
l : op . 229
CM .229

D
dec : Prf → N

PF/≡ 62
derivatives

der : P → P(P) 86
derivatives : P → P(P) 86

E
equivalence

≡ ⊆ P × P21
≡G ⊆ G[[P]] × G[[P]]176
≡rf ⊆ Prf × Prf 57
≡sf ⊆ Psf × Psf 29

F
fragment

F, G, H . 53
IF . 54
Ia .54
F e . 53
FG 91 – 94
fg : Prf → P(PF) 54

H
hypergraph

G . 173
G ⊗ a . 175
G1 ⊎ G2 174

H .173

M
measure

|| − ||B : PF → N181
deg : H → N 174
|| − ||D : PF → N 183
height : T (A) → N 206
lsp : H → N 174
|| − ||Ia : Psf → N 195
|| − ||ν : PF → N 183
|| − || | : PF → N 181
|| − ||S : P → N 23
|| − || : PN → N 42
|| − || : P → N 16
len : P → N 16

N
names

arn : P → P(N) 17
bn : P → P(N) 17
fn : P → P(N) 18
N .13
NP . 97
coni : PF → PF215
ã .14
a, b, x, y . 13
aC . 257

nms . 243
N . 14
normal form

mf : P → Pmf 258 – 259

286

SYMBOL INDEX

rf : P → Prf 54
sf : P → Psf 24

O
ordering

(A,¹) . 205
(A∗,¹∗) 205
(T (A),¹T) 206
¹P ⊆ P/≡ × P/≡ 221
¹F ⊆ PF × PF 212

P
Petri net

(S, T, W, M0) 42
I .44
N .42
PN . 42

prefix
π . 13
x(y) . 13
a .14
x〈y〉 . 13
a .14
τ . 13

process
(P 6=ν , ã) 239
MN . 14
P, Q, R . 14
P | Q . 14
M=0 . 14
M 6=0 . 14
Pmf , Qmf 257
P 6=ν , Q 6=ν 24
P rf , Qrf , Rrf 53
P sf , Qsf . 24
νã.P . 15
νa.P . 14
π.P . 14
0 . 14

process class
PFH . 100
PHD . 99
PPT . 98

P . 14
PB<∞ . 181
PD<∞ . 183
Pdeg<∞ 198
Plsp<∞ .192
PS<∞ .91
PF .53
Pmf .257
Prf . 53
Psf . 24
PFG<∞ . 85

process identifier
K, L . 14
ID .14
K⌊ã⌋ . 14
ident : P → P(ID) 126
orb : P → P(ID) 126
renk : P → P 130

R
reaction relation

→ ⊆ P ×P 33
→sf ⊆ Psf × P 37

retrieve : Reach(N [[P]]) → P/≡ . . 70

S
semantics

NC : P → PN 243
G : P → H 175
NM : P → PN 261
PB<∞

CM : CM → PB<∞231
PD<∞

CM : CM → PD<∞ 266
PPN : PN → PFG<∞ 108
N : P → PN 65
T : PF → T (A) 214

S : P → P(P) 23
substitution

Pσ .19
σ : A → B 19
σ : N → N19

T
transition relation

287

SYMBOL INDEX

[〉 ⊆ N
S × T × N

S 43
→ ⊆ N

S × N
S 43

transition system
T (P) . 36
T (N) .44
Tna((P 6=ν , ã)) 240
TV (PPN [[N]]) 112

tree
T . 206
T (A) . 206

288

Subject Index

A
anchored fragments 186 – 191
autonomous transport . . . 156 – 165

B
bisimilarity 133 – 135, 242,

250 – 256
bisimulation relation 133
Boolean satisfiability 138 – 139
boundedness

in breadth 181
in depth 183
in the degree 198
in the sequential processes . 91
in the simple paths.192

boundedness result for FCP nets126
bounded processes 118
breadth 180 – 182

C
Calculus of Communicating Systems

12
car platoon 148 – 155
case studies 148 – 165
causally closed 47
characterisation

||F ||B = deg(G[[F]])197
PB<∞ = Pdeg<∞ 198
PD<∞ = Plsp<∞ 193
PFG<∞ = PB<∞ ∩ PD<∞ . 185
PFG<∞ = PS<∞ 91 – 94
→ by ≡→sf ≡ 37

