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A Client-Server System in the π-Calculus

Client sends on public channel url his private address ip to server

Graphically

ip

In π-Calculus
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A Client-Server System in the π-Calculus

In response server spawns a new thread

Graphically
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A Client-Server System in the π-Calculus

Thread sends on the private channel ip data dat to the client

Graphically

ip T

In π-Calculus
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A Client-Server System in the π-Calculus

Thread terminates, client is ready to contact server again

Graphically

ip
In π-Calculus
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A Client-Server System in the π-Calculus

Assumption

Environment E generates clients

E E→

ip1

E→

ip1 ip2

→ . . .
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A Semantical Approach to Verification

Goal

Automatic verification of dynamically reconfigurable systems

Occurrence number properties: Is there exactly one server?

Temporal properties: Does a request create a new thread?

Topological properties: Is a thread always connected to a
client?

Problem

Finite representation of infinite state space required

Approach

Translate π-Calculus into place/transition Petri nets
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Overview

1 Introduction to π-Calculus

2 Structural Semantics

3 Structural Stationarity

4 Decidability in Bounded Depth
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Idea of the Structural Semantics

Problem

Unbounded number of clients and threads

Eip2ip1

ip3

T ip4

T ip5

Observation

Finite number of connection patterns

Eip T ip
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Represent Connections in a Petri net

Every connection pattern yields a place

Every occurence of the pattern yields a token

Example

Eip2ip1

ip3

T ip4

T ip5

Eip T ip
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Transitions model the evolution of patterns

In π-Calculus

ip E →E → ip T

E

→ ip E

The Structural Semantics

E

ip
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Purpose

Formalise the idea of connection patterns

Define depth and breadth

Idea

Minimise the scopes of restricted names

Example (Restricted Form)

νip.( ip(x).Cburl , ipc | ip〈dat〉 | Sburl , datc )
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Fragments

Topmost parallel components are called fragments
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Properties of the Semantics

Theorem (Full Retrievability)

Transition systems of P and N [[P]] are isomorphic. Reachable
processes can be computed from markings.

Theorem (Full Abstraction)

Equality of the semantics coincides with structural congruence:

P ≡ Q iff N [[P]] = N [[Q]]

Lemma

The structural semantics of a closed process is communication-free,
i.e., every transition has a single place in its preset.
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Structural Stationarity and Finiteness

Finiteness

Structural semantics may be an infinite Petri net

Automatic verification methods require finite nets

Definition (Structural Stationarity)

A process is structurally stationary iff there are finitely many
fragments every reachable process consists of.

Lemma (Finiteness)

Structural semantics N [[P]] is finite if and only if process P is
structurally stationary.
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A First Characterisation of Structural Stationarity

Structural Stationarity is Hard to Prove

Is there a characterisation?

Theorem (Characterisation via | )

A process is structurally stationary if and only if the number of
sequential processes in every reachable fragment is bounded, i.e.,

∃k ∈ N : ∀Q ∈ Reach(P) : ∀F ∈ fg (rf (Q)) : ||F ||S ≤ k.
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Applications of the Characterisation

Corollary (Restriction-free Processes are Structurally Stationary)

Fragments are sequential processes: bound 1

Definition (Finitary Process [MP95a, Pis99, MP01])

A process is finitary, if the number of sequential processes in every
reachable process is bounded:

∃k ∈ N : ∀Q ∈ Reach(P) : ||Q||S ≤ k .

Corollary (Finitary Processes are Structurally Stationary)

Take k as bound on number of sequential processes in fragments:

||F ||S ≤ ||rf (Q)||S = ||Q||S ≤ k .
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A Second Characterisation of Structural Stationarity

Understanding Structural Stationarity

Which processes are not structurally stationary?

Is there a characterisation in terms of ν?

Example

A server with local control channel l is not structurally stationary:

l l

W

→ l

W

W→ → . . .
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Breadth of Processes

Breadth

Maximal number of sequential processes sharing a restricted name

Example

For F :=

l

W

W

we have ||F ||B = 3.

