
Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Structural Stationarity in the π-Calculus

Roland Meyer

Department of Computing Science
University of Oldenburg

Disputation
2009-02-20

System Technology

A
v
a
il
a
b

il
it

y

P
ri

v
a

c
y

S
e
c
u

ri
ty

S
a
fe

ty

P
e
rf

o
rm

a
n

c
e

R
e
li
a
b

il
it

y

C
o

rr
e
c

tn
e
s

s

Certification

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 1 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Client sends on public channel url his private address ip to server

Graphically

ip

In π-Calculus

νip.url〈ip〉.ip(x).Cburl , ipc |
url(y).(y〈dat〉 | Sburl , datc)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Client sends on public channel url his private address ip to server

Graphically

ip

In π-Calculus

νip.url〈ip〉.ip(x).Cburl , ipc |
url(y).(y〈dat〉 | Sburl , datc)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Client sends on public channel url his private address ip to server

Graphically

ip

In π-Calculus

νip. url 〈ip〉.ip(x).Cburl , ipc |
url (y).(y〈dat〉 | Sburl , datc)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Client sends on public channel url his private address ip to server

Graphically

ip

In π-Calculus

νip .url〈 ip 〉.ip(x).Cburl , ipc |
url(y).(y〈dat〉 | Sburl , datc)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

In response server spawns a new thread

Graphically

ip

In π-Calculus

νip.url〈ip〉.ip(x).Cburl , ipc |
url(y).(y〈dat〉 | Sburl , datc)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Thread sends on the private channel ip data dat to the client

Graphically

ip T

In π-Calculus

νip .(ip (x).Cburl , ipc | ip 〈dat〉) |
Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Thread terminates, client is ready to contact server again

Graphically

ip
In π-Calculus

νip.Cburl , ipc | Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Client-Server System in the π-Calculus

Assumption

Environment E generates clients

E E→

ip1

E→

ip1 ip2

→ . . .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 2 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 3 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Client-Server System in the π-Calculus
Contribution of the Thesis

Overview

1 Introduction to π-Calculus

2 Structural Semantics

3 Structural Stationarity

4 Decidability in Bounded Depth

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 4 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Problem

Unbounded number of clients and threads

Eip2ip1

ip3

T ip4

T ip5

Observation

Finite number of connection patterns

Eip T ip

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Represent Connections in a Petri net

Every connection pattern yields a place

Every occurence of the pattern yields a token

Example

Eip2ip1

ip3

T ip4

T ip5

Eip T ip

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Represent Connections in a Petri net

Every connection pattern yields a place

Every occurence of the pattern yields a token

Example

Eip2ip1

ip3

T ip4

T ip5

Eip T ip

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Transitions model the evolution of patterns

In π-Calculus

ip E →E → ip T

E

→ ip E

The Structural Semantics

E

ip

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Transitions model the evolution of patterns

In π-Calculus

ip E →E → ip T

E

→ ip E

The Structural Semantics

E

ip

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Transitions model the evolution of patterns

In π-Calculus

ip E →E → ip T

E

→ ip E

The Structural Semantics

E

ip

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Idea of the Structural Semantics

Transitions model the evolution of patterns

In π-Calculus

ip E →E → ip T

E

→ ip E

The Structural Semantics

E

ip

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 5 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Purpose

Formalise the idea of connection patterns

Define depth and breadth

Idea

Minimise the scopes of restricted names

Example (Restricted Form)

νip.(ip(x).Cburl , ipc | ip〈dat〉 | Sburl , datc)

≡ νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Purpose

Formalise the idea of connection patterns

Define depth and breadth

Idea

Minimise the scopes of restricted names

Example (Restricted Form)

νip.(ip(x).Cburl , ipc | ip〈dat〉 | Sburl , datc)

≡ νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Purpose

Formalise the idea of connection patterns

Define depth and breadth

Idea

Minimise the scopes of restricted names

Example (Restricted Form)

νip.(ip(x).Cburl , ipc | ip〈dat〉 | Sburl , datc)

≡ νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Purpose

Formalise the idea of connection patterns

Define depth and breadth

Idea

Minimise the scopes of restricted names

Example (Restricted Form)

νip.(ip(x).Cburl , ipc | ip〈dat〉 | Sburl , datc)

≡ νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Fragments

Topmost parallel components are called fragments

νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Fragments correspond to connection patterns

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Restricted Form of Processes

Fragments

Topmost parallel components are called fragments

νip.(ip(x).Cburl , ipc | ip〈dat〉) | Sburl , datc

Fragments correspond to connection patterns

ip T

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 6 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Properties of the Semantics

Theorem (Full Retrievability)

Transition systems of P and N [[P]] are isomorphic. Reachable
processes can be computed from markings.