≡ by ≡G 177
≡ by ≡rf58
≡ by ≡sf29
≡rf by =.64
≡sf by ≡G 177

chemical abstract machine . . . 20, 33
choice .14

empty. .14
guarded . 15
non-empty 14

codomain . 41
coincidence

≡ and ≡rf on Prf 61
≡ and ≡sf on Psf 29

Communicating Sequential Processes
12

communication.12
completeness of mixed bounded pro-

cesses 263
concurrency semantics . . . 242 – 249
configuration.47
configuration constraint . . 138 – 139
conflict-free . 47
congruence relation 20
conservative extension 262
copy of an equation 136
counter machine 229 – 230
coverability graph 48
coverability tree 47 – 48

D
data structure 198 – 200

289

SUBJECT INDEX

bag . 199, 227 – 228, 257 – 263
list. .198

decidability
bounded depth.227 – 228
structural congruence . 21 – 22
well-structured transition sys-

tems 211 – 212
decomposition function.61 – 65
depth . 182 – 184
derivatives 86 – 91
distributed states 40
domain . 41

E
elementary equivalence 62 – 64
elementary inequality 184
equivalence relation 21
experimental results 140 – 144
explicit synchronisation 40

F
finitary process.95 – 97
finite and complete prefix 47
finite control process . . . 16, 95 – 97,

125 – 136
finite handler form 101 – 107
finite handler process 97 – 107,

149 – 150
handler 99 – 100
participant 97 – 99

finiteness characterisation. .85, 247,
263

finite reachability tree. . . .211 – 212
firing relation 43
flow graph . 12
fragment 52 – 54

elementary 53
fragment ordering.212 – 220
full abstraction.71 – 72
full retrievability 50, 70 – 77,

246 – 247
function. .41

G
graph equivalence 176
graph interpretation 51 – 52,

175 – 180

H
Harmony Lemma 36
height of a tree 206
hierarchy of processes . . . 117 – 118,

267 – 269
Higman’s result 205
hypergraph 173 – 175

connect 175
degree . 174
disjoint union 174
equality 173
path . 174

I
image-finiteness 35 – 36
invariance

|| − ||B under ≡ 182
deg under ≡ 180
deg under ≡G 179
|| − ||D under ≡ 183
fn under ≡22
G[[−]] under sf 177
ident under ≡ 126
lsp under ≡ 180
lsp under ≡G179
|| − ||S under ≡ 23

K
König’s lemma 86

L
labelled transition relation 32

M
maximal number of fragments under

a restriction 181
maximal number of intersecting or-

bits 126

290

SUBJECT INDEX

maximal number of processes that
share a restricted name195

mixed normal form 257 – 259
mixed semantics 260 – 263

N
name-aware process 239
name-aware reaction relation . . . 240
name-aware transition system 239 –

242, 260 – 261
names 12, 13, 16 – 18

active restricted 17
bound . 17
distinguished public 97
free . 18

natural numbers 14
nesting of restrictions 183
normalised derivation 37

O
object creation 12
occurrence number properties 152 –

153
operator precedences 14
optimality result 136 – 137
orbit .125 – 130

P
π-Calculus 12, 13

monadic 13
polyadic 13

parallel composition.12
partial ordering 212, 222
Petri net . 42

bounded 44
communication-free43, 69 – 70
finite . 42
marking equality 43
safe . 44

Petri net with transfer 264
prefix . 13

input action 12, 13
output action.12, 13

silent . 13
process . 14

closed 18, 69 – 70
in mixed normal form 257
in restricted form 53
in standard form 24
recursion-free 16
restriction-free 15

process algebra.12
process bunch.265
process identifier 14
process semantics of a Petri net108 –

114
process semantics of counter machines

230 – 232, 263 – 267

Q
quasi-ordering 205

R
reaction relation 32 – 36
recursion . 14
restricted equivalence 57 – 61
restricted form 52 – 61
restriction boundedness . . 247 – 249
retrievability 70 – 77, 246 – 247
rooted tree embedding . . . 206 – 210