Problem

Boundedness in breadth does not ensure structural stationarity
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Depth of Processes

Example

Lists are bounded in breadth but not structurally stationary:

LE id1LI LE→ id1LI LI id2 LE→ → . . .

Depth

Minimal nesting of restrictions in the congruence class

Corresponds to the length of the longest simple path

Example

For F :=
id1LI LI id2 LE we have ||F ||D = 2.
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Definition and Finiteness
Characterisation I
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Characterisation of Structural Stationarity via ν

Theorem

A process is structurally stationary if and only if it is bounded in
breadth and bounded in depth.
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Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Decidability in Bounded Depth

Theorem

If a process is bounded in depth, termination and infinity of states
are decidable.

Example

Server with control channel l is bounded in depth by 3

l TT

W

ip1 ip2
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Framework for infinite state systems

Generalises decidablity results for particular models

Technically: WSTS = (S ,→,≤)

(S ,→) is a transition system

≤ ⊆ S × S is a simulation relation and a well-quasi-ordering

≤ ⊆ S × S is a Well-Quasi-Ordering

Every infinite sequence contains two comparable states

s0 → s1 → . . .→ si → . . .→ sj → . . .

≤

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 14 / 20



Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Well-Structured Transition Systems

WSTS [Fin90, FS01, AČJT00]
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Instantiation Theorem

Theorem

If P is a process of bounded depth, then (Reach(P)/≡,→,�P) is a
well-structured transition system.

WQO Proof

Undecidability of Reachability
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Decidability Results for WSTS [Fin90, FS01, AČJT00]

Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])

Non-terminating computation exists iff tree contains + node.

Infinite state iff + node is strictly larger.
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Finite Reachability Tree

Build computation tree (finite branching)

If a new node covers predecessor stop and mark node by +

s

t

s ≤ t

t+

Theorem ([Fin90, FS01, AČJT00])
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Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20



Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20



Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Application to the Client-Server System

Build the computation tree

l T ip. . .→ l→ . . .→

W

T ip

Results

System does not terminate and is infinite state.

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 18 / 20



Introduction to π-Calculus
Structural Semantics

Structural Stationarity
Decidability in Bounded Depth

Well-Structured Transition Systems
Instantiation of the Framework
Finite Reachability Tree and Decidability

Related Work

Processes as Graphs

Due to Milner [Mil79, MM79, MPW92, Mil99, SW01]

Automata-theoretic Semantics

Concurrency [Eng96, MP01, AM02, BG08, DKK06]

Structure [MP95b]

Model Checking Tools

MWB [VM94, Dam96], HAL [FGMP03], SLMC [Cai04]

Normal Forms

Decidability of structural congruence [EG99, EG04a, EG04b, EG07]

More Related Work
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Survey
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More Related Work

WSTS

Finkel inspired by Petri nets [Fin90, FS01], termination and
boundedness problems

Abdulla inspired by lossy channel systems [AČJT00], temporal
and simulation properties

WSTS and Process Algebras

Replication and recursion in CCS [BGZ03, BGZ04, BGZ08]

Termination

Type systems [YBH04, DS06, DHS08]
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More Related Work

GRS and Verification

Semi-decision procedures [Bau06, Ren04, KK06]

AVACS

Spotlight abstraction [WW07, Wes08] + invariants [BTW07]

Refinement cycle [Tob08]

Extended Petri Nets

Petri nets with marking dependent arc cardinalities [DFS98]

Relation to multithreaded JAVA [DRB02]

Undecidability of LTL [RB04]
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Why is �P a WQO?

Proof Idea

Understand fragments as (syntax) trees

Sequential processes are leafs

Restricted names are nodes

Example

νl .(Sburl , dat, lc | νip.(T bl , ipc | Cburl , ipc))
l

S ip

T C

Return
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Why is �P a WQO?