Theorem (Full Abstraction)

Equality of the semantics coincides with structural congruence:

P ≡ Q iff N [[P]] = N [[Q]]

Lemma

The structural semantics of a closed process is communication-free,
i.e., every transition has a single place in its preset.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 7 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Properties of the Semantics

Theorem (Full Retrievability)

Transition systems of P and N [[P]] are isomorphic. Reachable
processes can be computed from markings.

Theorem (Full Abstraction)

Equality of the semantics coincides with structural congruence:

P ≡ Q iff N [[P]] = N [[Q]]

Lemma

The structural semantics of a closed process is communication-free,
i.e., every transition has a single place in its preset.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 7 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Idea
Restricted Form
Properties

Properties of the Semantics

Theorem (Full Retrievability)

Transition systems of P and N [[P]] are isomorphic. Reachable
processes can be computed from markings.

Theorem (Full Abstraction)

Equality of the semantics coincides with structural congruence:

P ≡ Q iff N [[P]] = N [[Q]]

Lemma

The structural semantics of a closed process is communication-free,
i.e., every transition has a single place in its preset.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 7 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Structural Stationarity and Finiteness

Finiteness

Structural semantics may be an infinite Petri net

Automatic verification methods require finite nets

Definition (Structural Stationarity)

A process is structurally stationary iff there are finitely many
fragments every reachable process consists of.

Lemma (Finiteness)

Structural semantics N [[P]] is finite if and only if process P is
structurally stationary.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 8 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Structural Stationarity and Finiteness

Finiteness

Structural semantics may be an infinite Petri net

Automatic verification methods require finite nets

Definition (Structural Stationarity)

A process is structurally stationary iff there are finitely many
fragments every reachable process consists of.

Lemma (Finiteness)

Structural semantics N [[P]] is finite if and only if process P is
structurally stationary.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 8 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Structural Stationarity and Finiteness

Finiteness

Structural semantics may be an infinite Petri net

Automatic verification methods require finite nets

Definition (Structural Stationarity)

A process is structurally stationary iff there are finitely many
fragments every reachable process consists of.

Lemma (Finiteness)

Structural semantics N [[P]] is finite if and only if process P is
structurally stationary.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 8 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

A First Characterisation of Structural Stationarity

Structural Stationarity is Hard to Prove

Is there a characterisation?

Theorem (Characterisation via |)

A process is structurally stationary if and only if the number of
sequential processes in every reachable fragment is bounded, i.e.,

∃k ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||S ≤ k.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 9 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

A First Characterisation of Structural Stationarity

Structural Stationarity is Hard to Prove

Is there a characterisation?

Theorem (Characterisation via |)

A process is structurally stationary if and only if the number of
sequential processes in every reachable fragment is bounded, i.e.,

∃k ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||S ≤ k.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 9 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Applications of the Characterisation

Corollary (Restriction-free Processes are Structurally Stationary)

Fragments are sequential processes: bound 1

Definition (Finitary Process [MP95a, Pis99, MP01])

A process is finitary, if the number of sequential processes in every
reachable process is bounded:

∃k ∈ N : ∀Q ∈ Reach(P) : ||Q||S ≤ k .

Corollary (Finitary Processes are Structurally Stationary)

Take k as bound on number of sequential processes in fragments:

||F ||S ≤ ||rf (Q)||S = ||Q||S ≤ k .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 9 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Applications of the Characterisation

Corollary (Restriction-free Processes are Structurally Stationary)

Fragments are sequential processes: bound 1

Definition (Finitary Process [MP95a, Pis99, MP01])

A process is finitary, if the number of sequential processes in every
reachable process is bounded:

∃k ∈ N : ∀Q ∈ Reach(P) : ||Q||S ≤ k .