S
S-invariant 44 – 45
safe process 130 – 136
SAT encoding of a finite and com-

plete prefix 138 – 139
sequential processes 22 – 23

number of23
simulation relation 211
size

of Petri nets 42
of processes 16

size of the safe process 131
size of the structural semantics114 –

117
standard equivalence 29

291

SUBJECT INDEX

standard form.24 – 32
standard form reaction relation . 37
strict monotonicity.208
structural approach to operational

semantics 33
structural congruence 20 – 22
structural semantics.65

definition 61 – 70
idea 51 – 52

structural stationarity 85 – 86
characterisation by parallel com-

position 91 – 97
characterisation by restriction

180 – 186
definition 85

substitution 18 – 20
application 19

support . 41
syntactic abbreviations 14
system

closed . 32
open . 32

T
tagged restricted name 256
temporal properties 154 – 155,

159 – 163
topological properties . . . 153 – 154,

164 – 165
transition system 36

of a Petri net 44
of a process 36

tree interpretation 212 – 220
tree over A 205 – 210
Turing completeness 232

U
undecidability

boundedness in breadth . . . 234
boundedness in depth 233
structural stationarity.232

unfolding 45 – 47
using a name.18

V
violation constraint 138 – 139

W
well-quasi-ordering 205 – 210
well-structured transition system211 –

228
word. .205

empty . 205

292

SUBJECT INDEX

Curriculum Vitae

20/02/2009 Defense of the dissertation.

10/2005 - 09/2008 Scholarship holder in the graduate school Trustworthy Soft-
ware Systems (TrustSoft) at the University of Oldenburg.
Dissertation on structurally stationary reconfigurable sys-
tems. Advised by Professor Olderog and Professor Best.

08/2004 - 03/2009 Research assistant in the Transregional Collaborative Re-
search Center on Automatic Verification and Analysis of
Complex Systems (AVACS), run by the Universities of
Oldenburg, Freiburg, and Saarbrücken. Member of sub-
project R1 Beyond Timed Automata in Oldenburg.

10/2001 - 09/2005 Studies of Computer Science with Mathematics as subsi-
diary subject at the University of Oldenburg. Master’s
thesis on model checking phase event automata against
duration calculus formulae with the help of test automata.

09/2000 - 06/2001 Military service.

08/1987 - 06/2000 Grundschule Lengenerland, Orientierungsstufe Remels, Gym-
nasium Westerstede. Abitur 2000.

02/02/1981 Born in Leer, Germany.

293

Technical Reports

Fakultät II, Department für Informatik, Universität Oldenburg,
Postfach 2503, 26111 Oldenburg, Germany

1/87 A. Viereck: "Klassifikationen, Konzepte und Modelle für den Mensch-Rechner-Dialog"
(Dissertation)

2/87 A. Schwill: "Forbidden subgraphs and reduction systems: A comparison"

3/87 J. Kämper: "Non-uniform proof systems: A new framework to describe non-uniform and
probabilistic complexity classes"

1/88 K. Ambos-Spies, H. Fleischhack, H. Huwig: "Diagonalizing over deterministic
polynomial time"

2/88 A. Schwill: " Shortest edge-disjoint paths in geodetically connected graphs"

3/88 V. Claus, U. Lichtblau (Hrsg.): "1. Tagung zur Küsten-Informatik"

1/89 U. van der Valk: "Einige Entscheidbarkeits- und Unentscheidbarkeitsresultate für Klasse
von S/T-Netzen unter Maximum Firing Strategie und unter Prioritätenstrategien"

2/89 J. Kämper: "Strukturelle Untersuchungen im Umfeld der Komplexitätsklassen P und NP
unter besonderer Berücksichtigung nichtuniformer, probabilistischer und disjunktiv
selbstreduzierender Algorithmen" (Dissertation)

3/89 J. Kämper: "Nondeterministic oracle Turing machines with maximal computation paths"

1/90 A. Schwill: "Shortest edge-disjoint paths in graphs" (Dissertation)

2/90 K.R. Apt, E.-R. Olderog: "Using transformations to verify parallel programs"

3/90 U. Lichtblau: "Flußgraphgrammatiken" (Dissertation)

4/90 K.R. Apt, E.-R. Olderog: "Introduction to program verification"

5/90 H. Jasper: "Datenbankunterstützung für Prolog-Programmierumgebungen" (Dissertation)

1/91 F. Korf: "Net-based efficient simulation of AADL specifications"

2/91 S.V. Krishnan, C. Pandu Rangan, A. Schwill, S. Seshadri: "Two disjoint paths in chordal
graphs"

