
CHAPTER 6

Reduction Systems, Grammars, and Chomsky Hierarchy

Goal: In this chapter we introduce reduction systems and their use in Theoretical Computer
Science in terms of grammars. We will see that certain restrictions on the reduction systems lead
to different types of grammars categorized by the Chomsky hierarchy.

6.1. Rewriting and Reduction Systems

Throughout this section, let A be an arbitrary alphabet. The idea is to replace words over A
with other words according to a set of rules.

Definition 6.1. A reduction system over A is a pair E = (A, P) with P ⊆ A? ×A?. Elements of
P are called productions or rewrite rules. We write u→ v for (u, v) ∈ P .

Consider the following reduction system E1:

E1 = ({a, . . . , z}︸ ︷︷ ︸
A

, {(can,must)}︸ ︷︷ ︸
P

)

The idea is to replace occurrences of the word can with the word must . We formally introduce
these replacements as derivations over A?.

Definition 6.2. Denote by `E⊂ A? × A? the derivable relation over E. Let w, v ∈ A?. Then
w `E v iff there are words w1, w2 ∈ A? and a production u → v ∈ P such that w = w1uw2 and
v = w1vw2.

We may also just write ` instead of `E if the reduction system clear. Sometimes we also write
→E (→ resp.) following the notation of the production rules. Denote by `? the reflexive transitive
closure of `, as usual. A sequence w = z0 ` · · · ` zn = v is called derivation of size n. Moreover,
we find:

i) There is always a derivation of size 0 with w `? w.
ii) For w 6= v and w `? v there is a derivation of size n > 0.
iii) If w ` v, we say w directly derives v.
iv) We write w 0, if there is no v, such that w directly derives v.

Example 6.1. Consider E1 = ({a, . . . , z}, {(can,must)}) like above. The derivations of maximum
length replace all occurrences of can with the string must . Note, that there is generally no defined
order of replacements.

(1) I can go to work `E1
I must go to work

(2) I can go to work and I can do sports `E1
I must go to work and I can do sports

or I can go to work and I can do sports `E1
I can go to work and I must do sports

(3) I can go to work and I can do sports `?E1
I must go to work and I must do sports

Example 6.2. Let E2 = (A, {(a, aba)}). Under this reduction system, we have infinite derivations.
For instance

cac `E2 cabac `E2 cababac `E2 · · ·
By chance, the replacement of either a in the second step leads to the same word. Consider another
word w = caac. If we always replace the first (the last) occurrence of a, we get

caac `E2
cabaac `E2

cababaac
or caac `E2

caabac `E2
caababac respectively

However, there are infinitely many other derivations.

1

2 6. REDUCTION SYSTEMS, GRAMMARS, AND CHOMSKY HIERARCHY

caac

cabaac

cababaac

...
...

...
...

cababaac

...
...

...
...

cabaabac

...
...

...
...

caabac

cabaabac

...
...

...
...

caababac

...
...

...
...

caababac

...
...

...
...

Figure 6.1. Derivation tree for L(caac, E2)

Definition 6.3. The language L(w,E) := {v ∈ A | w `?E v} is the language of all derivable words
of w over E.

The derivations of w may be represented as a tree with w as its root node. The children of a
node u are the immediately derivable words of u. Figure 6.1 shows the (infinite) derivation tree
for Example 6.2.

Example 6.3. Consider the reduction system E3 = (A, {(ba, ab)}) and the word w = baacba ∈ A?.
Observe, that there is an n such that all derivations of w under E3 have a size of at most n. We
find n = 3 with the following example derivation:

baacba `E3 abacba `E3 abacab `E3 aabcab

The number (n+1) is also the depth of the derivation tree. Hence, the language L(w,E3) is finite.

Example 6.4. For E4 = (A, {(a, b), (a, c), (c, d), (b, e), (d, e)}) we see that L(w,E4) is always finite,
independently from the choice of w. An example derivation is

a `E4
c `E4

d `E4
e

Example 6.5. In Example 6.3 we have seen, that a language L(w,E) is finite, if the corre-
sponding derivation tree is finite. Now we see that the other direction does not hold. Let
E5 = (A, {(x, y), (y, x), (x, a), (y, b)}). Figure 6.2 shows the infinite derivation tree for L(x,E5)
with the infinite derivation x `E5

y `E5
x `E5

y `E5
· · · . However, L(x,E5) = {x, y, a, b} is

obviously a finite language.

x

a y

b x

a y

b · · ·

Figure 6.2. Derivation tree for L(x,E5)

6.2. Formal Grammars

Formal grammars are reduction systems with additional structure. Some symbols are con-
sidered non-terminal whereas others are considered terminal. The former may be understood as
auxiliary symbols for the derivation of a word, where a special symbol S denotes the start symbol.
Hence, we are talking about languages L(S,EG) where EG is a special reduction system which
replaces non-terminals only.