Corollary (Finitary Processes are Structurally Stationary)

Take k as bound on number of sequential processes in fragments:

||F ||S ≤ ||rf (Q)||S = ||Q||S ≤ k .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 9 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Applications of the Characterisation

Corollary (Restriction-free Processes are Structurally Stationary)

Fragments are sequential processes: bound 1

Definition (Finitary Process [MP95a, Pis99, MP01])

A process is finitary, if the number of sequential processes in every
reachable process is bounded:

∃k ∈ N : ∀Q ∈ Reach(P) : ||Q||S ≤ k .

Corollary (Finitary Processes are Structurally Stationary)

Take k as bound on number of sequential processes in fragments:

||F ||S ≤ ||rf (Q)||S = ||Q||S ≤ k .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 9 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

A Second Characterisation of Structural Stationarity

Understanding Structural Stationarity

Which processes are not structurally stationary?

Is there a characterisation in terms of ν?

Example

A server with local control channel l is not structurally stationary:

l l

W

→ l

W

W→ → . . .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 10 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

A Second Characterisation of Structural Stationarity

Understanding Structural Stationarity

Which processes are not structurally stationary?

Is there a characterisation in terms of ν?

Example

A server with local control channel l is not structurally stationary:

l l

W

→ l

W

W→ → . . .

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 10 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Breadth of Processes

Breadth

Maximal number of sequential processes sharing a restricted name

Example

For F :=

l

W

W

we have ||F ||B = 3.

Problem

Boundedness in breadth does not ensure structural stationarity

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 10 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Breadth of Processes

Breadth

Maximal number of sequential processes sharing a restricted name

Example

For F :=

l

W

W

we have ||F ||B = 3.

Problem

Boundedness in breadth does not ensure structural stationarity

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 10 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Depth of Processes

Example

Lists are bounded in breadth but not structurally stationary:

LE id1LI LE→ id1LI LI id2 LE→ → . . .

Depth

Minimal nesting of restrictions in the congruence class

Corresponds to the length of the longest simple path

Example

For F :=
id1LI LI id2 LE we have ||F ||D = 2.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 11 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Depth of Processes

Example

Lists are bounded in breadth but not structurally stationary:

LE id1LI LE→ id1LI LI id2 LE→ → . . .

Depth

Minimal nesting of restrictions in the congruence class

Corresponds to the length of the longest simple path

Example

For F :=
id1LI LI id2 LE we have ||F ||D = 2.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 11 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Definition and Finiteness
Characterisation I
Depth and Breadth

Characterisation of Structural Stationarity via ν

Theorem

A process is structurally stationary if and only if it is bounded in
breadth and bounded in depth.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 12 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 13 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 13 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 13 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 13 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 13 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Well-Structured Transition Systems

WSTS [Fin90, FS01, AČJT00]

Framework for infinite state systems

Generalises decidablity results for particular models

Technically: WSTS = (S ,→,≤)

(S ,→) is a transition system

≤ ⊆ S × S is a simulation relation and a well-quasi-ordering

≤ ⊆ S × S is a Well-Quasi-Ordering

Every infinite sequence contains two comparable states

s0 → s1 → . . .→ si → . . .→ sj → . . .

≤

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 14 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Well-Structured Transition Systems

WSTS [Fin90, FS01, AČJT00]

Framework for infinite state systems

Generalises decidablity results for particular models

Technically: WSTS = (S ,→,≤)

(S ,→) is a transition system

≤ ⊆ S × S is a simulation relation and a well-quasi-ordering

≤ ⊆ S × S is a Well-Quasi-Ordering

Every infinite sequence contains two comparable states

s0 → s1 → . . .→ si → . . .→ sj → . . .

≤

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 14 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Well-Structured Transition Systems

WSTS [Fin90, FS01, AČJT00]

Framework for infinite state systems

Generalises decidablity results for particular models

Technically: WSTS = (S ,→,≤)

(S ,→) is a transition system

≤ ⊆ S × S is a simulation relation and a well-quasi-ordering

≤ ⊆ S × S is a Well-Quasi-Ordering

Every infinite sequence contains two comparable states

s0 → s1 → . . .→ si → . . .→ sj → . . .