3/91 H. Eirund: "Modellierung und Manipulation multimedialer Dokumente" (Dissertation)

4/91 G. Schreiber: "Ein funktionaler Äquivalenzbegriff für den hierarchischen Entwurf von
Netzen"

1/92 A. Viereck (Hrsg.): "Ergebnisse der 11. Arbeitstagung, Mensch-Maschine
Kommunikation"

2/92 P. Gorny, U. Daldrup, H. Schwab: "Zwischenbilanz: Menschengerechte Gestaltung von
Software"

2

3/92 E.-R. Olderog, St. Rössig, J. Sander, M. Schenke: "ProCoS at Oldenburg: The Interface
between Specification Language and occam-like Programming Language"

4/92 F. Korf: "Synthesis of VHDL Test Environments form Temporal Logic Specifications"

5/92 W. Kowalk: "Konstruktorentechnik: Neue Methoden zur Mengenrechnung, Logikrech-
nung und Intervallrechnung"

1/93 Ch. Dietz, G. Schreiber: "Eine Termdarstellung für S/T-Netze"

2/93 J. Sauer: "Wissensbasiertes Lösen von Ablaufplanungsproblemen durch explizite Heuri-
stiken"

3/93 M. Sonnenschein, U. Lichtblau (Hrsg.): "6. Kolloquium der Arbeitsgruppe Informatik-
Systeme"

4/93 H. Fleischhack, U. Lichtblau, M. Sonnenschein, R. Wieting: "Generische Definition hier-
archischer zeitbeschrifteter höherer Petrinetze"

5/93 F. Köster, L. Twele, R. Wieting, W. Ziegler: "Fallbeispiele zur Modellierung mit
THORNetzen"

1/94 R. Götze: "Dialogmodellierung für multimediale Benutzerschnittstellen"

2/94 B. Müller: "PPO-Eine objektorientierte Prolog-Erweiterung zur Entwicklung wissensba-
sierter Anwendungssysteme"

3/94 W. Damm/A. Mikschl: "Projekt Entwurf und Implementierung eines Multi-threaded
RISC-Prozessors"

4/94 S. Rössig: "A Transformational Approach to the Design of Communicating Systems"
(Dissertation)

5/94 G. Schreiber: "Funktionale Äquivalenz von Petri-Netzen" (Dissertation)

1/95 A. Gronewold, H. Fleischhack: "Language Preserving Reductions of Safe Petri-Nets"

2/95 H. Reineke: "Struktur und Verhalten von verteilten endlichen Automaten" (Dissertation)

3/95 H. Behrends: "Beschreibung ereignisgesteuerter Aktivitäten in datenbankgestützten Infor-
mationssystemen" (Dissertation)

4/95 U. M. Levens: "Computerunterstütztes Modellieren von Musikstücken mit Petri-Netzen:
Das Mailänder Konzept"

1/96 M. Burke: "FDDI und ATM in multimedialen Anwendungsumgebungen" (Dissertation)

2/96 I. Pitschke: "Interaktive Rekonstruktion geometrischer Modelle aus digitalen Bildern"
(Dissertation)

1/97 L. Bölke: "Ein akustischer Interaktionsraum für blinde Rechnerbenutzer" (Dissertation)

2/97 S. Schöf: "Verteilte Simulation höherer Petrinetze" (Dissertation)

1/98 S. Kleuker: "Inkrementelle Entwicklung von verifizierten Spezifikationen für verteilte
Systeme" (Dissertation)

3

2/98 J. Bohn: “Mechanical Support and Validation of a Design Calculus for Communicating
Systems by a Logic-Based Proof System“ (Dissertation)

3/98 L. Köhler: „Fuzzy Geometrie und Anwendungen in der medizinischen Bildverarbeitung“
(Dissertation)

4/98 J. Helbig: „Linking Visual Formalisms: A ‘Compositional Proof System for Statecharts
Based on Symbolic Timing Diagrams“ (Dissertation)

5/98 G. Stiege: „Edge Partitions in Undirected Graphs“

6/98 A. Gerns: „Entwicklung und Bewertung von Objektmigrationsstrategien für verteilte
Umgebungen“

7/98 M. Stadler: „Abstrakte Rechnernetzmodelle als Grundlage einer umfassenden
Automatisierung des Netzmanagements – Konzepte und Sprachen zu ihrer Umsetzung“
(Dissertation)