Proof Idea

Use a suitable wqo on trees

Wqo on trees of bounded depth

Induction on depth + Higman’s result [Hig52]

Example

l

S ip

T C

l

S�T ip

T C

W

Return
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Why Order Name Places?

Counterexample

Consider a | Kbac with K (x) := νz0.(z0 | x .z0.Kbxc)
Process deadlocks after four steps

Insert dependence between z0 and z1

[Kbac]
z0

z1

[a]

[z0] [z1]

[a.z1.Kbac]

[z0.Kbac] Return

Return
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Undecidability of Reachability in Depth One

Test for Zero in Petri Nets with Transfer [DFS98]

l : if c = 0 then goto l ′; else c := c − 1; goto l ′′;

Create copy c ′ of counter c

Test for zero removes all tokens from c ′

l

c

c ′

l ′′

strash

l ′ Return
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Undecidability of Reachability in Depth One

Process Bunch

Modify an arbitrary number of processes with one communication

PB(a, i , d , t) := i .(PBba, i , d , tc | a)

+ d .a.PBba, i , d , tc

Example

νa.(PBba, i , d , tc | a | a)

Return
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Verification Techniques

Algorithms avoid costly state space computations:

Occurrence number properties

Use S-invariants

Temporal properties

Inspect graph structure of the Petri net

Topological properties

Inspect set of places (using regular expressions)

Return
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Unfolding-based Verification

[KKN06] MWB HAL Struct
Model unf sat dl π2fc unf sat

ns2 1 < 1 < 1 < 1 < 1 < 1
ns3 7 < 1 1 8 < 1 < 1
ns4 69 1 577 382 < 1 < 1
ns5 532 58 — — 17 3
ns6 — — — — 1518 84

gsm [OP92] n/a — 18 < 1 < 1

Verified car platoon and autonomous transport

Struct Model Checking
Instance |P| |T| unf |B| |E| sat

1p 6m 4v ref 937 1371 8h 923236 721991 20min
Return
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Size of the Translation

Idea

N1, N2, N3, . . .

P[[N1]], P[[N2]], P[[N3]], . . .

linear

N [[P[[N1]]]], N [[P[[N2]]]], N [[P[[N3]]]], . . .

Ni state yields N [[P[[Ni ]]]] place

Theorem (Size of the Structural Semantics)

The size of the structural semantics N [[P]] is not bounded by a
primitive recursive function in the size of the process P.

Return
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Size of the Translation

Technically

s1 s2

t

νact.(act | act.Ktbact, s1, s2c | s1〈act〉 )

Kt(act, s1, s2) := s1(x).(act | act.Ktbact, s1, s2c | s2〈act〉)
Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20



Size of the Translation

Technically

s1 s2

t

νact.(act | act. Ktbact, s1, s2c | s1〈act〉)
Kt(act, s1, s2) := s1(x).(act | act.Ktbact, s1, s2c | s2〈act〉)

Return

Roland Meyer (University of Oldenburg) Structural Stationarity in the π-Calculus 35 / 20



Hierarchy of Processes

Return

restriction-free

structurally stationary restriction-bounded

mixed-bounded (p/t Petri nets)

bounded depth (WSTS)

bounded breadth (2CM)
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Finite Handler Processes—Participants

Register at handler processes via distinguished public channels

Continue to communicate via private names only

Example

Channel cfa is a distinguished name

A free agent is a participant:

νid , ca, rq. cfa〈id〉 .id〈ca〉.id〈rq〉 . . .
Return
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Finite Handler Processes—Handler

Listen on the distinguished channels

Receive finitely many processes

Communicate with the registered participants only

Example

The MRG process is a handler

cfa (idx ).idx (cax ) . . . cfa (idy ) . . . idy (rqy ).cax〈rqy 〉.MRGbcfac

Return
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Fundamental Property of Finite Handler Processes

Theorem

Finite handler processes are structurally stationary.

The car platooning example is a finite handler process
Return
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