6.2. FORMAL GRAMMARS 3

Formal grammars were originally defined by Noam Chomsky in 1959. The difference between
non-terminal symbols and terminal symbols has a direct linguistic analogue. Terms like subject,
predicate, object correspond to non-terminals while the letters of the English (or any other)
alphabet are terminal symbols.

[subject] [predicate] [object] ? Captain Picard commands the Enterprise

Definition 6.4. A formal grammar is a quadruple G = (N,Σ, P, S) with

i) an alphabet N of non-terminals,
ii) an alphabet Σ of terminals,
iii) both alphabets being disjoint (N ∩ Σ = ∅),
iv) a set of production rules P ⊆ (N ∪ Σ)+ × (N ∪ Σ)?,
v) the left hand-side of a rule containing at least one non-terminal ((u, v) ∈ P ⇒ u /∈ Σ?),

vi) and the start symbol S ∈ N .

Observe that EG = (N ∪Σ, P) is a well-defined reduction system (cf. Definition 6.1). We use the
notation u → v for elements of P and the relation `EG

for derivations accordingly. Restricting
productions to have at least one non-terminal on the left hand-side has two benefits: first, it
prohibits the production of words out of nothing. Second, a word over Σ? cannot be changed
anymore. This motivates the definition of the language L(G) as the set of words consisting of
terminal symbols only.

Definition 6.5. Let G = (N,Σ, P, S) be a grammar. A sentential form of G is any word w of
terminals and non-terminals over (N ∪ Σ)?. If w does not contain non-terminals (i.e. w ∈ Σ?),
the word itself is also called terminal. The language L(G) produced by G is defined as follows:

L(G) = {w ∈ L(S,EG) | w is terminal} where EG = (N ∪ Σ, P)

Example 6.6. Let G1 = (N1,Σ1, P1, S1) be a grammar with

N1 = {S1}
Σ1 = {a, b}
P1 = {S1 → ε, S1 → aS1b}

Figure 6.3 shows the derivation tree for L(G1) = L(S1, EG1
). The derivations to the left use the

S1

ε aS1b

ab aaS1bb

aabb · · ·

Figure 6.3. Derivation tree for L(G1)

rule S1 → ε and the derivations to the right use the rule S1 → aS1b. The terminal words are
exactly the leafs of the derivation tree (ε, ab, aabb, . . .). Hence, the language of G1 is L(G1) =
{anbn | n ∈ N}.

Grammars are very useful to describe desired structural properties of a text. Most program-
ming languages are described by using formal grammars. They define the syntax of a valid program
source code. The following example shows, how a simple grammar can be used to describe the
correct usage of parenthesis.

Example 6.7. Consider the language LDyck with

LDyck = {w ∈ {(,)}? | |w|(= |w|) ∧ ∀u ∈ prefix(w) : |u|(≥ |u|)}

4 6. REDUCTION SYSTEMS, GRAMMARS, AND CHOMSKY HIERARCHY

where |w|a denotes the amount of occurrences of a in w and prefix(w) denotes the set of words x
such that there is a word y over the same alphabet with xy = w, as usual. We may construct the
following grammar G2 = (N2,Σ2, P2, S2) with

N2 = {S2}
Σ2 = {(,)}
P2 = {S2 → ε, S2 → (S2), S2 → S2S2}

Indeed, L(G2) = LDyck (the proof is left as an exercise).

6.3. Chomsky Hierarchy

Hitherto, grammars may contain production rules with arbitrary concatenations of terminals
and non-terminals on the left hand-side, as long as there is at least one non-terminal. In this
section we introduce some further restrictions on the structure of the production rules, which we
will find having a direct influence on the structure of the words produced by the grammar. The
grammars as well as their corresponding languages are thereby divided into classes which leads
to the Chomsky hierarchy. While having several different classes of grammars, we essentially find
only four language classes: Chomsky Type-0 (unrestricted) to Type-3 (most restricted). We start
by defining restrictions for the productions of a grammar.

Definition 6.6. A production u→ v ∈ P for some grammar G = (N,Σ, P, S) is called

i) left regular/left linear if u ∈ N and v ∈ NΣ? ∪ Σ?

The left hand-side consists of exactly one non-terminal and the right hand-side contains at
most one non-terminal which is required to be the leftmost symbol.

ii) right regular/right linear if u ∈ N and v ∈ Σ?N ∪ Σ?