8/98 M.-S. Steiner: „Lastverteilung in heterogenen Systemen“

9/98 Clemens Otte: „Fuzzy-Prototyp-Klassifikatoren und deren Anwendung zur automatischen
Merkmalsselektion“

1/99 Juliane Vorndamme: „Die Auswirkungen rechtlicher Verpflichtungen auf die Software-
entwicklung“

2/99 E. Best/K.M. Richter: „ Relational Semantics Revisited“

3/99 J. S. Lie: „Einsatz von Objektmigrationssystemen zur Leistungssteigerung in verteilten
Systemen“

4/99 ZweiJahresbericht des Fachbereichs Informatik

5/99 Ingo Stierand, Olaf Maibaum, Björn Briel, Günther Stiege: „Cassandra - Generierung,
Analyse und Simulation von eingebetteten Multiprozessor-Echtzeitsystemen“

6/99 Gunnar Wittich: „Ein problemorientierter Ansatz zum Nachweis von Realzeiteigenschaf-
ten eingebetteter Systeme“

7/99 Annegret Habel, Jürgen Müller, Detlef Plump: „Double-Pushout Graph Transformation
Revisited“

8/99 Ingo Stierand: „Eine Konfigurationssprache zur Erstellung von Ambrosia/MP-Systemen“

9/99 Igor V. Tarasyuk: „Equivalences for Concurrent and Distributed Systems“

10/99 Eike Best, Alexander Lavrov: „Generalised Composition Operations for High-Level
Petri-Nets“

11/99 Alexander Lavrov: „Enhancing Mixed Nonlinear Optimization: A Hybrid Approach“

12/99 Alexander Lavrov: „Hybrid Techniques in Discrete-Event System Modelling and
Control: some Examples“

13/99 Eike Best, Raymond Devillers, Maciej Koutny: „Recursion and Petri Nets“

4

14/99 Eike Best, Raymond Devillers, Maciej Koutny: „The Box Algebra = Petri Nets + Process
Expressions“

15/99 Eike Best, Harro Wimmel: „Reducing k-safe Petri Nets to Pomset-equivalent 1-safe Petri
Nets“

16/99 Udo Brockmeyer: „Verifikation von STATEMATE Designs“ (Dissertation)

1/00 Henning Dierks: „Specification and Verification of Polling Real-Time Systems“
(Dissertation)

2/00 Clemens Fischer: „Combination and Implementation of Processes and Data: from CSP-
OZ to Java“ (Dissertation)

3/00 Cheryl Kleuker: „Constraint Diagrams“ (Dissertation)

4/00 Thomas Thielke: „Linear-algebraische Methoden zur Beschreibung, Verfeinerung und
Analyse gefärbter Petrinetze“ (Dissertation)

1/01 Günther Stiege: „Higher Decomposition in Undirected Graphs“ (Bericht)

2/01 Ute Vogel: Zwei-Jahres-Bericht

3/01 Josef Tapken: „Model-Checking of Duration Calculus Specifications“ (Dissertation)

4/01 Björn Briel: „Analyse eingebetteter Systeme mittels verteilter Simulation“ (Dissertation)

5/01 Günther Stiege: „Standard Decomposition and Periodicity of Digraphs“ (Bericht)

6/01 Ingo Stierand: „Ambrosia/MP - Ein Echtzeitbetriebssystem für eingebettete Mehr-
prozessorsysteme„ (Dissertation)

1/02 Giorgio Busatto, Annegret Habel: „Improving the Quality of Hypertexts Using Graph
Transformation“ (Bericht)

2/02 Giorgio Busatto: „Modeling Hyperweb Dynamics through Hierarchical Graph
Transformation“ (Bericht)

3/02 Giorgio Busatto: „An Abstract Model of Hierarchical Graphs and Hierarchical Graph
Transformation“ (Dissertation)

4/02 Laila Kabous: „An Object Oriented Design methodology for hard real Time Systems: The
OOHARTS approach“ (Dissertation)

1/03 Ute Vogel: „2-Jahres-Bericht“

2/03 Olaf Maibaum: „Bestimmung symbolischer Laufzeiten in eingebetteten
Echtzeitsystemen“ (Dissertation)