≤

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 14 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Well-Structured Transition Systems

WSTS [Fin90, FS01, AČJT00]

Framework for infinite state systems

Generalises decidablity results for particular models

Technically: WSTS = (S ,→,≤)

(S ,→) is a transition system

≤ ⊆ S × S is a simulation relation and a well-quasi-ordering

≤ ⊆ S × S is a Well-Quasi-Ordering

Every infinite sequence contains two comparable states

s0 → s1 → . . .→ si → . . .→ sj → . . .

≤

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 14 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Instantiation of the Framework—The Ordering �P
Intuition

Use hypergraph embedding as ordering

Example

lTip l WTip�P

Technically

Fragments may be added

νa.(F | G) �P νa.(F | G | H)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 15 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Instantiation of the Framework—The Ordering �P
Intuition

Use hypergraph embedding as ordering

Example

lTip l WTip�P

Technically

Fragments may be added

νa.(F | G) �P νa.(F | G | H)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 15 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Instantiation of the Framework—The Ordering �P
Intuition

Use hypergraph embedding as ordering

Example

lTip l WTip�P

Technically

Fragments may be added

νa.(F | G) �P νa.(F | G | H)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 15 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Instantiation of the Framework—The Ordering �P
Intuition

Use hypergraph embedding as ordering

Example

lTip l WTip�P

Technically

Fragments may be added

νa.(F | G) �P νa.(F | G | H)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 15 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Instantiation Theorem

Theorem

If P is a process of bounded depth, then (Reach(P)/≡,→,�P) is a
well-structured transition system.

WQO Proof

Undecidability of Reachability

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 16 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.
Infinite state iff + node is strictly larger.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 17 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Related Work

Processes as Graphs

Due to Milner [Mil79, MM79, MPW92, Mil99, SW01]

Automata-theoretic Semantics

Concurrency [Eng96, MP01, AM02, BG08, DKK06]

Structure [MP95b]

Model Checking Tools

MWB [VM94, Dam96], HAL [FGMP03], SLMC [Cai04]

Normal Forms

Decidability of structural congruence [EG99, EG04a, EG04b, EG07]

More Related Work

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 19 / 20

Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Survey

•l

••c1

••c ′
1

strash

l ′′

l ′

t

t0

•[a〈b〉] •
[a(y).K⌊a, y⌋]

• [a〈c〉]

[K⌊a, b⌋] [K⌊a, c⌋]

[b〈z0〉]

[b〈z1〉]

[c〈z0〉]

[c〈z1〉]

•
z0

z1

z2

t1

t2

t3

t4

WPTV
WP

MT2

Recursion-free

Terminating

FCP

Finitary

Bounded

Restriction-free

PFH

PFG<∞
Restriction bounded

Mixed bounded

PD<∞PB<∞

ip

T (PPN [[N]])

[P0]

 !

[P1]

 ! ! !

[P2]

 ! !

 !

a

a

b

bc c

c

1 2

1 3
2

1

T T ′
e1

e2

e3

e4

e5

e6

e7

e8

e9

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 20 / 20

References I

P. A. Abdulla, K. Čerans, B. Jonsson, and Y.-K. Tsay.

Algorithmic analysis of programs with well quasi-ordered domains.
Information and Computation, 160(1–2):109–127, 2000.

R. M. Amadio and C. Meyssonnier.

On decidability of the control reachability problem in the asynchronous π-calculus.
Nordic Journal of Computing, 9(1):70–101, 2002.

J. Bauer.

Analysis of Communication Topologies by Partner Abstraction.
PhD thesis, Department of Computer Science, Saarland University, 2006.

N. Busi and R. Gorrieri.

Distributed semantics for the π-calculus based on Petri nets with inhibitor arcs.
To appear in the Journal of Logic and Algebraic Programming, 46 pages, August 2008.