The left hand-side consists of exactly one non-terminal and the right hand-side contains at
most one non-terminal which is required to be the rightmost symbol.

iii) context-free if u ∈ N .
The left hand-side consists of exactly one non-terminal and the right hand-side is unrestricted
(in particular v may be ε).

iv) context-sensitive if u = xY z and v = xwz with Y ∈ N, x, z, w ∈ (N ∪ Σ)? and w 6= ε
One non-terminal Y on the left hand-side in the context of x and z is replaced with the
non-empty word w.

v) monotone if |u| ≤ |v|
The production does not shorten the word.

Example 6.8. Consider G = ({S,X}, {a, b}, P, S) The following table shows some examples for
productions in P with their respective properties:

Production Properties
S → ε regular (linear) and context-free, but neither context-sensitive nor monotone
X → a has all of the above five properties
S → aX right regular (right linear), context-free, context-sensitive, and monotone
S → Sb left regular (left linear), context-free, context-sensitive, and monotone
S → aSb context-free, context-sensitive, and monotone
aSb→ aXaXb context-sensitive, and monotone
aXb→ bSXa monotone and noting else
aXb→ Xa has non of the above five properties

We may derive some relations between the above properties. For instance, regular productions
are also context-free. This immediately follows from the definition. Context-free productions with
v 6= ε are also context-sensitive with an empty context x = z = ε and every context-sensitive
production is necessarily monotone. Now we extend the characterization of productions rules to
the whole grammar.

Definition 6.7. A grammar G = (N,Σ, P, S) is called

i) left regular/left linear if all productions are left regular/left linear

6.3. CHOMSKY HIERARCHY 5

ii) right regular/right linear if all productions are right regular/right linear
iii) context-free if all productions are context-free
iv) context-sensitive if all productions are context-sensitive except S → ε (then, S must not

occur on the right hand-side of any other production)
v) monotone (or noncontracting) if all productions are monotone except S → ε (then, S must

not occur on the right hand-side of any other production)

For context-sensitive and monotone we need the exception for S → ε to allow the production
of the empty word. Observe, that without this exception we have ε /∈ L(G) for all context-sensitive
and monotone grammars G. However, S must not simultaneously occur on the right hand-side
of a production, because this would break monotonicity. For instance the rule aXb → aSb in
combination with S → ε would allow for aXb `? ab with |aXb| 6≤ |ab|, despite all production rules
obeying that restriction.

Up to now we can categorize a grammar to be (left/right) regular, context-free, context-
sensitive or monotone. We change perspective and perform a similar categorization for languages.
Please note, that for grammars we argued about all productions. For instance, a grammar is
context-free, if all productions are context-free. However, for languages it shall suffice that there
is a grammar G, such that G produces that language. There may still be other grammars of
different types producing the same language.

Definition 6.8. Let Σ be an alphabet. A language L ⊆ Σ? is called

i) left regular/left linear if there is a left regular/left linear grammar G with L = L(G)
ii) right regular/right linear, regular or Chomsky Type-3 if there is a right regular/right linear

grammar G with L = L(G)
iii) context-free or Chomsky Type-2 if there is a context-free grammar G with L = L(G)
iv) context-sensitive or Chomsky Type-1 if there is a context-sensitive grammar G with L = L(G)
v) noncontracting if there is a monotone grammar G with L = L(G)

vi) Chomsky Type-0 if there is any grammar G with L = L(G)

Example 6.9. Consider Σ = {a, b} and the language L3 = {anb | n ∈ N}. This language can be
produced by the right regular grammar G3 = (N3,Σ, P3, S) with

N3 = {S}
P3 = {S → aS, S → b}

Hence, L3 is right regular. But L3 is also left regular according to the following left regular
grammar G′

3 = (N ′
3,Σ, P ′

3, S):

N ′
3 = {A,S}

P ′
3 = {S → Ab,A→ Aa,A→ ε}

The language L3 is also context-free, context-sensitive – this is an easy exercise.

Example 6.10. Recall the grammar G1 with L1 = L(G1) = {anbn | n ∈ N}. Since both
productions S1 → ε and S → aS1b are context-free, L1 is a context-free language. However, from
the previous chapter we already know that there cannot exist a regular grammar for L1.

Example 6.11. Let Σ = {a, b, c} and L4 = {anbncn | n ∈ N}. This language is noncontracting
(or monotonic) because we find the following monotone grammar G4 = (N4,Σ, P4, S):

N4 = {S,R,B}
P4 : S → ε S → R

R→ aRBc R→ abc
cB → Bc bB → bb

An example derivation could be S ` R ` aRBc ` aabcBc ` aabBcc ` aabbcc. Later we will see,
that L4 is even context-sensitive, but not context-free.