3/03 Günther Stiege, Ingo Stierand: „Connectedness-Based Hierarchical Decomposition of
Undirected Graphs“ (Bericht)

4/03 Willi Hasselbring, Susanne Petersen: „Standards für die medizinische Kommunikation
und Dokumentation (Bericht)

5/03 Andreas Möller: „Eine virtuelle Maschine für Graphprogramme“ (Bericht)

5

6/03 Tom Bienmüller: „Reducing Complexity for the Verification of Statemate Designs“
(Bericht)

7/03 Sandra Steinert: „Graph Programs for Graph Algorithms“ (Bericht)

8/03 Jochen Klose: „Live Sequence Charts: A Graphical Formalism for the Specification of
Communication Behavior“ (Dissertation)

1/04 Jens Oehlerking: „Transformation of Edmonds’ Maximum Matching Algorithm into a
Graph Program“ (Bericht)

2/04 Sergej Alekseev: „Dienste Intelligenter Netze Graphentheoretische Methoden in der
Kontrollflussanalyse“ (Bericht)

3/04 Giorgio Busatto: „GraJ: A System für Executing Graph Programs in Java“ (Bericht)

1/05 Sergej Alekseev and Johannes Wust: „Graph Theoretical Methods in the Control Flow
Analysis of Object Oriented Real Time Software“ (Bericht)

2/05 Ute Vogel: „2-Jahres-Bericht“

3/05 Igor Tarasyuk: „Discrete time stochastic Petri box calculus“ (Bericht)

1/06 Henning Dierks: „Time, Abstraction and Heuristics“ (Habilitation)

2/06 Li Sek Su: „Full-Output Siphons and Deadlock-Freeness for Free Choice Petri Nets“
(Bericht)

���� ����	
����	�������	�������	����	����������	�������	�������	������ �!

4/06 Sergej Alekseev: „Graphentheoretische Methoden in der Ablaufanalyse objektorientierter
Anwendungen“ (Dissertation)

5/06 Li Sek Su: „Some Considerations on the Foundation of NP-Completeness Theory*“
(Bericht)

6/06 Li Sek Su: „Semitraps and Deadlock-Freeness for Reduced Asymmetric Choice Nets“
(Bericht)

7/06 Li Sek Su: „Algorithms of computing the Deadlock Markings Sets for Petri Nets“
(Bericht)

8/06 Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink: „Weakest Preconditions for
High-Level Programs (Long Version)“ (Bericht)

9/06 Jochen Hoenicke: „Combination of Processes, Data, and Time“ (Dissertation)

10/06 Steffen Becker, Marco Boscovic, Abhishek Dhama, Simon Giesecke, Jens Happe,
Wilhelm Hasselbring, Heiko Koziolek, Henrik Lipskoch, Roland Meyer, Margarethe
Muhle, Alexandra Paul, Jan Ploski, Matthias Rohr, Mani Swaminathan, Timo Warns,
Daniel Winteler: „Trustworthy Software Systems: A Discussion of Basic Concepts and
Terminology“ (Bericht)

11/06 Christian Zuckschwerdt: „Ein System zur Transformation von Konsistenz- in
Anwendungs-bedingungen“ (Bericht)

6

01/07 Andreas Schäfer: „Specification and Verification of Mobile Real-Time Systems“
(Dissertation)

02/07 Günther Stiege: „General Graphs“ (Bericht)

03/07 Wolfgang Kowalk: „Integralrechnung“ (Bericht)

04/07 Karl Azab, Karl-Heinz Pennemann: „Type Checking C++ Template Instantiation by
Graph Programs“ (Bericht)

01/08 Roland Meyer: „On depth and breath in the Pi-Calculus“ (Bericht)

02/08 Ingo Brückner: „Slicing Integrated Formal Specifications for Verification“ (Dissertation)

03/08 Ute Vogel: „2-Jahres-Bericht 2004 - 2006“ (Bericht)

04/08 Günther Stiege: „Summierbare Familien“ (Bericht)

05/08 Igor V. Tarasyuk: „Investigating equivalence relations in dtsPBC“ (Bericht)

01/09 Elke Wilkeit: „2-Jahres-Bericht 2007 – 2008“ (Bericht)

02/09 Roland Meyer: „Structural Stationarity in the pi-Calculus“ (Dissertation)