N. Busi, M. Gabbrielli, and G. Zavattaro.

Replication vs. recursive definitions in channel based calculi.
In Proc. of the 30th International Colloquium on Automata, Languages and Programming, ICALP 2003,
volume 2719 of LNCS, pages 133–144. Springer-Verlag, 2003.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 21 / 20

References II

N. Busi, M. Gabbrielli, and G. Zavattaro.

Comparing recursion, replication, and iteration in process calculi.
In Proc. of the 31th International Colloquium on Automata, Languages and Programming, ICALP 2004,
volume 3142 of LNCS, pages 307–319. Springer-Verlag, 2004.

N. Busi, M. Gabbrielli, and G. Zavattaro.

On the expressive power of recursion, replication, and iteration in process calculi.
27 pages, under consideration for publication in Mathematical Structures of Computer Science, 2008.

J. Bauer, T. Toben, and B. Westphal.

Mind the shapes: Abstraction refinement via topology invariants.
In Proc. of the 5th International Symposium on Automated Technology for Verification and Analysis, ATVA
2007, volume 4762 of LNCS, pages 35–50. Springer-Verlag, 2007.

L. Caires.

Behavioural and spatial observations in a logic for the π-Calculus.
In Proc. of the 7th International Conference on Foundations of Software Science and Computation
Structures, FOSSACS 2004, volume 2987 of LNCS, pages 72–89. Springer-Verlag, 2004.
Spatial Logic Model Checker: http://ctp.di.fct.unl.pt/SLMC/, last access 2008-11-28.

M. Dam.

Model checking mobile processes.
Information and Computation, 129(1):35–51, 1996.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 22 / 20

http://ctp.di.fct.unl.pt/SLMC/

References III

C. Dufourd, A. Finkel, and Ph. Schnoebelen.

Reset nets between decidability and undecidability.
In Proc. of the 25th International Colloquium on Automata, Languages and Programming, ICALP 1998,
volume 1443 of LNCS, pages 103–115. Springer-Verlag, 1998.

R. Demangeon, D. Hirschkoff, and D. Sangiorgi.

Static and dynamic typing for the termination of mobile processes.
In Proc. of the 5th IFIP International Conference on Theoretical Computer Science, IFIP TCS 2008, volume
273 of IFIP, pages 413–427. Springer-Verlag, 2008.

R. Devillers, H. Klaudel, and M. Koutny.

A Petri net translation of π-Calculus terms.
In Proc. of the 3rd International Colloquium on Theoretical Aspects of Computing, ICTAC 2006, volume
4281 of LNCS, pages 138–152. Springer-Verlag, 2006.

G. Delzanno, J.-F. Raskin, and L. Van Begin.

Towards the automated verification of multithreaded java programs.
In Proc. of the 8th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2002, volume 2280 of LNCS, pages 173–187. Springer-Verlag, 2002.

Y. Deng and D. Sangiorgi.

Ensuring termination by typability.
Information and Computation, 204(7):1045–1082, 2006.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 23 / 20

References IV

J. Engelfriet and T. Gelsema.

Multisets and structural congruence of the pi-calculus with replication.
Theoretical Computer Science, 211(1-2):311–337, 1999.

J. Engelfriet and T. Gelsema.

The decidability of structural congruence for replication restricted pi-calculus processes.
Technical report, Leiden Institute of Advanced Computer Science, 2004.
Revised 2005.

J. Engelfriet and T. Gelsema.

A new natural structural congruence in the pi-calculus with replication.
Acta Informatica, 40(6):385–430, 2004.

J. Engelfriet and T. Gelsema.

An exercise in structural congruence.
Information Processing Letters, 101(1):1–5, 2007.

J. Engelfriet.

A multiset semantics for the pi-calculus with replication.
Theoretical Computer Science, 153(1-2):65–94, 1996.

G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore.

A model-checking verification environment for mobile processes.
ACM Transactions on Software Engineering and Methodology, 12(4):440–473, 2003.
HAL: http://fmt.isti.cnr.it:8080/hal/, last access 2008-11-28.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 24 / 20

http://fmt.isti.cnr.it:8080/hal/

References V

A. Finkel.

Reduction and covering of infinite reachability trees.
Information and Computation, 89(2):144–179, 1990.

A. Finkel and Ph. Schnoebelen.

Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

G. Higman.

Ordering by divisibility in abstract algebras.
Proc. London Math. Soc. (3), 2(7):326–336, 1952.

