	Theoretical Computer Science 1	
René Maseli	Exercise 3	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2020/21

Release: 7.12.2021
Due: 16.12.2021, 23:59

Hand in your solutions per e-mail or StudIP to your tutor until Thursday, 16.12.2021 23:59 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Homomorphisms [10 points]

Examine the following NFA A over the alphabet $\Sigma=\{a, b\}$:

Note: This automaton coincides with that of the last sheet.
a) [5 points] Consider the homomorphism $f: \Sigma \rightarrow\{0,1\}$.

$$
\begin{aligned}
& f(a)=01 \\
& f(b)=10
\end{aligned}
$$

Construct the image-automaton $f(A)$ with $\mathcal{L}(f(A))=f(\mathcal{L}(A))$.
Show $101001100110100110 \in \mathcal{L}(f(A))$ by giving a corresponding run through A.
b) [5 points] Consider the homomorphism $g:\{c, d, e\} \rightarrow \Sigma$.

$$
\begin{aligned}
& g(c)=\varepsilon \\
& g(d)=b b b \\
& g(e)=b a
\end{aligned}
$$

Construct the co-image-automaton $g^{-1}(A)$ with $\mathcal{L}\left(g^{-1}(A)\right)=g^{-1}(\mathcal{L}(A))$.
Show ceddc $\in \mathcal{L}\left(g^{-1}(A)\right)$ by giving a corresponding run through A.

Exercise 2: Input sanitization [10 points]

Check whether the following problems can be considered as problems over regular languages. Explain your answer by e.g. giving a regular expression or a finite automaton, if possible, or by arguing that the language is indeed not regular. Correctness proofs are not needed.

Assume the alphabet $\Sigma=L \cup \cup \cup D \cup S \cup W$, partitioned into lower-case letters L, upper-case letters U, digits D, special characters S and white spaces W.
a) [1 point] Does the input have at least 4 symbols and at most 20 ?
b) [1 point] Does each class (L, U, D und S) occur at least once?
c) [2 points] Parenthesization: Is the input text correctly parenthesized, i.e. does every opening parenthesis have a matching closing parenthesis and vice versa? (ri) (gh)t, R(i) g$) \mathrm{h}) \mathrm{t}$ are correct, but $w(r)$ on $) g$ and $W(r) o(n$ (g are not.
d) [3 points] Escaping: We may enclose sequences with ' $\in S$ and escape each directly following symbol with $\backslash \in S$.

Does every non-escaped opening ' have a matching closing ' and are all white space and special character either enclosed or escaped? (i.e. $\backslash \backslash, \backslash ', \!$, '10/05/1998' or 'Th!s !s quo\ed and €scapes
 do nothing \ere\')
e) [3 points] Tables: Do all rows (separated by newlines $\backslash n$) have the same number of cells (separated by commata ,)?

Exercise 3: Theorem 3.18 [8 points]

Let $A=\left(Q, q_{0}, \rightarrow, Q_{F}\right)$ be an NFA over Σ, and $A^{\prime}=\left(\mathcal{P}(Q), Q_{0}, \rightarrow_{B}, Q_{F}^{\prime}\right)$ be the automaton constructed via the Rabin-Scott powerset construction, where $Q_{0}=\left\{q_{0}\right\}$ and $X \xrightarrow{a}{ }^{\prime}\{q \in Q \mid \exists p \in X: p \xrightarrow{a} q\}$ for all $X \subseteq Q$ and $a \in \Sigma$ and $Q_{F}^{\prime}=\left\{X \subseteq Q \mid X \cap Q_{F} \neq \varnothing\right\}$.

The task of this exercise is to proof Theorem 3.18. Towards this, proceed as follows:
a) [3 points] Show by induction on i : For every run $q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{i}} q_{i}$ on A the (unique) run $Q_{0} \xrightarrow{a_{1}} Q_{1} \xrightarrow{a_{2}}{ }^{\prime} \ldots \xrightarrow{a_{i}} Q_{i}$ on A^{\prime}, which reads the same word, satisfies $q_{i} \in Q_{i}$.
b) [3 points] Show by induction on i : For every run $Q_{0} \xrightarrow{a_{1}}{ }^{\prime} Q_{1} \xrightarrow{a_{2}}{ }^{\prime} \ldots \xrightarrow{a_{i}{ }^{\prime}} Q_{i}$ on A^{\prime} and every state $q_{i} \in Q_{i}$ there exists a run $q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{i}} q_{i}$ on A, which reads the same word and stops in q_{i}.
c) [2 points] Using the partial results of a) and b), prove that $\mathcal{L}(A)=\mathcal{L}\left(A^{\prime}\right)$ holds.

Exercise 4: Powerset construction and complementation [7 points]

Let A be the following NFA over the alphabet $\Sigma=\{a, b\}$.

a) [2 points] Determinize A, that is, find a DFA B with $\mathcal{L}(A)=\mathcal{L}(B)$ by using the Rabin-Scott powerset construction.

Note: You can restrict to the states reachable from the initial state $\left\{q_{0}\right\}$. For this, start with $\left\{q_{0}\right\}$ as the only state and then iteratively construct for the current set of states all possible direct successors until no more states are added.
b) [1 point] Compare the size of the state space of B with the worst-case-value of $\left|\mathcal{P}\left(\left\{q_{0}, \ldots, q_{5}\right\}\right)\right|$.
c) [1 point] Construct an automaton \bar{B} with $\mathcal{L}(\bar{B})=\overline{\mathcal{L}(A)}$.
d) [3 points] For the word $w=a b a b b a b b a$, give all possible runs of A on w and the unique run of B on w. How many different runs on A are there in A ? Is $w \in \mathcal{L}(A)$?