B. König and V. Kozioura.

Counterexample-guided abstraction refinement for the analysis of graph transformation systems.
In Proc. of the 12th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2006, volume 3920 of LNCS, pages 197–211. Springer-Verlag, 2006.

V. Khomenko, M. Koutny, and A. Niaouris.

Applying Petri net unfoldings for verification of mobile systems.
In Proc. of the 4th Workshop on Modelling of Objects, Components and Agents, MOCA 2006, Bericht
FBI-HH-B-267/06, pages 161–178. University of Hamburg, 2006.

R. Milner.

Flowgraphs and flow algebras.
Journal of the Association for Computing Machinery, 26(4):794–818, 1979.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 25 / 20

References VI

R. Milner.

Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

G. Milne and R. Milner.

Concurrent processes and their syntax.
Journal of the Association for Computing Machinery, 26(2):302–321, 1979.

U. Montanari and M. Pistore.

Checking bisimilarity for finitary π-calculus.
In Proc. of the 6th International Conference on Concurrency Theory, CONCUR 1995, volume 962 of LNCS,
pages 42–56. Springer-Verlag, 1995.

U. Montanari and M. Pistore.

Concurrent semantics for the π-calculus.
Electronic Notes in Theoretical Computer Science, 1:411–429, 1995.

U. Montanari and M. Pistore.

History dependent automata.
Technical report, Instituto Trentino di Cultura, 2001.

R. Milner, J. Parrow, and D. Walker.

A calculus of mobile processes, part I.
Information and Computation, 100(1):1–40, 1992.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 26 / 20

References VII

F. Orava and J. Parrow.

An algebraic verification of a mobile network.
Formal Aspects of Computing, 4(6):497–543, 1992.

M. Pistore.

History Dependent Automata.
PhD thesis, Dipartimento di Informatica, Università di Pisa, 1999.

J.-F. Raskin and L. Van Begin.

Petri nets with non-blocking arcs are difficult to analyze.
Electronic Notes in Theoretical Computer Science, 98:35–55, 2004.

A. Rensink.

Canonical graph shapes.
In Proc. of the 13th European Symposium on Programming, ESOP 2004, volume 2986 of LNCS, pages
401–415. Springer-Verlag, 2004.

D. Sangiorgi and D. Walker.

The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

T. Toben.

Analysis of Dynamic Evolution Systems by Spotlight Abstraction Refinement.
PhD thesis, Department of Computing Science, University of Oldenburg, 2008.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 27 / 20

References VIII

B. Victor and F. Moller.

The mobility workbench: A tool for the π-calculus.
In Proc. of the 6th International Conference on Computer Aided Verification, volume 818 of LNCS, pages
428–440. Springer-Verlag, 1994.
MWB: http://www.it.uu.se/research/group/mobility/mwb, last access 2008-11-28.

B. Westphal.

Specification and Verification of Dynamic Topology Systems.
PhD thesis, Department of Computing Science, University of Oldenburg, 2008.

B. Wachter and B. Westphal.

The spotlight principle. on combining process-summarising state abstractions.
In Proc. of the 8th International Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 2007, volume 4349 of LNCS, pages 182–198. Springer-Verlag, 2007.

N. Yoshida, M. Berger, and K. Honda.

Strong normalisation in the π-Calculus.
Information and Computation, 191(2):145–202, 2004.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 28 / 20

http://www.it.uu.se/research/group/mobility/mwb

More Related Work

WSTS

Finkel inspired by Petri nets [Fin90, FS01], termination and
boundedness problems

Abdulla inspired by lossy channel systems [AČJT00], temporal
and simulation properties

WSTS and Process Algebras

Replication and recursion in CCS [BGZ03, BGZ04, BGZ08]

Termination

Type systems [YBH04, DS06, DHS08]

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 29 / 20

More Related Work

GRS and Verification

Semi-decision procedures [Bau06, Ren04, KK06]

AVACS

Spotlight abstraction [WW07, Wes08] + invariants [BTW07]

Refinement cycle [Tob08]

Extended Petri Nets

Petri nets with marking dependent arc cardinalities [DFS98]

Relation to multithreaded JAVA [DRB02]

Undecidability of LTL [RB04]

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 29 / 20

Why is �P a WQO?

Proof Idea

Understand fragments as (syntax) trees

Sequential processes are leafs

Restricted names are nodes

Example

νl .(Sburl , dat, lc | νip.(T bl , ipc | Cburl , ipc))
l

S ip

T C

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why is �P a WQO?

Proof Idea

Understand fragments as (syntax) trees

Sequential processes are leafs

Restricted names are nodes

Example

νl .(Sburl , dat, lc | νip.(T bl , ipc | Cburl , ipc))
l

S ip

T C

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why is �P a WQO?

Proof Idea

Understand fragments as (syntax) trees

Sequential processes are leafs

Restricted names are nodes

Example

νl .(Sburl , dat, lc | νip .(T bl , ipc | Cburl , ipc))

l

S ip

T C

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why is �P a WQO?

Proof Idea

Use a suitable wqo on trees

Wqo on trees of bounded depth

Induction on depth + Higman’s result [Hig52]

Example

l

S ip

T C

l

S�T ip

T C

W

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why is �P a WQO?

Proof Idea

Use a suitable wqo on trees

Wqo on trees of bounded depth

Induction on depth + Higman’s result [Hig52]

Example

l

S ip

T C

l

S�T ip

T C

W

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why is �P a WQO?

Proof Idea

Use a suitable wqo on trees

Wqo on trees of bounded depth

Induction on depth + Higman’s result [Hig52]

Example

l

S ip

T C

l

S�T ip

T C

W

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 30 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 31 / 20

Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Process Bunch

Modify an arbitrary number of processes with one communication

PB(a, i , d , t) := i .(PBba, i , d , tc | a)

+ d .a.PBba, i , d , tc

Example

νa.(PBba, i , d , tc | a | a)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Process Bunch

Modify an arbitrary number of processes with one communication

PB(a, i , d , t) := i .(PBba, i , d , tc | a)

+ d .a.PBba, i , d , tc
+ t. νb.PBbb, i , d , tc

Example

t | νa.(t.νb.PBbb, i , d , tc+ . . . | a | a)

→ νb.PBbb, i , d , tc | νa.(a | a)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Undecidability of Reachability in Depth One

Process Bunch

Modify an arbitrary number of processes with one communication

PB(a, i , d , t) := i .(PBba, i , d , tc | a)

+ d .a.PBba, i , d , tc
+ t. νb.PBbb, i , d , tc

Example

t | νa.(t.νb.PBbb, i , d , tc+ . . . | a | a)

→ νb.PBbb, i , d , tc | νa.(a | a)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 32 / 20

Verification Techniques

Algorithms avoid costly state space computations:

Occurrence number properties

Use S-invariants

Temporal properties

Inspect graph structure of the Petri net

Topological properties

Inspect set of places (using regular expressions)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 33 / 20

Unfolding-based Verification

[KKN06] MWB HAL Struct
Model unf sat dl π2fc unf sat

ns2 1 < 1 < 1 < 1 < 1 < 1
ns3 7 < 1 1 8 < 1 < 1
ns4 69 1 577 382 < 1 < 1
ns5 532 58 — — 17 3
ns6 — — — — 1518 84

gsm [OP92] n/a — 18 < 1 < 1

Verified car platoon and autonomous transport

Struct Model Checking
Instance |P| |T| unf |B| |E| sat

1p 6m 4v ref 937 1371 8h 923236 721991 20min
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 34 / 20

Size of the Translation

Idea

N1, N2, N3, . . .

P[[N1]], P[[N2]], P[[N3]], . . .

linear

N [[P[[N1]]]], N [[P[[N2]]]], N [[P[[N3]]]], . . .

Ni state yields N [[P[[Ni]]]] place

Theorem (Size of the Structural Semantics)

The size of the structural semantics N [[P]] is not bounded by a
primitive recursive function in the size of the process P.

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Size of the Translation

Idea

N1, N2, N3, . . .

P[[N1]], P[[N2]], P[[N3]], . . .

linear

N [[P[[N1]]]], N [[P[[N2]]]], N [[P[[N3]]]], . . .

Ni state yields N [[P[[Ni]]]] place

Theorem (Size of the Structural Semantics)

The size of the structural semantics N [[P]] is not bounded by a
primitive recursive function in the size of the process P.

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Size of the Translation

Idea

N1, N2, N3, . . .

P[[N1]], P[[N2]], P[[N3]], . . .

linear

N [[P[[N1]]]], N [[P[[N2]]]], N [[P[[N3]]]], . . .

Ni state yields N [[P[[Ni]]]] place

Theorem (Size of the Structural Semantics)

The size of the structural semantics N [[P]] is not bounded by a
primitive recursive function in the size of the process P.

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Size of the Translation

Idea

N1, N2, N3, . . .

P[[N1]], P[[N2]], P[[N3]], . . .

linear

N [[P[[N1]]]], N [[P[[N2]]]], N [[P[[N3]]]], . . .

Ni state yields N [[P[[Ni]]]] place

Theorem (Size of the Structural Semantics)

The size of the structural semantics N [[P]] is not bounded by a
primitive recursive function in the size of the process P.

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Size of the Translation

Technically

s1 s2

t

νact.(act | act.Ktbact, s1, s2c | s1〈act〉)

Kt(act, s1, s2) := s1(x).(act | act.Ktbact, s1, s2c | s2〈act〉)
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Size of the Translation

Technically

s1 s2

t

νact.(act | act. Ktbact, s1, s2c | s1〈act〉)
Kt(act, s1, s2) := s1(x).(act | act.Ktbact, s1, s2c | s2〈act〉)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20

Hierarchy of Processes

Return

restriction-free

structurally stationary restriction-bounded

mixed-bounded (p/t Petri nets)

bounded depth (WSTS)

bounded breadth (2CM)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 36 / 20

Hierarchy of Processes

Return

restriction-free

structurally stationary restriction-bounded

mixed-bounded (p/t Petri nets)

bounded depth (WSTS)

bounded breadth (2CM)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 36 / 20

Hierarchy of Processes

Return

restriction-free

structurally stationary restriction-bounded

mixed-bounded (p/t Petri nets)

bounded depth (WSTS)

bounded breadth (2CM)

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 36 / 20

Finite Handler Processes—Participants

Register at handler processes via distinguished public channels

Continue to communicate via private names only

Example

Channel cfa is a distinguished name

A free agent is a participant:

νid , ca, rq. cfa〈id〉 .id〈ca〉.id〈rq〉 . . .
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 37 / 20

Finite Handler Processes—Participants

Register at handler processes via distinguished public channels

Continue to communicate via private names only

Example

Channel cfa is a distinguished name

A free agent is a participant:

νid , ca, rq.cfa〈id〉. id〈ca〉 . id〈rq〉 . . .
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 37 / 20

Finite Handler Processes—Handler

Listen on the distinguished channels

Receive finitely many processes

Communicate with the registered participants only

Example

The MRG process is a handler

cfa (idx).idx (cax) . . . cfa (idy) . . . idy (rqy).cax〈rqy 〉.MRGbcfac

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 38 / 20

Finite Handler Processes—Handler

Listen on the distinguished channels

Receive finitely many processes

Communicate with the registered participants only

Example

The MRG process is a handler

cfa (idx).idx (cax) . . . cfa (idy) . . . idy (rqy).cax〈rqy 〉.MRGbcfac

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 38 / 20

Finite Handler Processes—Handler

Listen on the distinguished channels

Receive finitely many processes

Communicate with the registered participants only

Example

The MRG process is a handler

cfa(idx).idx (cax) . . . cfa(idy) . . . idy (rqy). cax〈rqy 〉 .MRGbcfac
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 38 / 20

Fundamental Property of Finite Handler Processes

Theorem

Finite handler processes are structurally stationary.

The car platooning example is a finite handler process
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 39 / 20

	Introduction to -Calculus
	Client-Server System in the -Calculus
	Contribution of the Thesis

	Structural Semantics
	Idea
	Restricted Form
	Properties

	Structural Stationarity
	Definition and Finiteness
	Characterisation I
	Depth and Breadth

	Decidability in Bounded Depth
	Well-Structured Transition Systems
	Instantiation of the Framework
	Finite Reachability Tree and Decidability

	Appendix

